; RUN: opt < %s -passes="loop-vectorize" -force-vector-interleave=1 -force-vector-width=4 -S | FileCheck %s target datalayout = "e-p:64:64:64-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:64-f32:32:32-f64:64:64-v64:64:64-v128:128:128-a0:0:64-s0:64:64-f80:128:128-n8:16:32:64-S128" ; This test checks that we can vectorize loop with reduction variable ; stored in an invariant address. ; ; int sum = 0; ; for(i=0..N) { ; sum += src[i]; ; dst[42] = sum; ; } ; CHECK-LABEL: @reduc_store ; CHECK: vector.body: ; CHECK-NEXT: [[INDEX:%.*]] = phi i64 [ 0, [[VECTOR_PH:%.*]] ], [ [[INDEX_NEXT:%.*]], [[VECTOR_BODY:%.*]] ] ; CHECK-NEXT: [[VEC_PHI:%.*]] = phi <4 x i32> [ zeroinitializer, [[VECTOR_PH]] ], [ [[TMP4:%.*]], [[VECTOR_BODY]] ] ; CHECK-NEXT: [[TMP0:%.*]] = add i64 [[INDEX]], 0 ; CHECK-NEXT: [[TMP1:%.*]] = getelementptr inbounds i32, ptr [[SRC:%.*]], i64 [[TMP0]] ; CHECK-NEXT: [[TMP2:%.*]] = getelementptr inbounds i32, ptr [[TMP1]], i32 0 ; CHECK-NEXT: [[WIDE_LOAD:%.*]] = load <4 x i32>, ptr [[TMP2]], align 4 ; CHECK-NEXT: [[TMP4]] = add <4 x i32> [[VEC_PHI]], [[WIDE_LOAD]] ; CHECK-NEXT: [[INDEX_NEXT]] = add nuw i64 [[INDEX]], 4 ; CHECK-NEXT: [[TMP5:%.*]] = icmp eq i64 [[INDEX_NEXT]], 1000 ; CHECK-NEXT: br i1 [[TMP5]], label [[MIDDLE_BLOCK:%.*]], label [[VECTOR_BODY]], !llvm.loop [[LOOP3:![0-9]+]] ; CHECK: middle.block: ; CHECK-NEXT: [[TMP6:%.*]] = call i32 @llvm.vector.reduce.add.v4i32(<4 x i32> [[TMP4]]) ; CHECK-NEXT: store i32 [[TMP6]], ptr [[GEP_DST:%.*]], align 4 ; CHECK-NEXT: br i1 true, label [[EXIT:%.*]], label [[SCALAR_PH:%.*]] define void @reduc_store(ptr %dst, ptr readonly %src) { entry: %gep.dst = getelementptr inbounds i32, ptr %dst, i64 42 store i32 0, ptr %gep.dst, align 4 br label %for.body for.body: %sum = phi i32 [ 0, %entry ], [ %add, %for.body ] %iv = phi i64 [ 0, %entry ], [ %iv.next, %for.body ] %gep.src = getelementptr inbounds i32, ptr %src, i64 %iv %0 = load i32, ptr %gep.src, align 4 %add = add nsw i32 %sum, %0 store i32 %add, ptr %gep.dst, align 4 %iv.next = add nuw nsw i64 %iv, 1 %exitcond = icmp eq i64 %iv.next, 1000 br i1 %exitcond, label %exit, label %for.body exit: ret void } ; Same as above but with floating point numbers instead. ; ; float sum = 0; ; for(i=0..N) { ; sum += src[i]; ; dst[42] = sum; ; } ; CHECK-LABEL: @reduc_store_fadd_fast ; CHECK: vector.body: ; CHECK: phi <4 x float> ; CHECK: load <4 x float> ; CHECK: fadd fast <4 x float> ; CHECK-NOT: store float %{{[0-9]+}}, ptr %gep.dst ; CHECK: middle.block: ; CHECK-NEXT: [[TMP:%.*]] = call fast float @llvm.vector.reduce.fadd.v4f32 ; CHECK-NEXT: store float %{{[0-9]+}}, ptr %gep.dst define void @reduc_store_fadd_fast(ptr %dst, ptr readonly %src) { entry: %gep.dst = getelementptr inbounds float, ptr %dst, i64 42 store float 0.000000e+00, ptr %gep.dst, align 4 br label %for.body for.body: %sum = phi float [ 0.000000e+00, %entry ], [ %add, %for.body ] %iv = phi i64 [ 0, %entry ], [ %iv.next, %for.body ] %gep.src = getelementptr inbounds float, ptr %src, i64 %iv %0 = load float, ptr %gep.src, align 4 %add = fadd fast float %sum, %0 store float %add, ptr %gep.dst, align 4 %iv.next = add nuw nsw i64 %iv, 1 %exitcond = icmp eq i64 %iv.next, 1000 br i1 %exitcond, label %exit, label %for.body exit: ret void } ; Check that if we have a read from an invariant address, we do not vectorize. ; ; int sum = 0; ; for(i=0..N) { ; sum += src[i]; ; dst.2[i] = dst[42]; ; dst[42] = sum; ; } ; CHECK-LABEL: @reduc_store_load ; CHECK-NOT: vector.body define void @reduc_store_load(ptr %dst, ptr readonly %src, ptr noalias %dst.2) { entry: %gep.dst = getelementptr inbounds i32, ptr %dst, i64 42 store i32 0, ptr %gep.dst, align 4 br label %for.body for.body: %sum = phi i32 [ 0, %entry ], [ %add, %for.body ] %iv = phi i64 [ 0, %entry ], [ %iv.next, %for.body ] %gep.src = getelementptr inbounds i32, ptr %src, i64 %iv %0 = load i32, ptr %gep.src, align 4 %add = add nsw i32 %sum, %0 %lv = load i32, ptr %gep.dst %gep.dst.2 = getelementptr inbounds i32, ptr %dst.2, i64 %iv store i32 %lv, ptr %gep.dst.2, align 4 store i32 %add, ptr %gep.dst, align 4 %iv.next = add nuw nsw i64 %iv, 1 %exitcond = icmp eq i64 %iv.next, 1000 br i1 %exitcond, label %exit, label %for.body exit: ret void } ; Check that if we have a read from an invariant address, we do not vectorize, ; even if we vectorize with runtime checks. The test below is a variant of ; @reduc_store_load with a non-constant dependence distance, resulting in ; vectorization with runtime checks. ; ; CHECK-LABEL: @reduc_store_load_with_non_constant_distance_dependence ; CHECK-NOT: vector.body: define void @reduc_store_load_with_non_constant_distance_dependence(ptr %dst, ptr noalias %dst.2, i64 %off) { entry: %gep.dst = getelementptr inbounds i32, ptr %dst, i64 42 %dst.2.off = getelementptr inbounds i32, ptr %dst.2, i64 %off store i32 0, ptr %gep.dst, align 4 br label %for.body for.body: %sum = phi i32 [ 0, %entry ], [ %add, %for.body ] %iv = phi i64 [ 0, %entry ], [ %iv.next, %for.body ] %gep.src = getelementptr inbounds i32, ptr %dst.2, i64 %iv %0 = load i32, ptr %gep.src, align 4 %iv.off = mul i64 %iv, 2 %add = add nsw i32 %sum, %0 %lv = load i32, ptr %gep.dst store i32 %add, ptr %gep.dst, align 4 %gep.src.2 = getelementptr inbounds i32, ptr %dst.2.off, i64 %iv store i32 %lv, ptr %gep.src.2, align 4 %iv.next = add nuw nsw i64 %iv, 1 %exitcond = icmp eq i64 %iv.next, 1000 br i1 %exitcond, label %exit, label %for.body exit: ret void } ; Final value is not guaranteed to be stored in an invariant address. ; We don't vectorize in that case. ; ; int sum = 0; ; for(i=0..N) { ; int diff = y[i] - x[i]; ; if (diff > 0) { ; sum = += diff; ; *t = sum; ; } ; } ; CHECK-LABEL: @reduc_cond_store ; CHECK-NOT: vector.body define void @reduc_cond_store(ptr %t, ptr readonly %x, ptr readonly %y) { entry: store i32 0, ptr %t, align 4 br label %for.body for.body: %sum = phi i32 [ 0, %entry ], [ %sum.2, %if.end ] %iv = phi i64 [ 0, %entry ], [ %iv.next, %if.end ] %gep.y = getelementptr inbounds i32, ptr %y, i64 %iv %0 = load i32, ptr %gep.y, align 4 %gep.x = getelementptr inbounds i32, ptr %x, i64 %iv %1 = load i32, ptr %gep.x, align 4 %diff = sub nsw i32 %0, %1 %cmp2 = icmp sgt i32 %diff, 0 br i1 %cmp2, label %if.then, label %if.end if.then: %sum.1 = add nsw i32 %diff, %sum store i32 %sum.1, ptr %t, align 4 br label %if.end if.end: %sum.2 = phi i32 [ %sum.1, %if.then ], [ %0, %for.body ] %iv.next = add nuw nsw i64 %iv, 1 %exitcond = icmp eq i64 %iv.next, 1000 br i1 %exitcond, label %for.end, label %for.body for.end: ret void } ; Check that we can vectorize code with several stores to an invariant address ; with condition that final reduction value is stored too. ; ; int sum = 0; ; for(int i=0; i < 1000; i+=2) { ; sum += src[i]; ; dst[42] = sum; ; sum += src[i+1]; ; dst[42] = sum; ; } ; CHECK-LABEL: @reduc_store_inside_unrolled ; CHECK: vector.body: ; CHECK-NEXT: [[INDEX:%.*]] = phi i64 [ 0, [[VECTOR_PH:%.*]] ], [ [[INDEX_NEXT:%.*]], [[VECTOR_BODY:%.*]] ] ; CHECK-NEXT: [[VEC_IND:%.*]] = phi <4 x i64> [ , [[VECTOR_PH]] ], [ [[VEC_IND_NEXT:%.*]], [[VECTOR_BODY]] ] ; CHECK-NEXT: [[VEC_PHI:%.*]] = phi <4 x i32> [ zeroinitializer, [[VECTOR_PH]] ], [ [[TMP34:%.*]], [[VECTOR_BODY]] ] ; CHECK-NEXT: [[OFFSET_IDX:%.*]] = mul i64 [[INDEX]], 2 ; CHECK-NEXT: [[TMP0:%.*]] = add i64 [[OFFSET_IDX]], 0 ; CHECK-NEXT: [[TMP1:%.*]] = add i64 [[OFFSET_IDX]], 2 ; CHECK-NEXT: [[TMP2:%.*]] = add i64 [[OFFSET_IDX]], 4 ; CHECK-NEXT: [[TMP3:%.*]] = add i64 [[OFFSET_IDX]], 6 ; CHECK-NEXT: [[TMP4:%.*]] = getelementptr inbounds i32, ptr [[SRC:%.*]], i64 [[TMP0]] ; CHECK-NEXT: [[TMP5:%.*]] = getelementptr inbounds i32, ptr [[SRC]], i64 [[TMP1]] ; CHECK-NEXT: [[TMP6:%.*]] = getelementptr inbounds i32, ptr [[SRC]], i64 [[TMP2]] ; CHECK-NEXT: [[TMP7:%.*]] = getelementptr inbounds i32, ptr [[SRC]], i64 [[TMP3]] ; CHECK-NEXT: [[TMP8:%.*]] = load i32, ptr [[TMP4]], align 4 ; CHECK-NEXT: [[TMP9:%.*]] = load i32, ptr [[TMP5]], align 4 ; CHECK-NEXT: [[TMP10:%.*]] = load i32, ptr [[TMP6]], align 4 ; CHECK-NEXT: [[TMP11:%.*]] = load i32, ptr [[TMP7]], align 4 ; CHECK-NEXT: [[TMP12:%.*]] = insertelement <4 x i32> poison, i32 [[TMP8]], i32 0 ; CHECK-NEXT: [[TMP13:%.*]] = insertelement <4 x i32> [[TMP12]], i32 [[TMP9]], i32 1 ; CHECK-NEXT: [[TMP14:%.*]] = insertelement <4 x i32> [[TMP13]], i32 [[TMP10]], i32 2 ; CHECK-NEXT: [[TMP15:%.*]] = insertelement <4 x i32> [[TMP14]], i32 [[TMP11]], i32 3 ; CHECK-NEXT: [[TMP16:%.*]] = add <4 x i32> [[TMP15]], [[VEC_PHI]] ; CHECK-NEXT: [[TMP17:%.*]] = or disjoint <4 x i64> [[VEC_IND]], splat (i64 1) ; CHECK-NEXT: [[TMP18:%.*]] = extractelement <4 x i64> [[TMP17]], i32 0 ; CHECK-NEXT: [[TMP19:%.*]] = getelementptr inbounds i32, ptr [[SRC]], i64 [[TMP18]] ; CHECK-NEXT: [[TMP20:%.*]] = extractelement <4 x i64> [[TMP17]], i32 1 ; CHECK-NEXT: [[TMP21:%.*]] = getelementptr inbounds i32, ptr [[SRC]], i64 [[TMP20]] ; CHECK-NEXT: [[TMP22:%.*]] = extractelement <4 x i64> [[TMP17]], i32 2 ; CHECK-NEXT: [[TMP23:%.*]] = getelementptr inbounds i32, ptr [[SRC]], i64 [[TMP22]] ; CHECK-NEXT: [[TMP24:%.*]] = extractelement <4 x i64> [[TMP17]], i32 3 ; CHECK-NEXT: [[TMP25:%.*]] = getelementptr inbounds i32, ptr [[SRC]], i64 [[TMP24]] ; CHECK-NEXT: [[TMP26:%.*]] = load i32, ptr [[TMP19]], align 4 ; CHECK-NEXT: [[TMP27:%.*]] = load i32, ptr [[TMP21]], align 4 ; CHECK-NEXT: [[TMP28:%.*]] = load i32, ptr [[TMP23]], align 4 ; CHECK-NEXT: [[TMP29:%.*]] = load i32, ptr [[TMP25]], align 4 ; CHECK-NEXT: [[TMP30:%.*]] = insertelement <4 x i32> poison, i32 [[TMP26]], i32 0 ; CHECK-NEXT: [[TMP31:%.*]] = insertelement <4 x i32> [[TMP30]], i32 [[TMP27]], i32 1 ; CHECK-NEXT: [[TMP32:%.*]] = insertelement <4 x i32> [[TMP31]], i32 [[TMP28]], i32 2 ; CHECK-NEXT: [[TMP33:%.*]] = insertelement <4 x i32> [[TMP32]], i32 [[TMP29]], i32 3 ; CHECK-NEXT: [[TMP34]] = add <4 x i32> [[TMP33]], [[TMP16]] ; CHECK-NEXT: [[INDEX_NEXT]] = add nuw i64 [[INDEX]], 4 ; CHECK-NEXT: [[VEC_IND_NEXT]] = add <4 x i64> [[VEC_IND]], splat (i64 8) ; CHECK-NEXT: [[TMP35:%.*]] = icmp eq i64 [[INDEX_NEXT]], 500 ; CHECK-NEXT: br i1 [[TMP35]], label [[MIDDLE_BLOCK:%.*]], label [[VECTOR_BODY]], !llvm.loop [[LOOP14:![0-9]+]] ; CHECK: middle.block: ; CHECK-NEXT: [[TMP36:%.*]] = call i32 @llvm.vector.reduce.add.v4i32(<4 x i32> [[TMP34]]) ; CHECK-NEXT: store i32 [[TMP36]], ptr [[GEP_DST:%.*]], align 4 ; CHECK-NEXT: br i1 true, label [[EXIT:%.*]], label [[SCALAR_PH:%.*]] define void @reduc_store_inside_unrolled(ptr %dst, ptr readonly %src) { entry: %gep.dst = getelementptr inbounds i32, ptr %dst, i64 42 br label %for.body for.body: %iv = phi i64 [ 0, %entry ], [ %iv.next, %for.body ] %sum = phi i32 [ 0, %entry ], [ %sum.2, %for.body ] %gep.src = getelementptr inbounds i32, ptr %src, i64 %iv %0 = load i32, ptr %gep.src, align 4 %sum.1 = add nsw i32 %0, %sum store i32 %sum.1, ptr %gep.dst, align 4 %1 = or disjoint i64 %iv, 1 %gep.src.1 = getelementptr inbounds i32, ptr %src, i64 %1 %2 = load i32, ptr %gep.src.1, align 4 %sum.2 = add nsw i32 %2, %sum.1 store i32 %sum.2, ptr %gep.dst, align 4 %iv.next = add nuw nsw i64 %iv, 2 %cmp = icmp slt i64 %iv.next, 1000 br i1 %cmp, label %for.body, label %exit exit: ret void } ; Check that we cannot vectorize code if stored value is not the final reduction ; value ; ; int sum = 0; ; for(int i=0; i < 1000; i++) { ; sum += src[i]; ; dst[42] = sum + 1; ; } ; CHECK-LABEL: @reduc_store_not_final_value ; CHECK-NOT: vector.body: define void @reduc_store_not_final_value(ptr %dst, ptr readonly %src) { entry: %gep.dst = getelementptr inbounds i32, ptr %dst, i64 42 store i32 0, ptr %gep.dst, align 4 br label %for.body for.body: %sum = phi i32 [ 0, %entry ], [ %add, %for.body ] %iv = phi i64 [ 0, %entry ], [ %iv.next, %for.body ] %gep.src = getelementptr inbounds i32, ptr %src, i64 %iv %0 = load i32, ptr %gep.src, align 4 %add = add nsw i32 %sum, %0 %sum_plus_one = add i32 %add, 1 store i32 %sum_plus_one, ptr %gep.dst, align 4 %iv.next = add nuw nsw i64 %iv, 1 %exitcond = icmp eq i64 %iv.next, 1000 br i1 %exitcond, label %exit, label %for.body exit: ret void } ; We cannot vectorize if two (or more) invariant stores exist in a loop. ; ; int sum = 0; ; for(int i=0; i < 1000; i+=2) { ; sum += src[i]; ; dst[42] = sum; ; sum += src[i+1]; ; other_dst[42] = sum; ; } ; CHECK-LABEL: @reduc_double_invariant_store ; CHECK-NOT: vector.body: define void @reduc_double_invariant_store(ptr %dst, ptr %other_dst, ptr readonly %src) { entry: %gep.dst = getelementptr inbounds i32, ptr %dst, i64 42 %gep.other_dst = getelementptr inbounds i32, ptr %other_dst, i64 42 br label %for.body for.body: %iv = phi i64 [ 0, %entry ], [ %iv.next, %for.body ] %sum = phi i32 [ 0, %entry ], [ %sum.2, %for.body ] %arrayidx = getelementptr inbounds i32, ptr %src, i64 %iv %0 = load i32, ptr %arrayidx, align 4 %sum.1 = add nsw i32 %0, %sum store i32 %sum.1, ptr %gep.dst, align 4 %1 = or disjoint i64 %iv, 1 %arrayidx4 = getelementptr inbounds i32, ptr %src, i64 %1 %2 = load i32, ptr %arrayidx4, align 4 %sum.2 = add nsw i32 %2, %sum.1 store i32 %sum.2, ptr %gep.other_dst, align 4 %iv.next = add nuw nsw i64 %iv, 2 %cmp = icmp slt i64 %iv.next, 1000 br i1 %cmp, label %for.body, label %exit exit: ret void } ; int sum = 0; ; for(int i=0; i < 1000; i+=2) { ; sum += src[i]; ; if (src[i+1] > 0) ; dst[42] = sum; ; sum += src[i+1]; ; dst[42] = sum; ; } ; CHECK-LABEL: @reduc_store_middle_store_predicated ; CHECK: vector.body: ; CHECK-NOT: store i32 %{{[0-9]+}}, ptr %gep.dst ; CHECK: middle.block: ; CHECK-NEXT: [[TMP:%.*]] = call i32 @llvm.vector.reduce.add.v4i32 ; CHECK-NEXT: store i32 [[TMP]], ptr %gep.dst ; CHECK: ret void define void @reduc_store_middle_store_predicated(ptr %dst, ptr readonly %src) { entry: %gep.dst = getelementptr inbounds i32, ptr %dst, i64 42 br label %for.body for.body: ; preds = %latch, %entry %iv = phi i64 [ 0, %entry ], [ %iv.next, %latch ] %sum = phi i32 [ 0, %entry ], [ %sum.2, %latch ] %gep.src = getelementptr inbounds i32, ptr %src, i64 %iv %0 = load i32, ptr %gep.src, align 4 %sum.1 = add nsw i32 %0, %sum %cmp = icmp sgt i32 %0, 0 br i1 %cmp, label %predicated, label %latch predicated: ; preds = %for.body store i32 %sum.1, ptr %gep.dst, align 4 br label %latch latch: ; preds = %predicated, %for.body %1 = or disjoint i64 %iv, 1 %gep.src.1 = getelementptr inbounds i32, ptr %src, i64 %1 %2 = load i32, ptr %gep.src.1, align 4 %sum.2 = add nsw i32 %2, %sum.1 store i32 %sum.2, ptr %gep.dst, align 4 %iv.next = add nuw nsw i64 %iv, 2 %cmp.1 = icmp slt i64 %iv.next, 1000 br i1 %cmp.1, label %for.body, label %exit exit: ; preds = %latch ret void } ; int sum = 0; ; for(int i=0; i < 1000; i+=2) { ; sum += src[i]; ; dst[42] = sum; ; sum += src[i+1]; ; if (src[i+1] > 0) ; dst[42] = sum; ; } ; CHECK-LABEL: @reduc_store_final_store_predicated ; CHECK-NOT: vector.body: define void @reduc_store_final_store_predicated(ptr %dst, ptr readonly %src) { entry: %gep.dst = getelementptr inbounds i32, ptr %dst, i64 42 br label %for.body for.body: ; preds = %latch, %entry %iv = phi i64 [ 0, %entry ], [ %iv.next, %latch ] %sum = phi i32 [ 0, %entry ], [ %sum.1, %latch ] %arrayidx = getelementptr inbounds i32, ptr %src, i64 %iv %0 = load i32, ptr %arrayidx, align 4 %sum.1 = add nsw i32 %0, %sum store i32 %sum.1, ptr %gep.dst, align 4 %1 = or disjoint i64 %iv, 1 %gep.src.1 = getelementptr inbounds i32, ptr %src, i64 %1 %2 = load i32, ptr %gep.src.1, align 4 %sum.2 = add nsw i32 %2, %sum.1 %cmp1 = icmp sgt i32 %2, 0 br i1 %cmp1, label %predicated, label %latch predicated: ; preds = %for.body store i32 %sum.2, ptr %gep.dst, align 4 br label %latch latch: ; preds = %predicated, %for.body %iv.next = add nuw nsw i64 %iv, 2 %cmp = icmp slt i64 %iv.next, 1000 br i1 %cmp, label %for.body, label %exit exit: ; preds = %latch ret void } ; Final reduction value is overwritten inside loop ; ; for(int i=0; i < 1000; i++) { ; sum += src[i]; ; dst[42] = sum; ; dst[42] = 0; ; } ; CHECK-LABEL: @reduc_store_final_store_overwritten ; CHECK-NOT: vector.body: define void @reduc_store_final_store_overwritten(ptr %dst, ptr readonly %src) { entry: %gep.dst = getelementptr inbounds i32, ptr %dst, i64 42 br label %for.body for.body: %sum = phi i32 [ 0, %entry ], [ %add, %for.body ] %iv = phi i64 [ 0, %entry ], [ %iv.next, %for.body ] %gep.src = getelementptr inbounds i32, ptr %src, i64 %iv %0 = load i32, ptr %gep.src, align 4 %add = add nsw i32 %sum, %0 store i32 %add, ptr %gep.dst, align 4 store i32 0, ptr %gep.dst, align 4 %iv.next = add nuw nsw i64 %iv, 1 %exitcond = icmp eq i64 %iv.next, 1000 br i1 %exitcond, label %exit, label %for.body exit: ret void } ; Final value used outside of loop does not prevent vectorization ; ; int sum = 0; ; for(int i=0; i < 1000; i++) { ; sum += src[i]; ; dst[42] = sum; ; } ; dst[43] = sum; ; CHECK-LABEL: @reduc_store_inoutside ; CHECK: vector.body: ; CHECK-NOT: store i32 %{{[0-9]+}}, ptr %gep.src ; CHECK: middle.block: ; CHECK-NEXT: [[TMP:%.*]] = call i32 @llvm.vector.reduce.add.v4i32 ; CHECK-NEXT: store i32 [[TMP]], ptr %gep.dst ; CHECK: exit: ; CHECK: [[PHI:%.*]] = phi i32 [ [[TMP1:%.*]], %for.body ], [ [[TMP2:%.*]], %middle.block ] ; CHECK: [[ADDR:%.*]] = getelementptr inbounds i32, ptr %dst, i64 43 ; CHECK: store i32 [[PHI]], ptr [[ADDR]] ; CHECK: ret void define void @reduc_store_inoutside(ptr %dst, ptr readonly %src) { entry: %gep.dst = getelementptr inbounds i32, ptr %dst, i64 42 br label %for.body for.body: %iv = phi i64 [ 0, %entry ], [ %iv.next, %for.body ] %sum = phi i32 [ 0, %entry ], [ %sum.1, %for.body ] %arrayidx = getelementptr inbounds i32, ptr %src, i64 %iv %0 = load i32, ptr %arrayidx, align 4 %sum.1 = add nsw i32 %0, %sum store i32 %sum.1, ptr %gep.dst, align 4 %iv.next = add nuw nsw i64 %iv, 1 %exitcond = icmp eq i64 %iv.next, 1000 br i1 %exitcond, label %exit, label %for.body exit: %sum.lcssa = phi i32 [ %sum.1, %for.body ] %gep.dst.1 = getelementptr inbounds i32, ptr %dst, i64 43 store i32 %sum.lcssa, ptr %gep.dst.1, align 4 ret void } ; Test for PR55540. define void @test_drop_poison_generating_dead_recipe(ptr %dst) { ; CHECK-LABEL: @test_drop_poison_generating_dead_recipe( ; CHECK: vector.body: ; CHECK-NEXT: [[INDEX:%.*]] = phi i32 [ 0, %vector.ph ], [ [[INDEX_NEXT:%.*]], %vector.body ] ; CHECK-NEXT: [[VEC_PHI:%.*]] = phi <4 x i64> [ zeroinitializer, %vector.ph ], [ [[TMP0:%.*]], %vector.body ] ; CHECK-NEXT: [[TMP0]] = add <4 x i64> [[VEC_PHI]], splat (i64 -31364) ; CHECK-NEXT: [[INDEX_NEXT]] = add nuw i32 [[INDEX]], 4 ; CHECK-NEXT: [[TMP1:%.*]] = icmp eq i32 [[INDEX_NEXT]], 360 ; CHECK-NEXT: br i1 [[TMP1]], label %middle.block, label %vector.body ; CHECK: middle.block: ; CHECK-NEXT: [[TMP2:%.*]] = call i64 @llvm.vector.reduce.add.v4i64(<4 x i64> [[TMP0]]) ; CHECK-NEXT: store i64 [[TMP2]], ptr [[DST:%.*]], align 8 ; CHECK-NEXT: br i1 false, label %exit, label %scalar.ph ; CHECK: scalar.ph: ; entry: br label %body body: %red = phi i64 [ 0, %entry ], [ %red.next, %body ] %iv = phi i32 [ 2, %entry ], [ %iv.next, %body ] %add.1 = add nuw i64 %red, -23523 store i64 %add.1, ptr %dst, align 8 %red.next = add nuw i64 %red, -31364 store i64 %red.next, ptr %dst, align 8 %iv.next = add nuw nsw i32 %iv, 1 %ec = icmp ugt i32 %iv, 363 br i1 %ec, label %exit, label %body exit: ret void } define void @reduc_store_invariant_addr_not_hoisted(ptr %dst, ptr readonly %src) { ; CHECK-LABEL: @reduc_store_invariant_addr_not_hoisted ; CHECK-NOT: vector.body: entry: br label %for.body for.body: %sum = phi i32 [ 0, %entry ], [ %add, %for.body ] %iv = phi i64 [ 0, %entry ], [ %iv.next, %for.body ] %gep.src = getelementptr inbounds i32, ptr %src, i64 %iv %0 = load i32, ptr %gep.src, align 4 %add = add nsw i32 %sum, %0 %gep.dst = getelementptr inbounds i32, ptr %dst, i64 42 store i32 %add, ptr %gep.dst, align 4 %iv.next = add nuw nsw i64 %iv, 1 %exitcond = icmp eq i64 %iv.next, 1000 br i1 %exitcond, label %exit, label %for.body exit: ret void } ; Make sure we can vectorize loop with a non-reduction value stored to an ; invariant address that is calculated inside loop. define i32 @non_reduc_store_invariant_addr_not_hoisted(ptr %dst, ptr readonly %src) { ; CHECK-LABEL: @non_reduc_store_invariant_addr_not_hoisted ; CHECK: vector.body: entry: br label %for.body for.body: ; preds = %for.body, %entry %sum = phi i32 [ 0, %entry ], [ %add, %for.body ] %iv = phi i64 [ 0, %entry ], [ %iv.next, %for.body ] %gep.src = getelementptr inbounds i32, ptr %src, i64 %iv %0 = load i32, ptr %gep.src, align 4 %add = add nsw i32 %sum, %0 %gep.dst = getelementptr inbounds i32, ptr %dst, i64 42 store i32 0, ptr %gep.dst, align 4 %iv.next = add nuw nsw i64 %iv, 1 %exitcond = icmp eq i64 %iv.next, 1000 br i1 %exitcond, label %exit, label %for.body exit: ; preds = %for.body %add.lcssa = phi i32 [ %add, %for.body ] ret i32 %add.lcssa } ; Make sure that if there are several reductions in the loop, the order of invariant stores sank outside of the loop is preserved ; See https://github.com/llvm/llvm-project/issues/64047 define void @reduc_add_mul_store_same_ptr(ptr %dst, ptr readonly %src) { ; CHECK-LABEL: define void @reduc_add_mul_store_same_ptr ; CHECK: middle.block: ; CHECK-NEXT: [[TMP6:%.*]] = call i32 @llvm.vector.reduce.add.v4i32(<4 x i32> [[TMP3:%.*]]) ; CHECK-NEXT: [[TMP7:%.*]] = call i32 @llvm.vector.reduce.mul.v4i32(<4 x i32> [[TMP4:%.*]]) ; CHECK-NEXT: store i32 [[TMP6]], ptr %dst, align 4 ; CHECK-NEXT: store i32 [[TMP7]], ptr %dst, align 4 ; entry: br label %for.body for.body: %sum = phi i32 [ 0, %entry ], [ %sum.next, %for.body ] %mul = phi i32 [ 1, %entry ], [ %mul.next, %for.body ] %iv = phi i64 [ 0, %entry ], [ %iv.next, %for.body ] %gep.src = getelementptr inbounds i32, ptr %src, i64 %iv %0 = load i32, ptr %gep.src, align 4 %sum.next = add nsw i32 %sum, %0 store i32 %sum.next, ptr %dst, align 4 %mul.next = mul nsw i32 %mul, %0 store i32 %mul.next, ptr %dst, align 4 %iv.next = add nuw nsw i64 %iv, 1 %exitcond = icmp eq i64 %iv.next, 1000 br i1 %exitcond, label %exit, label %for.body exit: ret void } define void @reduc_mul_add_store_same_ptr(ptr %dst, ptr readonly %src) { ; CHECK-LABEL: define void @reduc_mul_add_store_same_ptr ; CHECK: middle.block: ; CHECK-NEXT: [[TMP6:%.*]] = call i32 @llvm.vector.reduce.add.v4i32(<4 x i32> [[TMP4:%.*]]) ; CHECK-NEXT: [[TMP7:%.*]] = call i32 @llvm.vector.reduce.mul.v4i32(<4 x i32> [[TMP3:%.*]]) ; CHECK-NEXT: store i32 [[TMP7]], ptr %dst, align 4 ; CHECK-NEXT: store i32 [[TMP6]], ptr %dst, align 4 ; entry: br label %for.body for.body: %sum = phi i32 [ 0, %entry ], [ %sum.next, %for.body ] %mul = phi i32 [ 1, %entry ], [ %mul.next, %for.body ] %iv = phi i64 [ 0, %entry ], [ %iv.next, %for.body ] %gep.src = getelementptr inbounds i32, ptr %src, i64 %iv %0 = load i32, ptr %gep.src, align 4 %mul.next = mul nsw i32 %mul, %0 store i32 %mul.next, ptr %dst, align 4 %sum.next = add nsw i32 %sum, %0 store i32 %sum.next, ptr %dst, align 4 %iv.next = add nuw nsw i64 %iv, 1 %exitcond = icmp eq i64 %iv.next, 1000 br i1 %exitcond, label %exit, label %for.body exit: ret void } ; Same as above but storing is done to two different pointers and they can be aliased define void @reduc_add_mul_store_different_ptr(ptr %dst1, ptr %dst2, ptr readonly %src) { ; CHECK-LABEL: define void @reduc_add_mul_store_different_ptr ; CHECK: middle.block: ; CHECK-NEXT: [[TMP6:%.*]] = call i32 @llvm.vector.reduce.add.v4i32(<4 x i32> [[TMP3:%.*]]) ; CHECK-NEXT: [[TMP7:%.*]] = call i32 @llvm.vector.reduce.mul.v4i32(<4 x i32> [[TMP4:%.*]]) ; CHECK-NEXT: store i32 [[TMP6]], ptr %dst1, align 4 ; CHECK-NEXT: store i32 [[TMP7]], ptr %dst2, align 4 ; entry: br label %for.body for.body: %sum = phi i32 [ 0, %entry ], [ %sum.next, %for.body ] %mul = phi i32 [ 1, %entry ], [ %mul.next, %for.body ] %iv = phi i64 [ 0, %entry ], [ %iv.next, %for.body ] %gep.src = getelementptr inbounds i32, ptr %src, i64 %iv %0 = load i32, ptr %gep.src, align 4 %sum.next = add nsw i32 %sum, %0 store i32 %sum.next, ptr %dst1, align 4 %mul.next = mul nsw i32 %mul, %0 store i32 %mul.next, ptr %dst2, align 4 %iv.next = add nuw nsw i64 %iv, 1 %exitcond = icmp eq i64 %iv.next, 1000 br i1 %exitcond, label %exit, label %for.body exit: ret void } define void @reduc_mul_add_store_different_ptr(ptr %dst1, ptr %dst2, ptr readonly %src) { ; CHECK-LABEL: define void @reduc_mul_add_store_different_ptr ; CHECK: middle.block: ; CHECK-NEXT: [[TMP6:%.*]] = call i32 @llvm.vector.reduce.add.v4i32(<4 x i32> [[TMP4:%.*]]) ; CHECK-NEXT: [[TMP7:%.*]] = call i32 @llvm.vector.reduce.mul.v4i32(<4 x i32> [[TMP3:%.*]]) ; CHECK-NEXT: store i32 [[TMP7]], ptr %dst1, align 4 ; CHECK-NEXT: store i32 [[TMP6]], ptr %dst2, align 4 ; entry: br label %for.body for.body: %sum = phi i32 [ 0, %entry ], [ %sum.next, %for.body ] %mul = phi i32 [ 1, %entry ], [ %mul.next, %for.body ] %iv = phi i64 [ 0, %entry ], [ %iv.next, %for.body ] %gep.src = getelementptr inbounds i32, ptr %src, i64 %iv %0 = load i32, ptr %gep.src, align 4 %mul.next = mul nsw i32 %mul, %0 store i32 %mul.next, ptr %dst1, align 4 %sum.next = add nsw i32 %sum, %0 store i32 %sum.next, ptr %dst2, align 4 %iv.next = add nuw nsw i64 %iv, 1 %exitcond = icmp eq i64 %iv.next, 1000 br i1 %exitcond, label %exit, label %for.body exit: ret void }