; NOTE: Assertions have been autogenerated by utils/update_analyze_test_checks.py UTC_ARGS: --version 5 ; RUN: opt -disable-output -passes="print" < %s 2>&1 | FileCheck %s define void @infer.sext.0(ptr %c, i32 %start, ptr %buf) { ; CHECK-LABEL: 'infer.sext.0' ; CHECK-NEXT: Classifying expressions for: @infer.sext.0 ; CHECK-NEXT: %counter = phi i32 [ 0, %entry ], [ %counter.inc, %loop ] ; CHECK-NEXT: --> {0,+,1}<%loop> U: [0,2) S: [0,2) Exits: 1 LoopDispositions: { %loop: Computable } ; CHECK-NEXT: %idx = phi i32 [ %start, %entry ], [ %idx.inc, %loop ] ; CHECK-NEXT: --> {%start,+,1}<%loop> U: full-set S: full-set Exits: (1 + %start) LoopDispositions: { %loop: Computable } ; CHECK-NEXT: %idx.inc = add nsw i32 %idx, 1 ; CHECK-NEXT: --> {(1 + %start),+,1}<%loop> U: full-set S: full-set Exits: (2 + %start) LoopDispositions: { %loop: Computable } ; CHECK-NEXT: %idx.inc.sext = sext i32 %idx.inc to i64 ; CHECK-NEXT: --> {(1 + (sext i32 %start to i64)),+,1}<%loop> U: [-2147483647,2147483650) S: [-2147483647,2147483650) Exits: (2 + (sext i32 %start to i64)) LoopDispositions: { %loop: Computable } ; CHECK-NEXT: %buf.gep = getelementptr inbounds i32, ptr %buf, i32 %idx.inc ; CHECK-NEXT: --> {(4 + (4 * (sext i32 %start to i64)) + %buf),+,4}<%loop> U: full-set S: full-set Exits: (8 + (4 * (sext i32 %start to i64)) + %buf) LoopDispositions: { %loop: Computable } ; CHECK-NEXT: %val = load i32, ptr %buf.gep, align 4 ; CHECK-NEXT: --> %val U: full-set S: full-set Exits: <> LoopDispositions: { %loop: Variant } ; CHECK-NEXT: %counter.inc = add i32 %counter, 1 ; CHECK-NEXT: --> {1,+,1}<%loop> U: [1,3) S: [1,3) Exits: 2 LoopDispositions: { %loop: Computable } ; CHECK-NEXT: Determining loop execution counts for: @infer.sext.0 ; CHECK-NEXT: Loop %loop: backedge-taken count is i32 1 ; CHECK-NEXT: Loop %loop: constant max backedge-taken count is i32 1 ; CHECK-NEXT: Loop %loop: symbolic max backedge-taken count is i32 1 ; CHECK-NEXT: Loop %loop: Trip multiple is 2 ; entry: br label %loop loop: %counter = phi i32 [ 0, %entry ], [ %counter.inc, %loop ] %idx = phi i32 [ %start, %entry ], [ %idx.inc, %loop ] %idx.inc = add nsw i32 %idx, 1 %idx.inc.sext = sext i32 %idx.inc to i64 %buf.gep = getelementptr inbounds i32, ptr %buf, i32 %idx.inc %val = load i32, ptr %buf.gep %condition = icmp eq i32 %counter, 1 %counter.inc = add i32 %counter, 1 br i1 %condition, label %exit, label %loop exit: ret void } define void @infer.zext.0(ptr %c, i32 %start, ptr %buf) { ; CHECK-LABEL: 'infer.zext.0' ; CHECK-NEXT: Classifying expressions for: @infer.zext.0 ; CHECK-NEXT: %counter = phi i32 [ 0, %entry ], [ %counter.inc, %loop ] ; CHECK-NEXT: --> {0,+,1}<%loop> U: [0,2) S: [0,2) Exits: 1 LoopDispositions: { %loop: Computable } ; CHECK-NEXT: %idx = phi i32 [ %start, %entry ], [ %idx.inc, %loop ] ; CHECK-NEXT: --> {%start,+,1}<%loop> U: full-set S: full-set Exits: (1 + %start) LoopDispositions: { %loop: Computable } ; CHECK-NEXT: %idx.inc = add nuw i32 %idx, 1 ; CHECK-NEXT: --> {(1 + %start),+,1}<%loop> U: [1,0) S: [1,0) Exits: (2 + %start) LoopDispositions: { %loop: Computable } ; CHECK-NEXT: %idx.inc.sext = zext i32 %idx.inc to i64 ; CHECK-NEXT: --> {(1 + (zext i32 %start to i64)),+,1}<%loop> U: [1,4294967298) S: [1,4294967298) Exits: (2 + (zext i32 %start to i64)) LoopDispositions: { %loop: Computable } ; CHECK-NEXT: %buf.gep = getelementptr inbounds i32, ptr %buf, i32 %idx.inc ; CHECK-NEXT: --> ((4 * (sext i32 {(1 + %start),+,1}<%loop> to i64)) + %buf) U: full-set S: full-set Exits: ((4 * (sext i32 (2 + %start) to i64)) + %buf) LoopDispositions: { %loop: Computable } ; CHECK-NEXT: %val = load i32, ptr %buf.gep, align 4 ; CHECK-NEXT: --> %val U: full-set S: full-set Exits: <> LoopDispositions: { %loop: Variant } ; CHECK-NEXT: %counter.inc = add i32 %counter, 1 ; CHECK-NEXT: --> {1,+,1}<%loop> U: [1,3) S: [1,3) Exits: 2 LoopDispositions: { %loop: Computable } ; CHECK-NEXT: Determining loop execution counts for: @infer.zext.0 ; CHECK-NEXT: Loop %loop: backedge-taken count is i32 1 ; CHECK-NEXT: Loop %loop: constant max backedge-taken count is i32 1 ; CHECK-NEXT: Loop %loop: symbolic max backedge-taken count is i32 1 ; CHECK-NEXT: Loop %loop: Trip multiple is 2 ; entry: br label %loop loop: %counter = phi i32 [ 0, %entry ], [ %counter.inc, %loop ] %idx = phi i32 [ %start, %entry ], [ %idx.inc, %loop ] %idx.inc = add nuw i32 %idx, 1 %idx.inc.sext = zext i32 %idx.inc to i64 %buf.gep = getelementptr inbounds i32, ptr %buf, i32 %idx.inc %val = load i32, ptr %buf.gep %condition = icmp eq i32 %counter, 1 %counter.inc = add i32 %counter, 1 br i1 %condition, label %exit, label %loop exit: ret void } define void @infer.sext.1(i32 %start, ptr %c) { ; CHECK-LABEL: 'infer.sext.1' ; CHECK-NEXT: Classifying expressions for: @infer.sext.1 ; CHECK-NEXT: %start.mul = mul i32 %start, 4 ; CHECK-NEXT: --> (4 * %start) U: [0,-3) S: [-2147483648,2147483645) ; CHECK-NEXT: %start.real = add i32 %start.mul, 2 ; CHECK-NEXT: --> (2 + (4 * %start)) U: [2,-1) S: [-2147483646,2147483647) ; CHECK-NEXT: %idx = phi i32 [ %start.real, %entry ], [ %idx.inc, %loop ] ; CHECK-NEXT: --> {(2 + (4 * %start)),+,2}<%loop> U: [0,-1) S: [-2147483646,2147483647) Exits: <> LoopDispositions: { %loop: Computable } ; CHECK-NEXT: %idx.sext = sext i32 %idx to i64 ; CHECK-NEXT: --> {(2 + (sext i32 (4 * %start) to i64)),+,2}<%loop> U: [0,-1) S: [-2147483646,9223372036854775807) Exits: <> LoopDispositions: { %loop: Computable } ; CHECK-NEXT: %idx.inc = add nsw i32 %idx, 2 ; CHECK-NEXT: --> {(4 + (4 * %start)),+,2}<%loop> U: [0,-1) S: [-2147483648,2147483647) Exits: <> LoopDispositions: { %loop: Computable } ; CHECK-NEXT: %condition = load i1, ptr %c, align 1 ; CHECK-NEXT: --> %condition U: full-set S: full-set Exits: <> LoopDispositions: { %loop: Variant } ; CHECK-NEXT: Determining loop execution counts for: @infer.sext.1 ; CHECK-NEXT: Loop %loop: Unpredictable backedge-taken count. ; CHECK-NEXT: Loop %loop: Unpredictable constant max backedge-taken count. ; CHECK-NEXT: Loop %loop: Unpredictable symbolic max backedge-taken count. ; entry: %start.mul = mul i32 %start, 4 %start.real = add i32 %start.mul, 2 br label %loop loop: %idx = phi i32 [ %start.real, %entry ], [ %idx.inc, %loop ] %idx.sext = sext i32 %idx to i64 %idx.inc = add nsw i32 %idx, 2 %condition = load i1, ptr %c br i1 %condition, label %exit, label %loop exit: ret void } define void @infer.sext.2(ptr %c, i8 %start) { ; CHECK-LABEL: 'infer.sext.2' ; CHECK-NEXT: Classifying expressions for: @infer.sext.2 ; CHECK-NEXT: %start.inc = add i8 %start, 1 ; CHECK-NEXT: --> (1 + %start) U: full-set S: full-set ; CHECK-NEXT: %idx = phi i8 [ %start.inc, %entry ], [ %idx.inc, %loop ] ; CHECK-NEXT: --> {(1 + %start),+,1}<%loop> U: full-set S: full-set Exits: <> LoopDispositions: { %loop: Computable } ; CHECK-NEXT: %idx.sext = sext i8 %idx to i16 ; CHECK-NEXT: --> {(1 + (sext i8 %start to i16)),+,1}<%loop> U: [-127,-32768) S: [-127,-32768) Exits: <> LoopDispositions: { %loop: Computable } ; CHECK-NEXT: %idx.inc = add nsw i8 %idx, 1 ; CHECK-NEXT: --> {(2 + %start),+,1}<%loop> U: full-set S: full-set Exits: <> LoopDispositions: { %loop: Computable } ; CHECK-NEXT: %condition = load volatile i1, ptr %c, align 1 ; CHECK-NEXT: --> %condition U: full-set S: full-set Exits: <> LoopDispositions: { %loop: Variant } ; CHECK-NEXT: Determining loop execution counts for: @infer.sext.2 ; CHECK-NEXT: Loop %loop: Unpredictable backedge-taken count. ; CHECK-NEXT: Loop %loop: Unpredictable constant max backedge-taken count. ; CHECK-NEXT: Loop %loop: Unpredictable symbolic max backedge-taken count. ; entry: %start.inc = add i8 %start, 1 %entry.condition = icmp slt i8 %start, 127 br i1 %entry.condition, label %loop, label %exit loop: %idx = phi i8 [ %start.inc, %entry ], [ %idx.inc, %loop ] %idx.sext = sext i8 %idx to i16 %idx.inc = add nsw i8 %idx, 1 %condition = load volatile i1, ptr %c br i1 %condition, label %exit, label %loop exit: ret void } define void @infer.zext.1(ptr %c, i8 %start) { ; CHECK-LABEL: 'infer.zext.1' ; CHECK-NEXT: Classifying expressions for: @infer.zext.1 ; CHECK-NEXT: %start.inc = add i8 %start, 1 ; CHECK-NEXT: --> (1 + %start) U: full-set S: full-set ; CHECK-NEXT: %idx = phi i8 [ %start.inc, %entry ], [ %idx.inc, %loop ] ; CHECK-NEXT: --> {(1 + %start),+,1}<%loop> U: full-set S: full-set Exits: <> LoopDispositions: { %loop: Computable } ; CHECK-NEXT: %idx.zext = zext i8 %idx to i16 ; CHECK-NEXT: --> {(1 + (zext i8 %start to i16)),+,1}<%loop> U: [1,0) S: [1,0) Exits: <> LoopDispositions: { %loop: Computable } ; CHECK-NEXT: %idx.inc = add nuw i8 %idx, 1 ; CHECK-NEXT: --> {(2 + %start),+,1}<%loop> U: full-set S: full-set Exits: <> LoopDispositions: { %loop: Computable } ; CHECK-NEXT: %condition = load volatile i1, ptr %c, align 1 ; CHECK-NEXT: --> %condition U: full-set S: full-set Exits: <> LoopDispositions: { %loop: Variant } ; CHECK-NEXT: Determining loop execution counts for: @infer.zext.1 ; CHECK-NEXT: Loop %loop: Unpredictable backedge-taken count. ; CHECK-NEXT: Loop %loop: Unpredictable constant max backedge-taken count. ; CHECK-NEXT: Loop %loop: Unpredictable symbolic max backedge-taken count. ; entry: %start.inc = add i8 %start, 1 %entry.condition = icmp ult i8 %start, 255 br i1 %entry.condition, label %loop, label %exit loop: %idx = phi i8 [ %start.inc, %entry ], [ %idx.inc, %loop ] %idx.zext = zext i8 %idx to i16 %idx.inc = add nuw i8 %idx, 1 %condition = load volatile i1, ptr %c br i1 %condition, label %exit, label %loop exit: ret void }