//===- llvm/unittest/Bitcode/BitReaderTest.cpp - Tests for BitReader ------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #include "BitReaderTestCode.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/SmallString.h" #include "llvm/AsmParser/Parser.h" #include "llvm/Bitcode/BitcodeReader.h" #include "llvm/Bitcode/BitcodeWriter.h" #include "llvm/IR/Constants.h" #include "llvm/IR/InstrTypes.h" #include "llvm/IR/LLVMContext.h" #include "llvm/IR/Module.h" #include "llvm/IR/Verifier.h" #include "llvm/Support/Debug.h" #include "llvm/Support/Error.h" #include "llvm/Support/MemoryBuffer.h" #include "llvm/Support/SourceMgr.h" #include "gtest/gtest.h" using namespace llvm; namespace { std::unique_ptr parseAssembly(LLVMContext &Context, const char *Assembly) { SMDiagnostic Error; std::unique_ptr M = parseAssemblyString(Assembly, Error, Context); std::string ErrMsg; raw_string_ostream OS(ErrMsg); Error.print("", OS); // A failure here means that the test itself is buggy. if (!M) report_fatal_error(ErrMsg.c_str()); return M; } static void writeModuleToBuffer(std::unique_ptr Mod, SmallVectorImpl &Buffer) { raw_svector_ostream OS(Buffer); WriteBitcodeToFile(*Mod, OS); } static std::unique_ptr getLazyModuleFromAssembly(LLVMContext &Context, SmallString<1024> &Mem, const char *Assembly) { writeModuleToBuffer(parseAssembly(Context, Assembly), Mem); Expected> ModuleOrErr = getLazyBitcodeModule(MemoryBufferRef(Mem.str(), "test"), Context); if (!ModuleOrErr) report_fatal_error("Could not parse bitcode module"); return std::move(ModuleOrErr.get()); } // Tests that lazy evaluation can parse functions out of order. TEST(BitReaderTest, MaterializeFunctionsOutOfOrder) { SmallString<1024> Mem; LLVMContext Context; std::unique_ptr M = getLazyModuleFromAssembly( Context, Mem, "define void @f() {\n" " unreachable\n" "}\n" "define void @g() {\n" " unreachable\n" "}\n" "define void @h() {\n" " unreachable\n" "}\n" "define void @j() {\n" " unreachable\n" "}\n"); EXPECT_FALSE(verifyModule(*M, &dbgs())); Function *F = M->getFunction("f"); Function *G = M->getFunction("g"); Function *H = M->getFunction("h"); Function *J = M->getFunction("j"); // Initially all functions are not materialized (no basic blocks). EXPECT_TRUE(F->empty()); EXPECT_TRUE(G->empty()); EXPECT_TRUE(H->empty()); EXPECT_TRUE(J->empty()); EXPECT_FALSE(verifyModule(*M, &dbgs())); // Materialize h. ASSERT_FALSE(H->materialize()); EXPECT_TRUE(F->empty()); EXPECT_TRUE(G->empty()); EXPECT_FALSE(H->empty()); EXPECT_TRUE(J->empty()); EXPECT_FALSE(verifyModule(*M, &dbgs())); // Materialize g. ASSERT_FALSE(G->materialize()); EXPECT_TRUE(F->empty()); EXPECT_FALSE(G->empty()); EXPECT_FALSE(H->empty()); EXPECT_TRUE(J->empty()); EXPECT_FALSE(verifyModule(*M, &dbgs())); // Materialize j. ASSERT_FALSE(J->materialize()); EXPECT_TRUE(F->empty()); EXPECT_FALSE(G->empty()); EXPECT_FALSE(H->empty()); EXPECT_FALSE(J->empty()); EXPECT_FALSE(verifyModule(*M, &dbgs())); // Materialize f. ASSERT_FALSE(F->materialize()); EXPECT_FALSE(F->empty()); EXPECT_FALSE(G->empty()); EXPECT_FALSE(H->empty()); EXPECT_FALSE(J->empty()); EXPECT_FALSE(verifyModule(*M, &dbgs())); } TEST(BitReaderTest, MaterializeFunctionsStrictFP) { SmallString<1024> Mem; LLVMContext Context; std::unique_ptr M = getLazyModuleFromAssembly( Context, Mem, "define double @foo(double %a) {\n" " %result = call double @bar(double %a) strictfp\n" " ret double %result\n" "}\n" "declare double @bar(double)\n"); Function *Foo = M->getFunction("foo"); ASSERT_FALSE(Foo->materialize()); EXPECT_FALSE(Foo->empty()); for (auto &BB : *Foo) { auto It = BB.begin(); while (It != BB.end()) { Instruction &I = *It; ++It; if (auto *Call = dyn_cast(&I)) { EXPECT_FALSE(Call->isStrictFP()); EXPECT_TRUE(Call->isNoBuiltin()); } } } EXPECT_FALSE(verifyModule(*M, &dbgs())); } TEST(BitReaderTest, MaterializeConstrainedFPStrictFP) { SmallString<1024> Mem; LLVMContext Context; std::unique_ptr M = getLazyModuleFromAssembly( Context, Mem, "define double @foo(double %a) strictfp {\n" " %result = call double @llvm.experimental.constrained.sqrt.f64(double " "%a, metadata !\"round.tonearest\", metadata !\"fpexcept.strict\") " "strictfp\n" " ret double %result\n" "}\n" "declare double @llvm.experimental.constrained.sqrt.f64(double, " "metadata, metadata)\n"); Function *Foo = M->getFunction("foo"); ASSERT_FALSE(Foo->materialize()); EXPECT_FALSE(Foo->empty()); for (auto &BB : *Foo) { auto It = BB.begin(); while (It != BB.end()) { Instruction &I = *It; ++It; if (auto *Call = dyn_cast(&I)) { EXPECT_TRUE(Call->isStrictFP()); EXPECT_FALSE(Call->isNoBuiltin()); } } } EXPECT_FALSE(verifyModule(*M, &dbgs())); } TEST(BitReaderTest, MaterializeFunctionsForBlockAddr) { // PR11677 SmallString<1024> Mem; LLVMContext Context; std::unique_ptr M = getLazyModuleFromAssembly( Context, Mem, "@table = constant i8* blockaddress(@func, %bb)\n" "define void @func() {\n" " unreachable\n" "bb:\n" " unreachable\n" "}\n"); EXPECT_FALSE(verifyModule(*M, &dbgs())); EXPECT_FALSE(M->getFunction("func")->empty()); } TEST(BitReaderTest, MaterializeFunctionsForBlockAddrInFunctionBefore) { SmallString<1024> Mem; LLVMContext Context; std::unique_ptr M = getLazyModuleFromAssembly( Context, Mem, "define i8* @before() {\n" " ret i8* blockaddress(@func, %bb)\n" "}\n" "define void @other() {\n" " unreachable\n" "}\n" "define void @func() {\n" " unreachable\n" "bb:\n" " unreachable\n" "}\n"); EXPECT_TRUE(M->getFunction("before")->empty()); EXPECT_TRUE(M->getFunction("func")->empty()); EXPECT_FALSE(verifyModule(*M, &dbgs())); // Materialize @before, pulling in @func. EXPECT_FALSE(M->getFunction("before")->materialize()); EXPECT_FALSE(M->getFunction("func")->empty()); EXPECT_TRUE(M->getFunction("other")->empty()); EXPECT_FALSE(verifyModule(*M, &dbgs())); } TEST(BitReaderTest, MaterializeFunctionsForBlockAddrInFunctionAfter) { SmallString<1024> Mem; LLVMContext Context; std::unique_ptr M = getLazyModuleFromAssembly( Context, Mem, "define void @func() {\n" " unreachable\n" "bb:\n" " unreachable\n" "}\n" "define void @other() {\n" " unreachable\n" "}\n" "define i8* @after() {\n" " ret i8* blockaddress(@func, %bb)\n" "}\n"); EXPECT_TRUE(M->getFunction("after")->empty()); EXPECT_TRUE(M->getFunction("func")->empty()); EXPECT_FALSE(verifyModule(*M, &dbgs())); // Materialize @after, pulling in @func. EXPECT_FALSE(M->getFunction("after")->materialize()); EXPECT_FALSE(M->getFunction("func")->empty()); EXPECT_TRUE(M->getFunction("other")->empty()); EXPECT_FALSE(verifyModule(*M, &dbgs())); } // Helper function to convert type metadata to a string for testing static std::string mdToString(Metadata *MD) { std::string S; if (auto *VMD = dyn_cast(MD)) { if (VMD->getType()->isPointerTy()) { S += "ptr"; return S; } } if (auto *TMD = dyn_cast(MD)) { S += "!{"; for (unsigned I = 0; I < TMD->getNumOperands(); I++) { if (I != 0) S += ", "; S += mdToString(TMD->getOperand(I).get()); } S += "}"; } else if (auto *SMD = dyn_cast(MD)) { S += "!'"; S += SMD->getString(); S += "'"; } else if (auto *I = mdconst::dyn_extract(MD)) { S += std::to_string(I->getZExtValue()); } else if (auto *P = mdconst::dyn_extract(MD)) { auto *Ty = P->getType(); if (Ty->isIntegerTy()) { S += "i"; S += std::to_string(Ty->getIntegerBitWidth()); } else if (Ty->isStructTy()) { S += "%"; S += Ty->getStructName(); } else { llvm_unreachable("unhandled poison metadata"); } } else { llvm_unreachable("unhandled metadata"); } return S; } // Recursively look into a (pointer) type and the the type. // For primitive types it's a poison value of the type, for a pointer it's a // metadata tuple with the addrspace and the referenced type. For a function, // it's a tuple where the first element is the string "function", the second // element is the return type or the string "void" and the following elements // are the argument types. static Metadata *getTypeMetadataEntry(unsigned TypeID, LLVMContext &Context, GetTypeByIDTy GetTypeByID, GetContainedTypeIDTy GetContainedTypeID) { Type *Ty = GetTypeByID(TypeID); if (auto *FTy = dyn_cast(Ty)) { // Save the function signature as metadata SmallVector SignatureMD; SignatureMD.push_back(MDString::get(Context, "function")); // Return type if (FTy->getReturnType()->isVoidTy()) SignatureMD.push_back(MDString::get(Context, "void")); else SignatureMD.push_back(getTypeMetadataEntry(GetContainedTypeID(TypeID, 0), Context, GetTypeByID, GetContainedTypeID)); // Arguments for (unsigned I = 0; I != FTy->getNumParams(); ++I) SignatureMD.push_back( getTypeMetadataEntry(GetContainedTypeID(TypeID, I + 1), Context, GetTypeByID, GetContainedTypeID)); return MDTuple::get(Context, SignatureMD); } if (!Ty->isPointerTy()) return ConstantAsMetadata::get(PoisonValue::get(Ty)); // Return !{, } for pointer SmallVector MD; MD.push_back(ConstantAsMetadata::get(ConstantInt::get( Type::getInt32Ty(Context), Ty->getPointerAddressSpace()))); MD.push_back(getTypeMetadataEntry(GetContainedTypeID(TypeID, 0), Context, GetTypeByID, GetContainedTypeID)); return MDTuple::get(Context, MD); } // Test that when reading bitcode with typed pointers and upgrading them to // opaque pointers, the type information of function signatures can be extracted // and stored in metadata. TEST(BitReaderTest, AccessFunctionTypeInfo) { StringRef Bitcode(reinterpret_cast(AccessFunctionTypeInfoBc), sizeof(AccessFunctionTypeInfoBc)); LLVMContext Context; ParserCallbacks Callbacks; // Supply a callback that stores the signature of a function into metadata, // so that the types behind pointers can be accessed. // Each function gets a !types metadata, which is a tuple with one element // for a non-void return type and every argument. For primitive types it's // a poison value of the type, for a pointer it's a metadata tuple with // the addrspace and the referenced type. Callbacks.ValueType = [&](Value *V, unsigned TypeID, GetTypeByIDTy GetTypeByID, GetContainedTypeIDTy GetContainedTypeID) { if (auto *F = dyn_cast(V)) { auto *MD = getTypeMetadataEntry(TypeID, F->getContext(), GetTypeByID, GetContainedTypeID); F->setMetadata("types", cast(MD)); } }; Expected> ModuleOrErr = parseBitcodeFile(MemoryBufferRef(Bitcode, "test"), Context, Callbacks); if (!ModuleOrErr) report_fatal_error("Could not parse bitcode module"); std::unique_ptr M = std::move(ModuleOrErr.get()); EXPECT_EQ(mdToString(M->getFunction("func")->getMetadata("types")), "!{!'function', !'void'}"); EXPECT_EQ(mdToString(M->getFunction("func_header")->getMetadata("types")), "!{!'function', i32}"); EXPECT_EQ(mdToString(M->getFunction("ret_ptr")->getMetadata("types")), "!{!'function', !{0, i8}}"); EXPECT_EQ(mdToString(M->getFunction("ret_and_arg_ptr")->getMetadata("types")), "!{!'function', !{0, i8}, !{8, i32}}"); EXPECT_EQ(mdToString(M->getFunction("double_ptr")->getMetadata("types")), "!{!'function', !{1, i8}, !{2, !{0, i32}}, !{0, !{0, !{0, i32}}}}"); } // Test that when reading bitcode with typed pointers and upgrading them to // opaque pointers, the type information of pointers in metadata can be // extracted and stored in metadata. TEST(BitReaderTest, AccessMetadataTypeInfo) { StringRef Bitcode(reinterpret_cast(AccessMetadataTypeInfoBc), sizeof(AccessFunctionTypeInfoBc)); LLVMContext Context; ParserCallbacks Callbacks; // Supply a callback that stores types from metadata, // so that the types behind pointers can be accessed. // Non-pointer entries are ignored. Values with a pointer type are // replaced by a metadata tuple with {original value, type md}. We cannot // save the metadata outside because after conversion to opaque pointers, // entries are not distinguishable anymore (e.g. i32* and i8* are both // upgraded to ptr). Callbacks.MDType = [&](Metadata **Val, unsigned TypeID, GetTypeByIDTy GetTypeByID, GetContainedTypeIDTy GetContainedTypeID) { auto *OrigVal = cast(*Val); if (OrigVal->getType()->isPointerTy()) { // Ignore function references, their signature can be saved like // in the test above if (!isa(OrigVal->getValue())) { SmallVector Tuple; Tuple.push_back(OrigVal); Tuple.push_back(getTypeMetadataEntry(GetContainedTypeID(TypeID, 0), OrigVal->getContext(), GetTypeByID, GetContainedTypeID)); *Val = MDTuple::get(OrigVal->getContext(), Tuple); } } }; Expected> ModuleOrErr = parseBitcodeFile(MemoryBufferRef(Bitcode, "test"), Context, Callbacks); if (!ModuleOrErr) report_fatal_error("Could not parse bitcode module"); std::unique_ptr M = std::move(ModuleOrErr.get()); EXPECT_EQ( mdToString(M->getNamedMetadata("md")->getOperand(0)), "!{2, !{ptr, %dx.types.f32}, ptr, !{ptr, !{!'function', !'void'}}}"); EXPECT_EQ(mdToString(M->getNamedMetadata("md2")->getOperand(0)), "!{!{ptr, !{!'function', !{0, i8}, !{2, !{0, i32}}}}, !{ptr, !{0, " "!{0, i32}}}}"); } } // end namespace