; NOTE: Assertions have been autogenerated by utils/update_analyze_test_checks.py UTC_ARGS: --version 4 ; RUN: opt -disable-output "-passes=print" -scalar-evolution-classify-expressions=0 < %s 2>&1 | FileCheck %s define void @ule_from_zero(i32 %M, i32 %N) { ; CHECK-LABEL: 'ule_from_zero' ; CHECK-NEXT: Determining loop execution counts for: @ule_from_zero ; CHECK-NEXT: Loop %loop: backedge-taken count is ((zext i32 %N to i64) umin (1 + (zext i32 %M to i64))) ; CHECK-NEXT: exit count for loop: (1 + (zext i32 %M to i64)) ; CHECK-NEXT: exit count for latch: %N ; CHECK-NEXT: Loop %loop: constant max backedge-taken count is i64 4294967295 ; CHECK-NEXT: Loop %loop: symbolic max backedge-taken count is ((zext i32 %N to i64) umin (1 + (zext i32 %M to i64))) ; CHECK-NEXT: symbolic max exit count for loop: (1 + (zext i32 %M to i64)) ; CHECK-NEXT: symbolic max exit count for latch: %N ; CHECK-NEXT: Loop %loop: Trip multiple is 1 ; entry: br label %loop loop: %iv = phi i32 [ 0, %entry ], [ %iv.next, %latch ] %cmp1 = icmp ule i32 %iv, %M br i1 %cmp1, label %latch, label %exit latch: %iv.next = add nuw i32 %iv, 1 %exitcond.not = icmp eq i32 %iv, %N br i1 %exitcond.not, label %exit, label %loop exit: ret void } define void @le_from_zero(i32 %M, i32 %N) { ; CHECK-LABEL: 'le_from_zero' ; CHECK-NEXT: Determining loop execution counts for: @le_from_zero ; CHECK-NEXT: Loop %loop: backedge-taken count is ((zext i32 %N to i64) umin (1 + (zext i32 %M to i64))) ; CHECK-NEXT: exit count for loop: (1 + (zext i32 %M to i64)) ; CHECK-NEXT: exit count for latch: %N ; CHECK-NEXT: Loop %loop: constant max backedge-taken count is i64 4294967295 ; CHECK-NEXT: Loop %loop: symbolic max backedge-taken count is ((zext i32 %N to i64) umin (1 + (zext i32 %M to i64))) ; CHECK-NEXT: symbolic max exit count for loop: (1 + (zext i32 %M to i64)) ; CHECK-NEXT: symbolic max exit count for latch: %N ; CHECK-NEXT: Loop %loop: Trip multiple is 1 ; entry: br label %loop loop: %iv = phi i32 [ 0, %entry ], [ %iv.next, %latch ] %cmp1 = icmp samesign ule i32 %iv, %M br i1 %cmp1, label %latch, label %exit latch: %iv.next = add nuw i32 %iv, 1 %exitcond.not = icmp eq i32 %iv, %N br i1 %exitcond.not, label %exit, label %loop exit: ret void } define void @ule_from_one(i32 %M, i32 %N) { ; CHECK-LABEL: 'ule_from_one' ; CHECK-NEXT: Determining loop execution counts for: @ule_from_one ; CHECK-NEXT: Loop %loop: backedge-taken count is (%M umin_seq (-1 + %N)) ; CHECK-NEXT: exit count for loop: %M ; CHECK-NEXT: exit count for latch: (-1 + %N) ; CHECK-NEXT: Loop %loop: constant max backedge-taken count is i32 -1 ; CHECK-NEXT: Loop %loop: symbolic max backedge-taken count is (%M umin_seq (-1 + %N)) ; CHECK-NEXT: symbolic max exit count for loop: %M ; CHECK-NEXT: symbolic max exit count for latch: (-1 + %N) ; CHECK-NEXT: Loop %loop: Trip multiple is 1 ; entry: br label %loop loop: %iv = phi i32 [ 1, %entry ], [ %iv.next, %latch ] %cmp1 = icmp ule i32 %iv, %M br i1 %cmp1, label %latch, label %exit latch: %iv.next = add nuw i32 %iv, 1 %exitcond.not = icmp eq i32 %iv, %N br i1 %exitcond.not, label %exit, label %loop exit: ret void } define void @le_from_one(i32 %M, i32 %N) { ; CHECK-LABEL: 'le_from_one' ; CHECK-NEXT: Determining loop execution counts for: @le_from_one ; CHECK-NEXT: Loop %loop: backedge-taken count is (%M umin_seq (-1 + %N)) ; CHECK-NEXT: exit count for loop: %M ; CHECK-NEXT: exit count for latch: (-1 + %N) ; CHECK-NEXT: Loop %loop: constant max backedge-taken count is i32 -1 ; CHECK-NEXT: Loop %loop: symbolic max backedge-taken count is (%M umin_seq (-1 + %N)) ; CHECK-NEXT: symbolic max exit count for loop: %M ; CHECK-NEXT: symbolic max exit count for latch: (-1 + %N) ; CHECK-NEXT: Loop %loop: Trip multiple is 1 ; entry: br label %loop loop: %iv = phi i32 [ 1, %entry ], [ %iv.next, %latch ] %cmp1 = icmp samesign ule i32 %iv, %M br i1 %cmp1, label %latch, label %exit latch: %iv.next = add nuw i32 %iv, 1 %exitcond.not = icmp eq i32 %iv, %N br i1 %exitcond.not, label %exit, label %loop exit: ret void } define void @ule_from_unknown(i32 %M, i32 %N, i32 %S) { ; CHECK-LABEL: 'ule_from_unknown' ; CHECK-NEXT: Determining loop execution counts for: @ule_from_unknown ; CHECK-NEXT: Loop %loop: backedge-taken count is (((-1 * (zext i32 %S to i64)) + ((zext i32 %S to i64) umax (1 + (zext i32 %M to i64)))) umin_seq (zext i32 ((-1 * %S) + %N) to i64)) ; CHECK-NEXT: exit count for loop: ((-1 * (zext i32 %S to i64)) + ((zext i32 %S to i64) umax (1 + (zext i32 %M to i64)))) ; CHECK-NEXT: exit count for latch: ((-1 * %S) + %N) ; CHECK-NEXT: Loop %loop: constant max backedge-taken count is i64 4294967295 ; CHECK-NEXT: Loop %loop: symbolic max backedge-taken count is (((-1 * (zext i32 %S to i64)) + ((zext i32 %S to i64) umax (1 + (zext i32 %M to i64)))) umin_seq (zext i32 ((-1 * %S) + %N) to i64)) ; CHECK-NEXT: symbolic max exit count for loop: ((-1 * (zext i32 %S to i64)) + ((zext i32 %S to i64) umax (1 + (zext i32 %M to i64)))) ; CHECK-NEXT: symbolic max exit count for latch: ((-1 * %S) + %N) ; CHECK-NEXT: Loop %loop: Trip multiple is 1 ; entry: br label %loop loop: %iv = phi i32 [ %S, %entry ], [ %iv.next, %latch ] %cmp1 = icmp ule i32 %iv, %M br i1 %cmp1, label %latch, label %exit latch: %iv.next = add nuw i32 %iv, 1 %exitcond.not = icmp eq i32 %iv, %N br i1 %exitcond.not, label %exit, label %loop exit: ret void } define void @ule_from_zero_no_nuw(i32 %M, i32 %N) { ; CHECK-LABEL: 'ule_from_zero_no_nuw' ; CHECK-NEXT: Determining loop execution counts for: @ule_from_zero_no_nuw ; CHECK-NEXT: Loop %loop: Unpredictable backedge-taken count. ; CHECK-NEXT: exit count for loop: ***COULDNOTCOMPUTE*** ; CHECK-NEXT: predicated exit count for loop: (1 + (zext i32 %M to i64)) ; CHECK-NEXT: Predicates: ; CHECK-NEXT: {0,+,1}<%loop> Added Flags: ; CHECK-EMPTY: ; CHECK-NEXT: exit count for latch: %N ; CHECK-NEXT: Loop %loop: constant max backedge-taken count is i32 -1 ; CHECK-NEXT: Loop %loop: symbolic max backedge-taken count is %N ; CHECK-NEXT: symbolic max exit count for loop: ***COULDNOTCOMPUTE*** ; CHECK-NEXT: predicated symbolic max exit count for loop: (1 + (zext i32 %M to i64)) ; CHECK-NEXT: Predicates: ; CHECK-NEXT: {0,+,1}<%loop> Added Flags: ; CHECK-EMPTY: ; CHECK-NEXT: symbolic max exit count for latch: %N ; CHECK-NEXT: Loop %loop: Predicated backedge-taken count is ((zext i32 %N to i64) umin (1 + (zext i32 %M to i64))) ; CHECK-NEXT: Predicates: ; CHECK-NEXT: {0,+,1}<%loop> Added Flags: ; CHECK-NEXT: Loop %loop: Predicated constant max backedge-taken count is i64 4294967295 ; CHECK-NEXT: Predicates: ; CHECK-NEXT: {0,+,1}<%loop> Added Flags: ; CHECK-NEXT: Loop %loop: Predicated symbolic max backedge-taken count is ((zext i32 %N to i64) umin (1 + (zext i32 %M to i64))) ; CHECK-NEXT: Predicates: ; CHECK-NEXT: {0,+,1}<%loop> Added Flags: ; entry: br label %loop loop: %iv = phi i32 [ 0, %entry ], [ %iv.next, %latch ] %cmp1 = icmp ule i32 %iv, %M br i1 %cmp1, label %latch, label %exit latch: %iv.next = add i32 %iv, 1 %exitcond.not = icmp eq i32 %iv, %N br i1 %exitcond.not, label %exit, label %loop exit: ret void } define void @le_from_zero_no_nuw(i32 %M, i32 %N) { ; CHECK-LABEL: 'le_from_zero_no_nuw' ; CHECK-NEXT: Determining loop execution counts for: @le_from_zero_no_nuw ; CHECK-NEXT: Loop %loop: Unpredictable backedge-taken count. ; CHECK-NEXT: exit count for loop: ***COULDNOTCOMPUTE*** ; CHECK-NEXT: predicated exit count for loop: (1 + (zext i32 %M to i64)) ; CHECK-NEXT: Predicates: ; CHECK-NEXT: {0,+,1}<%loop> Added Flags: ; CHECK-EMPTY: ; CHECK-NEXT: exit count for latch: %N ; CHECK-NEXT: Loop %loop: constant max backedge-taken count is i32 -1 ; CHECK-NEXT: Loop %loop: symbolic max backedge-taken count is %N ; CHECK-NEXT: symbolic max exit count for loop: ***COULDNOTCOMPUTE*** ; CHECK-NEXT: predicated symbolic max exit count for loop: (1 + (zext i32 %M to i64)) ; CHECK-NEXT: Predicates: ; CHECK-NEXT: {0,+,1}<%loop> Added Flags: ; CHECK-EMPTY: ; CHECK-NEXT: symbolic max exit count for latch: %N ; CHECK-NEXT: Loop %loop: Predicated backedge-taken count is ((zext i32 %N to i64) umin (1 + (zext i32 %M to i64))) ; CHECK-NEXT: Predicates: ; CHECK-NEXT: {0,+,1}<%loop> Added Flags: ; CHECK-NEXT: Loop %loop: Predicated constant max backedge-taken count is i64 4294967295 ; CHECK-NEXT: Predicates: ; CHECK-NEXT: {0,+,1}<%loop> Added Flags: ; CHECK-NEXT: Loop %loop: Predicated symbolic max backedge-taken count is ((zext i32 %N to i64) umin (1 + (zext i32 %M to i64))) ; CHECK-NEXT: Predicates: ; CHECK-NEXT: {0,+,1}<%loop> Added Flags: ; entry: br label %loop loop: %iv = phi i32 [ 0, %entry ], [ %iv.next, %latch ] %cmp1 = icmp samesign ule i32 %iv, %M br i1 %cmp1, label %latch, label %exit latch: %iv.next = add i32 %iv, 1 %exitcond.not = icmp eq i32 %iv, %N br i1 %exitcond.not, label %exit, label %loop exit: ret void } define void @sle_from_int_min(i32 %M, i32 %N) { ; CHECK-LABEL: 'sle_from_int_min' ; CHECK-NEXT: Determining loop execution counts for: @sle_from_int_min ; CHECK-NEXT: Loop %loop: backedge-taken count is ((zext i32 (-2147483648 + %N) to i64) umin (2147483649 + (sext i32 %M to i64))) ; CHECK-NEXT: exit count for loop: (2147483649 + (sext i32 %M to i64)) ; CHECK-NEXT: exit count for latch: (-2147483648 + %N) ; CHECK-NEXT: Loop %loop: constant max backedge-taken count is i64 4294967295 ; CHECK-NEXT: Loop %loop: symbolic max backedge-taken count is ((zext i32 (-2147483648 + %N) to i64) umin (2147483649 + (sext i32 %M to i64))) ; CHECK-NEXT: symbolic max exit count for loop: (2147483649 + (sext i32 %M to i64)) ; CHECK-NEXT: symbolic max exit count for latch: (-2147483648 + %N) ; CHECK-NEXT: Loop %loop: Trip multiple is 1 ; entry: br label %loop loop: %iv = phi i32 [ u0x80000000, %entry ], [ %iv.next, %latch ] %cmp1 = icmp sle i32 %iv, %M br i1 %cmp1, label %latch, label %exit latch: %iv.next = add nsw i32 %iv, 1 %exitcond.not = icmp eq i32 %iv, %N br i1 %exitcond.not, label %exit, label %loop exit: ret void } define void @le_from_int_min(i32 %M, i32 %N) { ; CHECK-LABEL: 'le_from_int_min' ; CHECK-NEXT: Determining loop execution counts for: @le_from_int_min ; CHECK-NEXT: Loop %loop: backedge-taken count is ((-2147483647 + (2147483647 umax %M)) umin_seq (-2147483648 + %N)) ; CHECK-NEXT: exit count for loop: (-2147483647 + (2147483647 umax %M)) ; CHECK-NEXT: exit count for latch: (-2147483648 + %N) ; CHECK-NEXT: Loop %loop: constant max backedge-taken count is i32 -2147483648 ; CHECK-NEXT: Loop %loop: symbolic max backedge-taken count is ((-2147483647 + (2147483647 umax %M)) umin_seq (-2147483648 + %N)) ; CHECK-NEXT: symbolic max exit count for loop: (-2147483647 + (2147483647 umax %M)) ; CHECK-NEXT: symbolic max exit count for latch: (-2147483648 + %N) ; CHECK-NEXT: Loop %loop: Trip multiple is 1 ; entry: br label %loop loop: %iv = phi i32 [ u0x80000000, %entry ], [ %iv.next, %latch ] %cmp1 = icmp samesign ule i32 %iv, %M br i1 %cmp1, label %latch, label %exit latch: %iv.next = add nuw nsw i32 %iv, 1 %exitcond.not = icmp eq i32 %iv, %N br i1 %exitcond.not, label %exit, label %loop exit: ret void } define void @sle_from_int_min_plus_one(i32 %M, i32 %N) { ; CHECK-LABEL: 'sle_from_int_min_plus_one' ; CHECK-NEXT: Determining loop execution counts for: @sle_from_int_min_plus_one ; CHECK-NEXT: Loop %loop: backedge-taken count is ((-2147483648 + %M) umin_seq (2147483647 + %N)) ; CHECK-NEXT: exit count for loop: (-2147483648 + %M) ; CHECK-NEXT: exit count for latch: (2147483647 + %N) ; CHECK-NEXT: Loop %loop: constant max backedge-taken count is i32 -1 ; CHECK-NEXT: Loop %loop: symbolic max backedge-taken count is ((-2147483648 + %M) umin_seq (2147483647 + %N)) ; CHECK-NEXT: symbolic max exit count for loop: (-2147483648 + %M) ; CHECK-NEXT: symbolic max exit count for latch: (2147483647 + %N) ; CHECK-NEXT: Loop %loop: Trip multiple is 1 ; entry: br label %loop loop: %iv = phi i32 [ u0x80000001, %entry ], [ %iv.next, %latch ] %cmp1 = icmp sle i32 %iv, %M br i1 %cmp1, label %latch, label %exit latch: %iv.next = add nsw i32 %iv, 1 %exitcond.not = icmp eq i32 %iv, %N br i1 %exitcond.not, label %exit, label %loop exit: ret void } define void @le_from_int_min_plus_one(i32 %M, i32 %N) { ; CHECK-LABEL: 'le_from_int_min_plus_one' ; CHECK-NEXT: Determining loop execution counts for: @le_from_int_min_plus_one ; CHECK-NEXT: Loop %loop: backedge-taken count is ((-2147483648 + (-2147483648 umax %M)) umin_seq (2147483647 + %N)) ; CHECK-NEXT: exit count for loop: (-2147483648 + (-2147483648 umax %M)) ; CHECK-NEXT: exit count for latch: (2147483647 + %N) ; CHECK-NEXT: Loop %loop: constant max backedge-taken count is i32 2147483647 ; CHECK-NEXT: Loop %loop: symbolic max backedge-taken count is ((-2147483648 + (-2147483648 umax %M)) umin_seq (2147483647 + %N)) ; CHECK-NEXT: symbolic max exit count for loop: (-2147483648 + (-2147483648 umax %M)) ; CHECK-NEXT: symbolic max exit count for latch: (2147483647 + %N) ; CHECK-NEXT: Loop %loop: Trip multiple is 1 ; entry: br label %loop loop: %iv = phi i32 [ u0x80000001, %entry ], [ %iv.next, %latch ] %cmp1 = icmp samesign ule i32 %iv, %M br i1 %cmp1, label %latch, label %exit latch: %iv.next = add nuw nsw i32 %iv, 1 %exitcond.not = icmp eq i32 %iv, %N br i1 %exitcond.not, label %exit, label %loop exit: ret void } define void @sle_from_unknown(i32 %M, i32 %N, i32 %S) { ; CHECK-LABEL: 'sle_from_unknown' ; CHECK-NEXT: Determining loop execution counts for: @sle_from_unknown ; CHECK-NEXT: Loop %loop: backedge-taken count is (((-1 * (sext i32 %S to i64)) + ((sext i32 %S to i64) smax (1 + (sext i32 %M to i64)))) umin_seq (zext i32 ((-1 * %S) + %N) to i64)) ; CHECK-NEXT: exit count for loop: ((-1 * (sext i32 %S to i64)) + ((sext i32 %S to i64) smax (1 + (sext i32 %M to i64)))) ; CHECK-NEXT: exit count for latch: ((-1 * %S) + %N) ; CHECK-NEXT: Loop %loop: constant max backedge-taken count is i64 4294967295 ; CHECK-NEXT: Loop %loop: symbolic max backedge-taken count is (((-1 * (sext i32 %S to i64)) + ((sext i32 %S to i64) smax (1 + (sext i32 %M to i64)))) umin_seq (zext i32 ((-1 * %S) + %N) to i64)) ; CHECK-NEXT: symbolic max exit count for loop: ((-1 * (sext i32 %S to i64)) + ((sext i32 %S to i64) smax (1 + (sext i32 %M to i64)))) ; CHECK-NEXT: symbolic max exit count for latch: ((-1 * %S) + %N) ; CHECK-NEXT: Loop %loop: Trip multiple is 1 ; entry: br label %loop loop: %iv = phi i32 [ %S, %entry ], [ %iv.next, %latch ] %cmp1 = icmp sle i32 %iv, %M br i1 %cmp1, label %latch, label %exit latch: %iv.next = add nsw i32 %iv, 1 %exitcond.not = icmp eq i32 %iv, %N br i1 %exitcond.not, label %exit, label %loop exit: ret void } define void @le_from_unknown(i32 %M, i32 %N, i32 %S) { ; CHECK-LABEL: 'le_from_unknown' ; CHECK-NEXT: Determining loop execution counts for: @le_from_unknown ; CHECK-NEXT: Loop %loop: backedge-taken count is (((-1 * (zext i32 %S to i64)) + ((zext i32 %S to i64) umax (1 + (zext i32 %M to i64)))) umin_seq (zext i32 ((-1 * %S) + %N) to i64)) ; CHECK-NEXT: exit count for loop: ((-1 * (zext i32 %S to i64)) + ((zext i32 %S to i64) umax (1 + (zext i32 %M to i64)))) ; CHECK-NEXT: exit count for latch: ((-1 * %S) + %N) ; CHECK-NEXT: Loop %loop: constant max backedge-taken count is i64 4294967295 ; CHECK-NEXT: Loop %loop: symbolic max backedge-taken count is (((-1 * (zext i32 %S to i64)) + ((zext i32 %S to i64) umax (1 + (zext i32 %M to i64)))) umin_seq (zext i32 ((-1 * %S) + %N) to i64)) ; CHECK-NEXT: symbolic max exit count for loop: ((-1 * (zext i32 %S to i64)) + ((zext i32 %S to i64) umax (1 + (zext i32 %M to i64)))) ; CHECK-NEXT: symbolic max exit count for latch: ((-1 * %S) + %N) ; CHECK-NEXT: Loop %loop: Trip multiple is 1 ; entry: br label %loop loop: %iv = phi i32 [ %S, %entry ], [ %iv.next, %latch ] %cmp1 = icmp samesign ule i32 %iv, %M br i1 %cmp1, label %latch, label %exit latch: %iv.next = add nuw nsw i32 %iv, 1 %exitcond.not = icmp eq i32 %iv, %N br i1 %exitcond.not, label %exit, label %loop exit: ret void } define void @sle_from_int_min_no_nsw(i32 %M, i32 %N) { ; CHECK-LABEL: 'sle_from_int_min_no_nsw' ; CHECK-NEXT: Determining loop execution counts for: @sle_from_int_min_no_nsw ; CHECK-NEXT: Loop %loop: Unpredictable backedge-taken count. ; CHECK-NEXT: exit count for loop: ***COULDNOTCOMPUTE*** ; CHECK-NEXT: predicated exit count for loop: (2147483649 + (sext i32 %M to i64)) ; CHECK-NEXT: Predicates: ; CHECK-NEXT: {-2147483648,+,1}<%loop> Added Flags: ; CHECK-EMPTY: ; CHECK-NEXT: exit count for latch: (-2147483648 + %N) ; CHECK-NEXT: Loop %loop: constant max backedge-taken count is i32 -1 ; CHECK-NEXT: Loop %loop: symbolic max backedge-taken count is (-2147483648 + %N) ; CHECK-NEXT: symbolic max exit count for loop: ***COULDNOTCOMPUTE*** ; CHECK-NEXT: predicated symbolic max exit count for loop: (2147483649 + (sext i32 %M to i64)) ; CHECK-NEXT: Predicates: ; CHECK-NEXT: {-2147483648,+,1}<%loop> Added Flags: ; CHECK-EMPTY: ; CHECK-NEXT: symbolic max exit count for latch: (-2147483648 + %N) ; CHECK-NEXT: Loop %loop: Predicated backedge-taken count is ((zext i32 (-2147483648 + %N) to i64) umin (2147483649 + (sext i32 %M to i64))) ; CHECK-NEXT: Predicates: ; CHECK-NEXT: {-2147483648,+,1}<%loop> Added Flags: ; CHECK-NEXT: Loop %loop: Predicated constant max backedge-taken count is i64 4294967295 ; CHECK-NEXT: Predicates: ; CHECK-NEXT: {-2147483648,+,1}<%loop> Added Flags: ; CHECK-NEXT: Loop %loop: Predicated symbolic max backedge-taken count is ((zext i32 (-2147483648 + %N) to i64) umin (2147483649 + (sext i32 %M to i64))) ; CHECK-NEXT: Predicates: ; CHECK-NEXT: {-2147483648,+,1}<%loop> Added Flags: ; entry: br label %loop loop: %iv = phi i32 [ u0x80000000, %entry ], [ %iv.next, %latch ] %cmp1 = icmp sle i32 %iv, %M br i1 %cmp1, label %latch, label %exit latch: %iv.next = add i32 %iv, 1 %exitcond.not = icmp eq i32 %iv, %N br i1 %exitcond.not, label %exit, label %loop exit: ret void } define void @le_from_int_min_no_nuw_nsw(i32 %M, i32 %N) { ; CHECK-LABEL: 'le_from_int_min_no_nuw_nsw' ; CHECK-NEXT: Determining loop execution counts for: @le_from_int_min_no_nuw_nsw ; CHECK-NEXT: Loop %loop: Unpredictable backedge-taken count. ; CHECK-NEXT: exit count for loop: ***COULDNOTCOMPUTE*** ; CHECK-NEXT: predicated exit count for loop: (-2147483648 + (2147483648 umax (1 + (zext i32 %M to i64)))) ; CHECK-NEXT: Predicates: ; CHECK-NEXT: {-2147483648,+,1}<%loop> Added Flags: ; CHECK-EMPTY: ; CHECK-NEXT: exit count for latch: (-2147483648 + %N) ; CHECK-NEXT: Loop %loop: constant max backedge-taken count is i32 -1 ; CHECK-NEXT: Loop %loop: symbolic max backedge-taken count is (-2147483648 + %N) ; CHECK-NEXT: symbolic max exit count for loop: ***COULDNOTCOMPUTE*** ; CHECK-NEXT: predicated symbolic max exit count for loop: (-2147483648 + (2147483648 umax (1 + (zext i32 %M to i64)))) ; CHECK-NEXT: Predicates: ; CHECK-NEXT: {-2147483648,+,1}<%loop> Added Flags: ; CHECK-EMPTY: ; CHECK-NEXT: symbolic max exit count for latch: (-2147483648 + %N) ; CHECK-NEXT: Loop %loop: Predicated backedge-taken count is ((-2147483648 + (2147483648 umax (1 + (zext i32 %M to i64)))) umin_seq (zext i32 (-2147483648 + %N) to i64)) ; CHECK-NEXT: Predicates: ; CHECK-NEXT: {-2147483648,+,1}<%loop> Added Flags: ; CHECK-NEXT: Loop %loop: Predicated constant max backedge-taken count is i64 2147483648 ; CHECK-NEXT: Predicates: ; CHECK-NEXT: {-2147483648,+,1}<%loop> Added Flags: ; CHECK-NEXT: Loop %loop: Predicated symbolic max backedge-taken count is ((-2147483648 + (2147483648 umax (1 + (zext i32 %M to i64)))) umin_seq (zext i32 (-2147483648 + %N) to i64)) ; CHECK-NEXT: Predicates: ; CHECK-NEXT: {-2147483648,+,1}<%loop> Added Flags: ; entry: br label %loop loop: %iv = phi i32 [ u0x80000000, %entry ], [ %iv.next, %latch ] %cmp1 = icmp samesign ule i32 %iv, %M br i1 %cmp1, label %latch, label %exit latch: %iv.next = add i32 %iv, 1 %exitcond.not = icmp eq i32 %iv, %N br i1 %exitcond.not, label %exit, label %loop exit: ret void }