//===- CodeGenIntrinsics.cpp - Intrinsic Class Wrapper --------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file defines a wrapper class for the 'Intrinsic' TableGen class. // //===----------------------------------------------------------------------===// #include "CodeGenIntrinsics.h" #include "llvm/ADT/ArrayRef.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/Twine.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/TableGen/Error.h" #include "llvm/TableGen/Record.h" #include #include using namespace llvm; //===----------------------------------------------------------------------===// // CodeGenIntrinsic Implementation //===----------------------------------------------------------------------===// CodeGenIntrinsicContext::CodeGenIntrinsicContext(const RecordKeeper &RC) { for (const Record *Rec : RC.getAllDerivedDefinitions("IntrinsicProperty")) if (Rec->getValueAsBit("IsDefault")) DefaultProperties.push_back(Rec); // The maximum number of values that an intrinsic can return is the size of // of `IIT_RetNumbers` list - 1 (since we index into this list using the // number of return values as the index). const auto *IIT_RetNumbers = dyn_cast_or_null(RC.getGlobal("IIT_RetNumbers")); if (!IIT_RetNumbers) PrintFatalError("unable to find 'IIT_RetNumbers' list"); MaxNumReturn = IIT_RetNumbers->size() - 1; } CodeGenIntrinsicTable::CodeGenIntrinsicTable(const RecordKeeper &RC) { CodeGenIntrinsicContext Ctx(RC); ArrayRef Defs = RC.getAllDerivedDefinitions("Intrinsic"); Intrinsics.reserve(Defs.size()); for (const Record *Def : Defs) Intrinsics.emplace_back(CodeGenIntrinsic(Def, Ctx)); llvm::sort(Intrinsics, [](const CodeGenIntrinsic &LHS, const CodeGenIntrinsic &RHS) { // Order target independent intrinsics before target dependent // ones. bool LHSHasTarget = !LHS.TargetPrefix.empty(); bool RHSHasTarget = !RHS.TargetPrefix.empty(); // To ensure deterministic sorted order when duplicates are // present, use record ID as a tie-breaker similar to // sortAndReportDuplicates in Utils.cpp. unsigned LhsID = LHS.TheDef->getID(); unsigned RhsID = RHS.TheDef->getID(); return std::tie(LHSHasTarget, LHS.Name, LhsID) < std::tie(RHSHasTarget, RHS.Name, RhsID); }); Targets.push_back({"", 0, 0}); for (size_t I = 0, E = Intrinsics.size(); I < E; ++I) if (Intrinsics[I].TargetPrefix != Targets.back().Name) { Targets.back().Count = I - Targets.back().Offset; Targets.push_back({Intrinsics[I].TargetPrefix, I, 0}); } Targets.back().Count = Intrinsics.size() - Targets.back().Offset; CheckDuplicateIntrinsics(); CheckTargetIndependentIntrinsics(); CheckOverloadSuffixConflicts(); } // Check for duplicate intrinsic names. void CodeGenIntrinsicTable::CheckDuplicateIntrinsics() const { // Since the Intrinsics vector is already sorted by name, if there are 2 or // more intrinsics with duplicate names, they will appear adjacent in sorted // order. Note that if the intrinsic name was derived from the record name // there cannot be be duplicate as TableGen parser would have flagged that. // However, if the name was specified in the intrinsic definition, then its // possible to have duplicate names. auto I = std::adjacent_find( Intrinsics.begin(), Intrinsics.end(), [](const CodeGenIntrinsic &Int1, const CodeGenIntrinsic &Int2) { return Int1.Name == Int2.Name; }); if (I == Intrinsics.end()) return; // Found a duplicate intrinsics. const CodeGenIntrinsic &First = *I; const CodeGenIntrinsic &Second = *(I + 1); PrintError(Second.TheDef, Twine("Intrinsic `") + First.Name + "` is already defined"); PrintFatalNote(First.TheDef, "Previous definition here"); } // For target independent intrinsics, check that their second dotted component // does not match any target name. void CodeGenIntrinsicTable::CheckTargetIndependentIntrinsics() const { SmallDenseSet TargetNames; for (const auto &Target : ArrayRef(Targets).drop_front()) TargetNames.insert(Target.Name); // Set of target independent intrinsics. const auto &Set = Targets[0]; for (const auto &Int : ArrayRef(&Intrinsics[Set.Offset], Set.Count)) { StringRef Name = Int.Name; StringRef Prefix = Name.drop_front(5).split('.').first; if (!TargetNames.contains(Prefix)) continue; PrintFatalError(Int.TheDef, "target independent intrinsic `" + Name + "' has prefix `llvm." + Prefix + "` that conflicts with intrinsics for target `" + Prefix + "`"); } } // Return true if the given Suffix looks like a mangled type. Note that this // check is conservative, but allows all existing LLVM intrinsic suffixes to be // considered as not looking like a mangling suffix. static bool doesSuffixLookLikeMangledType(StringRef Suffix) { // Try to match against possible mangling suffixes for various types. // See getMangledTypeStr() for the mangling suffixes possible. It includes // pointer : p[0-9]+ // array : a[0-9]+.+ // struct: : s_/sl_.+ // function : f_.+ // vector : v/nxv[0-9]+.+ // target type : t.+ // integer : i[0-9]+ // named types : See `NamedTypes` below. // Match anything with an _, so match function and struct types. if (Suffix.contains('_')) return true; // [av][0-9]+.+, simplified to [av][0-9].+ if (Suffix.size() >= 2 && is_contained("av", Suffix[0]) && isDigit(Suffix[1])) return true; // nxv[0-9]+.+, simplified to nxv[0-9].+ if (Suffix.size() >= 4 && Suffix.starts_with("nxv") && isDigit(Suffix[3])) return true; // t.+ if (Suffix.size() > 1 && Suffix.starts_with('t')) return false; // [pi][0-9]+ if (Suffix.size() > 1 && is_contained("pi", Suffix[0]) && all_of(Suffix.drop_front(), isDigit)) return true; // Match one of the named types. static constexpr StringLiteral NamedTypes[] = { "isVoid", "Metadata", "f16", "f32", "f64", "f80", "f128", "bf16", "ppcf128", "x86amx"}; return is_contained(NamedTypes, Suffix); } // Check for conflicts with overloaded intrinsics. If there exists an overloaded // intrinsic with base name `llvm.target.foo`, LLVM will add a mangling suffix // to it to encode the overload types. This mangling suffix is 1 or more . // prefixed mangled type string as defined in `getMangledTypeStr`. If there // exists another intrinsic `llvm.target.foo[.]+`, which has the same // prefix as the overloaded intrinsic, its possible that there may be a name // conflict with the overloaded intrinsic and either one may interfere with name // lookup for the other, leading to wrong intrinsic ID being assigned. // // The actual name lookup in the intrinsic name table is done by a search // on each successive '.' separted component of the intrinsic name (see // `lookupLLVMIntrinsicByName`). Consider first the case where there exists a // non-overloaded intrinsic `llvm.target.foo[.suffix]+`. For the non-overloaded // intrinsics, the name lookup is an exact match, so the presence of the // overloaded intrinsic with the same prefix will not interfere with the // search. However, a lookup intended to match the overloaded intrinsic might be // affected by the presence of another entry in the name table with the same // prefix. // // Since LLVM's name lookup first selects the target specific (or target // independent) slice of the name table to look into, intrinsics in 2 different // targets cannot conflict with each other. Within a specific target, // if we have an overloaded intrinsic with name `llvm.target.foo` and another // one with same prefix and one or more suffixes `llvm.target.foo[.]+`, // then the name search will try to first match against suffix0, then suffix1 // etc. If suffix0 can match a mangled type, then the search for an // `llvm.target.foo` with a mangling suffix can match against suffix0, // preventing a match with `llvm.target.foo`. If suffix0 cannot match a mangled // type, then that cannot happen, so we do not need to check for later suffixes. // // Generalizing, the `llvm.target.foo[.suffixN]+` will cause a conflict if the // first suffix (.suffix0) can match a mangled type (and then we do not need to // check later suffixes) and will not cause a conflict if it cannot (and then // again, we do not need to check for later suffixes). void CodeGenIntrinsicTable::CheckOverloadSuffixConflicts() const { for (const TargetSet &Set : Targets) { const CodeGenIntrinsic *Overloaded = nullptr; for (const CodeGenIntrinsic &Int : (*this)[Set]) { // If we do not have an overloaded intrinsic to check against, nothing // to do except potentially identifying this as a candidate for checking // against in future iteration. if (!Overloaded) { if (Int.isOverloaded) Overloaded = ∬ continue; } StringRef Name = Int.Name; StringRef OverloadName = Overloaded->Name; // If we have an overloaded intrinsic to check again, check if its name is // a proper prefix of this intrinsic. if (Name.starts_with(OverloadName) && Name[OverloadName.size()] == '.') { // If yes, verify suffixes and flag an error. StringRef Suffixes = Name.drop_front(OverloadName.size() + 1); // Only need to look at the first suffix. StringRef Suffix0 = Suffixes.split('.').first; if (!doesSuffixLookLikeMangledType(Suffix0)) continue; unsigned SuffixSize = OverloadName.size() + 1 + Suffix0.size(); // If suffix looks like mangling suffix, flag it as an error. PrintError(Int.TheDef->getLoc(), "intrinsic `" + Name + "` cannot share prefix `" + Name.take_front(SuffixSize) + "` with another overloaded intrinsic `" + OverloadName + "`"); PrintNote(Overloaded->TheDef->getLoc(), "Overloaded intrinsic `" + OverloadName + "` defined here"); continue; } // If we find an intrinsic that is not a proper prefix, any later // intrinsic is also not going to be a proper prefix, so invalidate the // overloaded to check against. Overloaded = nullptr; } } } const CodeGenIntrinsic &CodeGenIntrinsicMap::operator[](const Record *Record) { if (!Record->isSubClassOf("Intrinsic")) PrintFatalError("Intrinsic defs should be subclass of 'Intrinsic' class"); auto [Iter, Inserted] = Map.try_emplace(Record); if (Inserted) Iter->second = std::make_unique(Record, Ctx); return *Iter->second; } CodeGenIntrinsic::CodeGenIntrinsic(const Record *R, const CodeGenIntrinsicContext &Ctx) : TheDef(R) { StringRef DefName = TheDef->getName(); ArrayRef DefLoc = R->getLoc(); if (!DefName.starts_with("int_")) PrintFatalError(DefLoc, "Intrinsic '" + DefName + "' does not start with 'int_'!"); EnumName = DefName.substr(4); // Ignore a missing ClangBuiltinName field. ClangBuiltinName = R->getValueAsOptionalString("ClangBuiltinName").value_or(""); // Ignore a missing MSBuiltinName field. MSBuiltinName = R->getValueAsOptionalString("MSBuiltinName").value_or(""); TargetPrefix = R->getValueAsString("TargetPrefix"); Name = R->getValueAsString("LLVMName").str(); if (Name == "") { // If an explicit name isn't specified, derive one from the DefName. Name = "llvm." + EnumName.str(); llvm::replace(Name, '_', '.'); } else { // Verify it starts with "llvm.". if (!StringRef(Name).starts_with("llvm.")) PrintFatalError(DefLoc, "Intrinsic '" + DefName + "'s name does not start with 'llvm.'!"); } // If TargetPrefix is specified, make sure that Name starts with // "llvm..". if (!TargetPrefix.empty()) { StringRef Prefix = StringRef(Name).drop_front(5); // Drop llvm. if (!Prefix.consume_front(TargetPrefix) || !Prefix.starts_with('.')) PrintFatalError(DefLoc, "Intrinsic '" + DefName + "' does not start with 'llvm." + TargetPrefix + ".'!"); } unsigned NumRet = R->getValueAsListInit("RetTypes")->size(); if (NumRet > Ctx.MaxNumReturn) PrintFatalError(DefLoc, "intrinsics can only return upto " + Twine(Ctx.MaxNumReturn) + " values, '" + DefName + "' returns " + Twine(NumRet) + " values"); const Record *TypeInfo = R->getValueAsDef("TypeInfo"); if (!TypeInfo->isSubClassOf("TypeInfoGen")) PrintFatalError(DefLoc, "TypeInfo field in " + DefName + " should be of subclass of TypeInfoGen!"); isOverloaded = TypeInfo->getValueAsBit("isOverloaded"); const ListInit *TypeList = TypeInfo->getValueAsListInit("Types"); // Types field is a concatenation of Return types followed by Param types. unsigned Idx = 0; for (; Idx < NumRet; ++Idx) IS.RetTys.push_back(TypeList->getElementAsRecord(Idx)); for (unsigned E = TypeList->size(); Idx < E; ++Idx) IS.ParamTys.push_back(TypeList->getElementAsRecord(Idx)); // Parse the intrinsic properties. const ListInit *PropList = R->getValueAsListInit("IntrProperties"); for (unsigned i = 0, e = PropList->size(); i != e; ++i) { const Record *Property = PropList->getElementAsRecord(i); assert(Property->isSubClassOf("IntrinsicProperty") && "Expected a property!"); setProperty(Property); } // Set default properties to true. setDefaultProperties(Ctx.DefaultProperties); // Also record the SDPatternOperator Properties. Properties = parseSDPatternOperatorProperties(R); // Sort the argument attributes for later benefit. for (auto &Attrs : ArgumentAttributes) llvm::sort(Attrs); } void CodeGenIntrinsic::setDefaultProperties( ArrayRef DefaultProperties) { // opt-out of using default attributes. if (TheDef->getValueAsBit("DisableDefaultAttributes")) return; for (const Record *Rec : DefaultProperties) setProperty(Rec); } void CodeGenIntrinsic::setProperty(const Record *R) { if (R->getName() == "IntrNoMem") ME = MemoryEffects::none(); else if (R->getName() == "IntrReadMem") { if (ME.onlyWritesMemory()) PrintFatalError(TheDef->getLoc(), Twine("IntrReadMem cannot be used after IntrNoMem or " "IntrWriteMem. Default is ReadWrite")); ME &= MemoryEffects::readOnly(); } else if (R->getName() == "IntrWriteMem") { if (ME.onlyReadsMemory()) PrintFatalError(TheDef->getLoc(), Twine("IntrWriteMem cannot be used after IntrNoMem or " "IntrReadMem. Default is ReadWrite")); ME &= MemoryEffects::writeOnly(); } else if (R->getName() == "IntrArgMemOnly") ME &= MemoryEffects::argMemOnly(); else if (R->getName() == "IntrInaccessibleMemOnly") ME &= MemoryEffects::inaccessibleMemOnly(); else if (R->getName() == "IntrInaccessibleMemOrArgMemOnly") ME &= MemoryEffects::inaccessibleOrArgMemOnly(); else if (R->getName() == "Commutative") isCommutative = true; else if (R->getName() == "Throws") canThrow = true; else if (R->getName() == "IntrNoDuplicate") isNoDuplicate = true; else if (R->getName() == "IntrNoMerge") isNoMerge = true; else if (R->getName() == "IntrConvergent") isConvergent = true; else if (R->getName() == "IntrNoReturn") isNoReturn = true; else if (R->getName() == "IntrNoCallback") isNoCallback = true; else if (R->getName() == "IntrNoSync") isNoSync = true; else if (R->getName() == "IntrNoFree") isNoFree = true; else if (R->getName() == "IntrWillReturn") isWillReturn = !isNoReturn; else if (R->getName() == "IntrCold") isCold = true; else if (R->getName() == "IntrSpeculatable") isSpeculatable = true; else if (R->getName() == "IntrHasSideEffects") hasSideEffects = true; else if (R->getName() == "IntrStrictFP") isStrictFP = true; else if (R->isSubClassOf("NoCapture")) { unsigned ArgNo = R->getValueAsInt("ArgNo"); addArgAttribute(ArgNo, NoCapture); } else if (R->isSubClassOf("NoAlias")) { unsigned ArgNo = R->getValueAsInt("ArgNo"); addArgAttribute(ArgNo, NoAlias); } else if (R->isSubClassOf("NoUndef")) { unsigned ArgNo = R->getValueAsInt("ArgNo"); addArgAttribute(ArgNo, NoUndef); } else if (R->isSubClassOf("NonNull")) { unsigned ArgNo = R->getValueAsInt("ArgNo"); addArgAttribute(ArgNo, NonNull); } else if (R->isSubClassOf("Returned")) { unsigned ArgNo = R->getValueAsInt("ArgNo"); addArgAttribute(ArgNo, Returned); } else if (R->isSubClassOf("ReadOnly")) { unsigned ArgNo = R->getValueAsInt("ArgNo"); addArgAttribute(ArgNo, ReadOnly); } else if (R->isSubClassOf("WriteOnly")) { unsigned ArgNo = R->getValueAsInt("ArgNo"); addArgAttribute(ArgNo, WriteOnly); } else if (R->isSubClassOf("ReadNone")) { unsigned ArgNo = R->getValueAsInt("ArgNo"); addArgAttribute(ArgNo, ReadNone); } else if (R->isSubClassOf("ImmArg")) { unsigned ArgNo = R->getValueAsInt("ArgNo"); addArgAttribute(ArgNo, ImmArg); } else if (R->isSubClassOf("Align")) { unsigned ArgNo = R->getValueAsInt("ArgNo"); uint64_t Align = R->getValueAsInt("Align"); addArgAttribute(ArgNo, Alignment, Align); } else if (R->isSubClassOf("Dereferenceable")) { unsigned ArgNo = R->getValueAsInt("ArgNo"); uint64_t Bytes = R->getValueAsInt("Bytes"); addArgAttribute(ArgNo, Dereferenceable, Bytes); } else llvm_unreachable("Unknown property!"); } bool CodeGenIntrinsic::isParamAPointer(unsigned ParamIdx) const { if (ParamIdx >= IS.ParamTys.size()) return false; return (IS.ParamTys[ParamIdx]->isSubClassOf("LLVMQualPointerType") || IS.ParamTys[ParamIdx]->isSubClassOf("LLVMAnyPointerType")); } bool CodeGenIntrinsic::isParamImmArg(unsigned ParamIdx) const { // Convert argument index to attribute index starting from `FirstArgIndex`. ++ParamIdx; if (ParamIdx >= ArgumentAttributes.size()) return false; ArgAttribute Val{ImmArg, 0}; return std::binary_search(ArgumentAttributes[ParamIdx].begin(), ArgumentAttributes[ParamIdx].end(), Val); } void CodeGenIntrinsic::addArgAttribute(unsigned Idx, ArgAttrKind AK, uint64_t V) { if (Idx >= ArgumentAttributes.size()) ArgumentAttributes.resize(Idx + 1); ArgumentAttributes[Idx].emplace_back(AK, V); }