//===- llvm/unittest/CodeGen/GlobalISel/LowLevelTypeTest.cpp --------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #include "llvm/CodeGen/LowLevelTypeUtils.h" #include "llvm/IR/DataLayout.h" #include "llvm/IR/DerivedTypes.h" #include "llvm/IR/LLVMContext.h" #include "llvm/IR/Type.h" #include "llvm/Support/TypeSize.h" #include "gtest/gtest.h" using namespace llvm; namespace { TEST(LowLevelTypeTest, Token) { LLVMContext C; const LLT TTy = LLT::token(); // Test kind. EXPECT_TRUE(TTy.isValid()); EXPECT_TRUE(TTy.isScalar()); EXPECT_TRUE(TTy.isToken()); EXPECT_FALSE(TTy.isPointer()); EXPECT_FALSE(TTy.isVector()); const LLT STy = LLT::scalar(0); EXPECT_EQ(STy, TTy); } TEST(LowLevelTypeTest, Scalar) { LLVMContext C; DataLayout DL; for (unsigned S : {0U, 1U, 17U, 32U, 64U, 0xfffffU}) { const LLT Ty = LLT::scalar(S); // Test kind. ASSERT_TRUE(Ty.isValid()); ASSERT_TRUE(Ty.isScalar()); ASSERT_FALSE(Ty.isPointer()); ASSERT_FALSE(Ty.isVector()); EXPECT_TRUE(S != 0 || Ty.isToken()); // Test sizes. EXPECT_EQ(S, Ty.getSizeInBits()); EXPECT_EQ(S, Ty.getScalarSizeInBits()); // Test equality operators. EXPECT_TRUE(Ty == Ty); EXPECT_FALSE(Ty != Ty); // Test Type->LLT conversion. if (S != 0) { Type *IRTy = IntegerType::get(C, S); EXPECT_EQ(Ty, getLLTForType(*IRTy, DL)); } } } TEST(LowLevelTypeTest, Vector) { LLVMContext C; DataLayout DL; for (unsigned S : {0U, 1U, 17U, 32U, 64U, 0xfffU}) { for (auto EC : {ElementCount::getFixed(2), ElementCount::getFixed(3), ElementCount::getFixed(4), ElementCount::getFixed(32), ElementCount::getFixed(0xff), ElementCount::getScalable(2), ElementCount::getScalable(3), ElementCount::getScalable(4), ElementCount::getScalable(32), ElementCount::getScalable(0xff)}) { const LLT STy = LLT::scalar(S); const LLT VTy = LLT::vector(EC, S); // Test the alternative vector(). { const LLT VSTy = LLT::vector(EC, STy); EXPECT_EQ(VTy, VSTy); } // Test getElementType(). EXPECT_EQ(STy, VTy.getElementType()); // Test kind. ASSERT_TRUE(VTy.isValid()); ASSERT_TRUE(VTy.isVector()); ASSERT_FALSE(VTy.isScalar()); ASSERT_FALSE(VTy.isPointer()); ASSERT_FALSE(VTy.isToken()); // Test sizes. EXPECT_EQ(S, VTy.getScalarSizeInBits()); EXPECT_EQ(EC, VTy.getElementCount()); if (!EC.isScalable()) EXPECT_EQ(S * EC.getFixedValue(), VTy.getSizeInBits()); else EXPECT_EQ(TypeSize::getScalable(S * EC.getKnownMinValue()), VTy.getSizeInBits()); // Test equality operators. EXPECT_TRUE(VTy == VTy); EXPECT_FALSE(VTy != VTy); // Test inequality operators on.. // ..different kind. EXPECT_NE(VTy, STy); // Test Type->LLT conversion. if (S != 0) { Type *IRSTy = IntegerType::get(C, S); Type *IRTy = VectorType::get(IRSTy, EC); EXPECT_EQ(VTy, getLLTForType(*IRTy, DL)); } } } } TEST(LowLevelTypeTest, ScalarOrVector) { // Test version with number of bits for scalar type. EXPECT_EQ(LLT::scalar(32), LLT::scalarOrVector(ElementCount::getFixed(1), 32)); EXPECT_EQ(LLT::fixed_vector(2, 32), LLT::scalarOrVector(ElementCount::getFixed(2), 32)); EXPECT_EQ(LLT::scalable_vector(1, 32), LLT::scalarOrVector(ElementCount::getScalable(1), 32)); // Test version with LLT for scalar type. EXPECT_EQ(LLT::scalar(32), LLT::scalarOrVector(ElementCount::getFixed(1), LLT::scalar(32))); EXPECT_EQ(LLT::fixed_vector(2, 32), LLT::scalarOrVector(ElementCount::getFixed(2), LLT::scalar(32))); // Test with pointer elements. EXPECT_EQ(LLT::pointer(1, 32), LLT::scalarOrVector(ElementCount::getFixed(1), LLT::pointer(1, 32))); EXPECT_EQ( LLT::fixed_vector(2, LLT::pointer(1, 32)), LLT::scalarOrVector(ElementCount::getFixed(2), LLT::pointer(1, 32))); } TEST(LowLevelTypeTest, ChangeElementType) { const LLT P0 = LLT::pointer(0, 32); const LLT P1 = LLT::pointer(1, 64); const LLT S32 = LLT::scalar(32); const LLT S64 = LLT::scalar(64); const LLT V2S32 = LLT::fixed_vector(2, 32); const LLT V2S64 = LLT::fixed_vector(2, 64); const LLT V2P0 = LLT::fixed_vector(2, P0); const LLT V2P1 = LLT::fixed_vector(2, P1); EXPECT_EQ(S64, S32.changeElementType(S64)); EXPECT_EQ(S32, S32.changeElementType(S32)); EXPECT_EQ(S32, S64.changeElementSize(32)); EXPECT_EQ(S32, S32.changeElementSize(32)); EXPECT_EQ(V2S64, V2S32.changeElementType(S64)); EXPECT_EQ(V2S32, V2S64.changeElementType(S32)); EXPECT_EQ(V2S64, V2S32.changeElementSize(64)); EXPECT_EQ(V2S32, V2S64.changeElementSize(32)); EXPECT_EQ(P0, S32.changeElementType(P0)); EXPECT_EQ(S32, P0.changeElementType(S32)); EXPECT_EQ(V2P1, V2P0.changeElementType(P1)); EXPECT_EQ(V2S32, V2P0.changeElementType(S32)); // Similar tests for scalable vectors. const LLT NXV2S32 = LLT::scalable_vector(2, 32); const LLT NXV2S64 = LLT::scalable_vector(2, 64); const LLT NXV2P0 = LLT::scalable_vector(2, P0); const LLT NXV2P1 = LLT::scalable_vector(2, P1); EXPECT_EQ(NXV2S64, NXV2S32.changeElementType(S64)); EXPECT_EQ(NXV2S32, NXV2S64.changeElementType(S32)); EXPECT_EQ(NXV2S64, NXV2S32.changeElementSize(64)); EXPECT_EQ(NXV2S32, NXV2S64.changeElementSize(32)); EXPECT_EQ(NXV2P1, NXV2P0.changeElementType(P1)); EXPECT_EQ(NXV2S32, NXV2P0.changeElementType(S32)); } TEST(LowLevelTypeTest, ChangeNumElements) { const LLT P0 = LLT::pointer(0, 32); const LLT V2P0 = LLT::fixed_vector(2, P0); const LLT V3P0 = LLT::fixed_vector(3, P0); const LLT S64 = LLT::scalar(64); const LLT V2S64 = LLT::fixed_vector(2, 64); const LLT V3S64 = LLT::fixed_vector(3, 64); // Vector to scalar EXPECT_EQ(S64, V2S64.changeElementCount(ElementCount::getFixed(1))); // Vector to vector EXPECT_EQ(V3S64, V2S64.changeElementCount(ElementCount::getFixed(3))); // Scalar to vector EXPECT_EQ(V2S64, S64.changeElementCount(ElementCount::getFixed(2))); EXPECT_EQ(P0, V2P0.changeElementCount(ElementCount::getFixed(1))); EXPECT_EQ(V3P0, V2P0.changeElementCount(ElementCount::getFixed(3))); EXPECT_EQ(V2P0, P0.changeElementCount(ElementCount::getFixed(2))); const LLT NXV2S64 = LLT::scalable_vector(2, 64); const LLT NXV3S64 = LLT::scalable_vector(3, 64); const LLT NXV2P0 = LLT::scalable_vector(2, P0); // Scalable vector to scalar EXPECT_EQ(S64, NXV2S64.changeElementCount(ElementCount::getFixed(1))); EXPECT_EQ(P0, NXV2P0.changeElementCount(ElementCount::getFixed(1))); // Fixed-width vector to scalable vector EXPECT_EQ(NXV3S64, V2S64.changeElementCount(ElementCount::getScalable(3))); // Scalable vector to fixed-width vector EXPECT_EQ(V3P0, NXV2P0.changeElementCount(ElementCount::getFixed(3))); // Scalar to scalable vector EXPECT_EQ(NXV2S64, S64.changeElementCount(ElementCount::getScalable(2))); EXPECT_EQ(NXV2P0, P0.changeElementCount(ElementCount::getScalable(2))); } #ifdef GTEST_HAS_DEATH_TEST #ifndef NDEBUG // Invalid to directly change the element size for pointers. TEST(LowLevelTypeTest, ChangeElementTypeDeath) { const LLT P0 = LLT::pointer(0, 32); const LLT V2P0 = LLT::fixed_vector(2, P0); EXPECT_DEATH(P0.changeElementSize(64), "invalid to directly change element size for pointers"); EXPECT_DEATH(V2P0.changeElementSize(64), "invalid to directly change element size for pointers"); // Make sure this still fails even without a change in size. EXPECT_DEATH(P0.changeElementSize(32), "invalid to directly change element size for pointers"); EXPECT_DEATH(V2P0.changeElementSize(32), "invalid to directly change element size for pointers"); } #endif #endif TEST(LowLevelTypeTest, Pointer) { LLVMContext C; DataLayout DL("p64:64:64-p127:512:512:512-p16777215:65528:8"); for (unsigned AS : {0U, 1U, 127U, 0xffffU, static_cast(maxUIntN(23)), static_cast(maxUIntN(24))}) { for (ElementCount EC : {ElementCount::getFixed(2), ElementCount::getFixed(3), ElementCount::getFixed(4), ElementCount::getFixed(256), ElementCount::getFixed(65535), ElementCount::getScalable(2), ElementCount::getScalable(3), ElementCount::getScalable(4), ElementCount::getScalable(256), ElementCount::getScalable(65535)}) { const LLT Ty = LLT::pointer(AS, DL.getPointerSizeInBits(AS)); const LLT VTy = LLT::vector(EC, Ty); // Test kind. ASSERT_TRUE(Ty.isValid()); ASSERT_TRUE(Ty.isPointer()); ASSERT_TRUE(Ty.isPointerOrPointerVector()); ASSERT_FALSE(Ty.isScalar()); ASSERT_FALSE(Ty.isVector()); ASSERT_TRUE(VTy.isValid()); ASSERT_TRUE(VTy.isVector()); ASSERT_TRUE(VTy.getElementType().isPointer()); ASSERT_TRUE(VTy.isPointerVector()); ASSERT_TRUE(VTy.isPointerOrPointerVector()); EXPECT_EQ(Ty, VTy.getElementType()); EXPECT_EQ(Ty.getSizeInBits(), VTy.getScalarSizeInBits()); // Test address space. EXPECT_EQ(AS, Ty.getAddressSpace()); EXPECT_EQ(AS, VTy.getElementType().getAddressSpace()); // Test equality operators. EXPECT_TRUE(Ty == Ty); EXPECT_FALSE(Ty != Ty); EXPECT_TRUE(VTy == VTy); EXPECT_FALSE(VTy != VTy); // Test Type->LLT conversion. Type *IRTy = PointerType::get(C, AS); EXPECT_EQ(Ty, getLLTForType(*IRTy, DL)); Type *IRVTy = VectorType::get(PointerType::get(C, AS), EC); EXPECT_EQ(VTy, getLLTForType(*IRVTy, DL)); } } } TEST(LowLevelTypeTest, Invalid) { const LLT Ty; ASSERT_FALSE(Ty.isValid()); ASSERT_FALSE(Ty.isScalar()); ASSERT_FALSE(Ty.isPointer()); ASSERT_FALSE(Ty.isVector()); ASSERT_FALSE(Ty.isToken()); } TEST(LowLevelTypeTest, Divide) { // Test basic scalar->scalar cases. EXPECT_EQ(LLT::scalar(16), LLT::scalar(32).divide(2)); EXPECT_EQ(LLT::scalar(8), LLT::scalar(32).divide(4)); EXPECT_EQ(LLT::scalar(8), LLT::scalar(32).divide(4)); // Test pointer->scalar EXPECT_EQ(LLT::scalar(32), LLT::pointer(0, 64).divide(2)); // Test dividing vectors. EXPECT_EQ(LLT::scalar(32), LLT::fixed_vector(2, 32).divide(2)); EXPECT_EQ(LLT::fixed_vector(2, 32), LLT::fixed_vector(4, 32).divide(2)); // Test vector of pointers EXPECT_EQ(LLT::pointer(1, 64), LLT::fixed_vector(4, LLT::pointer(1, 64)).divide(4)); EXPECT_EQ(LLT::fixed_vector(2, LLT::pointer(1, 64)), LLT::fixed_vector(4, LLT::pointer(1, 64)).divide(2)); } TEST(LowLevelTypeTest, MultiplyElements) { // Basic scalar->vector cases EXPECT_EQ(LLT::fixed_vector(2, 16), LLT::scalar(16).multiplyElements(2)); EXPECT_EQ(LLT::fixed_vector(3, 16), LLT::scalar(16).multiplyElements(3)); EXPECT_EQ(LLT::fixed_vector(4, 32), LLT::scalar(32).multiplyElements(4)); EXPECT_EQ(LLT::fixed_vector(4, 7), LLT::scalar(7).multiplyElements(4)); // Basic vector to vector cases EXPECT_EQ(LLT::fixed_vector(4, 32), LLT::fixed_vector(2, 32).multiplyElements(2)); EXPECT_EQ(LLT::fixed_vector(9, 32), LLT::fixed_vector(3, 32).multiplyElements(3)); // Pointer to vector of pointers EXPECT_EQ(LLT::fixed_vector(2, LLT::pointer(0, 32)), LLT::pointer(0, 32).multiplyElements(2)); EXPECT_EQ(LLT::fixed_vector(3, LLT::pointer(1, 32)), LLT::pointer(1, 32).multiplyElements(3)); EXPECT_EQ(LLT::fixed_vector(4, LLT::pointer(1, 64)), LLT::pointer(1, 64).multiplyElements(4)); // Vector of pointers to vector of pointers EXPECT_EQ(LLT::fixed_vector(8, LLT::pointer(1, 64)), LLT::fixed_vector(2, LLT::pointer(1, 64)).multiplyElements(4)); EXPECT_EQ(LLT::fixed_vector(9, LLT::pointer(1, 32)), LLT::fixed_vector(3, LLT::pointer(1, 32)).multiplyElements(3)); // Scalable vectors EXPECT_EQ(LLT::scalable_vector(4, 16), LLT::scalable_vector(2, 16).multiplyElements(2)); EXPECT_EQ(LLT::scalable_vector(6, 16), LLT::scalable_vector(2, 16).multiplyElements(3)); EXPECT_EQ(LLT::scalable_vector(9, 16), LLT::scalable_vector(3, 16).multiplyElements(3)); EXPECT_EQ(LLT::scalable_vector(4, 32), LLT::scalable_vector(2, 32).multiplyElements(2)); EXPECT_EQ(LLT::scalable_vector(256, 32), LLT::scalable_vector(8, 32).multiplyElements(32)); // Scalable vectors of pointers EXPECT_EQ(LLT::scalable_vector(4, LLT::pointer(0, 32)), LLT::scalable_vector(2, LLT::pointer(0, 32)).multiplyElements(2)); EXPECT_EQ(LLT::scalable_vector(32, LLT::pointer(1, 64)), LLT::scalable_vector(8, LLT::pointer(1, 64)).multiplyElements(4)); } constexpr LLT CELLT = LLT(); constexpr LLT CES32 = LLT::scalar(32); constexpr LLT CEV2S32 = LLT::fixed_vector(2, 32); constexpr LLT CESV2S32 = LLT::scalable_vector(2, 32); constexpr LLT CEP0 = LLT::pointer(0, 32); constexpr LLT CEV2P1 = LLT::fixed_vector(2, LLT::pointer(1, 64)); static_assert(!CELLT.isValid()); static_assert(CES32.isValid()); static_assert(CEV2S32.isValid()); static_assert(CESV2S32.isValid()); static_assert(CEP0.isValid()); static_assert(CEV2P1.isValid()); static_assert(CEV2P1.isVector()); static_assert(CEV2P1.getElementCount() == ElementCount::getFixed(2)); static_assert(CEV2P1.getElementCount() != ElementCount::getFixed(1)); static_assert(CEV2S32.getElementCount() == ElementCount::getFixed(2)); static_assert(CEV2S32.getSizeInBits() == TypeSize::getFixed(64)); static_assert(CEV2P1.getSizeInBits() == TypeSize::getFixed(128)); static_assert(CEV2P1.getScalarType() == LLT::pointer(1, 64)); static_assert(CES32.getScalarType() == CES32); static_assert(CEV2S32.getScalarType() == CES32); static_assert(CEV2S32.changeElementType(CEP0) == LLT::fixed_vector(2, CEP0)); static_assert(CEV2S32.changeElementSize(16) == LLT::fixed_vector(2, 16)); static_assert(CEV2S32.changeElementCount(ElementCount::getFixed(4)) == LLT::fixed_vector(4, 32)); static_assert(CES32.isByteSized()); static_assert(!LLT::scalar(7).isByteSized()); static_assert(CES32.getScalarSizeInBits() == 32); static_assert(CEP0.getAddressSpace() == 0); static_assert(LLT::pointer(1, 64).getAddressSpace() == 1); static_assert(CEV2S32.multiplyElements(2) == LLT::fixed_vector(4, 32)); static_assert(CEV2S32.divide(2) == LLT::scalar(32)); static_assert(LLT::scalarOrVector(ElementCount::getFixed(1), LLT::scalar(32)) == LLT::scalar(32)); static_assert(LLT::scalarOrVector(ElementCount::getFixed(2), LLT::scalar(32)) == LLT::fixed_vector(2, 32)); static_assert(LLT::scalarOrVector(ElementCount::getFixed(2), CEP0) == LLT::fixed_vector(2, CEP0)); TEST(LowLevelTypeTest, ConstExpr) { EXPECT_EQ(LLT(), CELLT); EXPECT_EQ(LLT::scalar(32), CES32); EXPECT_EQ(LLT::fixed_vector(2, 32), CEV2S32); EXPECT_EQ(LLT::pointer(0, 32), CEP0); EXPECT_EQ(LLT::scalable_vector(2, 32), CESV2S32); } TEST(LowLevelTypeTest, IsFixedVector) { EXPECT_FALSE(LLT::scalar(32).isFixedVector()); EXPECT_TRUE(LLT::fixed_vector(2, 32).isFixedVector()); EXPECT_FALSE(LLT::scalable_vector(2, 32).isFixedVector()); EXPECT_FALSE(LLT::scalable_vector(1, 32).isFixedVector()); } TEST(LowLevelTypeTest, IsScalableVector) { EXPECT_FALSE(LLT::scalar(32).isScalableVector()); EXPECT_FALSE(LLT::fixed_vector(2, 32).isScalableVector()); EXPECT_TRUE(LLT::scalable_vector(2, 32).isScalableVector()); EXPECT_TRUE(LLT::scalable_vector(1, 32).isScalableVector()); } }