//===-- VPlanVerifier.cpp -------------------------------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// /// /// \file /// This file defines the class VPlanVerifier, which contains utility functions /// to check the consistency and invariants of a VPlan. /// //===----------------------------------------------------------------------===// #include "VPlanVerifier.h" #include "VPlan.h" #include "VPlanCFG.h" #include "VPlanDominatorTree.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/ADT/TypeSwitch.h" #define DEBUG_TYPE "loop-vectorize" using namespace llvm; namespace { class VPlanVerifier { const VPDominatorTree &VPDT; VPTypeAnalysis &TypeInfo; SmallPtrSet WrappedIRBBs; // Verify that phi-like recipes are at the beginning of \p VPBB, with no // other recipes in between. Also check that only header blocks contain // VPHeaderPHIRecipes. bool verifyPhiRecipes(const VPBasicBlock *VPBB); /// Verify that \p EVL is used correctly. The user must be either in /// EVL-based recipes as a last operand or VPInstruction::Add which is /// incoming value into EVL's recipe. bool verifyEVLRecipe(const VPInstruction &EVL) const; bool verifyVPBasicBlock(const VPBasicBlock *VPBB); bool verifyBlock(const VPBlockBase *VPB); /// Helper function that verifies the CFG invariants of the VPBlockBases /// within /// \p Region. Checks in this function are generic for VPBlockBases. They are /// not specific for VPBasicBlocks or VPRegionBlocks. bool verifyBlocksInRegion(const VPRegionBlock *Region); /// Verify the CFG invariants of VPRegionBlock \p Region and its nested /// VPBlockBases. Do not recurse inside nested VPRegionBlocks. bool verifyRegion(const VPRegionBlock *Region); /// Verify the CFG invariants of VPRegionBlock \p Region and its nested /// VPBlockBases. Recurse inside nested VPRegionBlocks. bool verifyRegionRec(const VPRegionBlock *Region); public: VPlanVerifier(VPDominatorTree &VPDT, VPTypeAnalysis &TypeInfo) : VPDT(VPDT), TypeInfo(TypeInfo) {} bool verify(const VPlan &Plan); }; } // namespace bool VPlanVerifier::verifyPhiRecipes(const VPBasicBlock *VPBB) { auto RecipeI = VPBB->begin(); auto End = VPBB->end(); unsigned NumActiveLaneMaskPhiRecipes = 0; const VPRegionBlock *ParentR = VPBB->getParent(); bool IsHeaderVPBB = ParentR && !ParentR->isReplicator() && ParentR->getEntryBasicBlock() == VPBB; while (RecipeI != End && RecipeI->isPhi()) { if (isa(RecipeI)) NumActiveLaneMaskPhiRecipes++; if (IsHeaderVPBB && !isa(*RecipeI)) { errs() << "Found non-header PHI recipe in header VPBB"; #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) errs() << ": "; RecipeI->dump(); #endif return false; } if (!IsHeaderVPBB && isa(*RecipeI)) { errs() << "Found header PHI recipe in non-header VPBB"; #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) errs() << ": "; RecipeI->dump(); #endif return false; } RecipeI++; } if (NumActiveLaneMaskPhiRecipes > 1) { errs() << "There should be no more than one VPActiveLaneMaskPHIRecipe"; return false; } while (RecipeI != End) { if (RecipeI->isPhi() && !isa(&*RecipeI)) { errs() << "Found phi-like recipe after non-phi recipe"; #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) errs() << ": "; RecipeI->dump(); errs() << "after\n"; std::prev(RecipeI)->dump(); #endif return false; } RecipeI++; } return true; } bool VPlanVerifier::verifyEVLRecipe(const VPInstruction &EVL) const { if (EVL.getOpcode() != VPInstruction::ExplicitVectorLength) { errs() << "verifyEVLRecipe should only be called on " "VPInstruction::ExplicitVectorLength\n"; return false; } auto VerifyEVLUse = [&](const VPRecipeBase &R, const unsigned ExpectedIdx) -> bool { SmallVector Ops(R.operands()); unsigned UseCount = count(Ops, &EVL); if (UseCount != 1 || Ops[ExpectedIdx] != &EVL) { errs() << "EVL is used as non-last operand in EVL-based recipe\n"; return false; } return true; }; return all_of(EVL.users(), [&VerifyEVLUse](VPUser *U) { return TypeSwitch(U) .Case([&](const VPWidenIntrinsicRecipe *S) { return VerifyEVLUse(*S, S->getNumOperands() - 1); }) .Case( [&](const VPRecipeBase *S) { return VerifyEVLUse(*S, 2); }) .Case( [&](const VPRecipeBase *R) { return VerifyEVLUse(*R, 1); }) .Case([&](const VPWidenEVLRecipe *W) { return VerifyEVLUse(*W, Instruction::isUnaryOp(W->getOpcode()) ? 1 : 2); }) .Case( [&](const VPScalarCastRecipe *S) { return VerifyEVLUse(*S, 0); }) .Case([&](const VPInstruction *I) { if (I->getOpcode() != Instruction::Add) { errs() << "EVL is used as an operand in non-VPInstruction::Add\n"; return false; } if (I->getNumUsers() != 1) { errs() << "EVL is used in VPInstruction:Add with multiple " "users\n"; return false; } if (!isa(*I->users().begin())) { errs() << "Result of VPInstruction::Add with EVL operand is " "not used by VPEVLBasedIVPHIRecipe\n"; return false; } return true; }) .Default([&](const VPUser *U) { errs() << "EVL has unexpected user\n"; return false; }); }); } bool VPlanVerifier::verifyVPBasicBlock(const VPBasicBlock *VPBB) { if (!verifyPhiRecipes(VPBB)) return false; // Verify that defs in VPBB dominate all their uses. The current // implementation is still incomplete. DenseMap RecipeNumbering; unsigned Cnt = 0; for (const VPRecipeBase &R : *VPBB) RecipeNumbering[&R] = Cnt++; for (const VPRecipeBase &R : *VPBB) { if (isa(&R) && !isa(VPBB)) { errs() << "VPIRInstructions "; #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) R.dump(); errs() << " "; #endif errs() << "not in a VPIRBasicBlock!\n"; return false; } for (const VPValue *V : R.definedValues()) { // Verify that we can infer a scalar type for each defined value. With // assertions enabled, inferScalarType will perform some consistency // checks during type inference. if (!TypeInfo.inferScalarType(V)) { errs() << "Failed to infer scalar type!\n"; return false; } for (const VPUser *U : V->users()) { auto *UI = cast(U); // TODO: check dominance of incoming values for phis properly. if (!UI || isa(UI)) continue; // If the user is in the same block, check it comes after R in the // block. if (UI->getParent() == VPBB) { if (RecipeNumbering[UI] < RecipeNumbering[&R]) { errs() << "Use before def!\n"; return false; } continue; } if (!VPDT.dominates(VPBB, UI->getParent())) { errs() << "Use before def!\n"; return false; } } } if (const auto *EVL = dyn_cast(&R)) { if (EVL->getOpcode() == VPInstruction::ExplicitVectorLength && !verifyEVLRecipe(*EVL)) { errs() << "EVL VPValue is not used correctly\n"; return false; } } } auto *IRBB = dyn_cast(VPBB); if (!IRBB) return true; if (!WrappedIRBBs.insert(IRBB->getIRBasicBlock()).second) { errs() << "Same IR basic block used by multiple wrapper blocks!\n"; return false; } return true; } /// Utility function that checks whether \p VPBlockVec has duplicate /// VPBlockBases. static bool hasDuplicates(const SmallVectorImpl &VPBlockVec) { SmallDenseSet VPBlockSet; for (const auto *Block : VPBlockVec) { if (!VPBlockSet.insert(Block).second) return true; } return false; } bool VPlanVerifier::verifyBlock(const VPBlockBase *VPB) { auto *VPBB = dyn_cast(VPB); // Check block's condition bit. if (VPB->getNumSuccessors() > 1 || (VPBB && VPBB->getParent() && VPBB->isExiting() && !VPBB->getParent()->isReplicator())) { if (!VPBB || !VPBB->getTerminator()) { errs() << "Block has multiple successors but doesn't " "have a proper branch recipe!\n"; return false; } } else { if (VPBB && VPBB->getTerminator()) { errs() << "Unexpected branch recipe!\n"; return false; } } // Check block's successors. const auto &Successors = VPB->getSuccessors(); // There must be only one instance of a successor in block's successor list. // TODO: This won't work for switch statements. if (hasDuplicates(Successors)) { errs() << "Multiple instances of the same successor.\n"; return false; } for (const VPBlockBase *Succ : Successors) { // There must be a bi-directional link between block and successor. const auto &SuccPreds = Succ->getPredecessors(); if (!is_contained(SuccPreds, VPB)) { errs() << "Missing predecessor link.\n"; return false; } } // Check block's predecessors. const auto &Predecessors = VPB->getPredecessors(); // There must be only one instance of a predecessor in block's predecessor // list. // TODO: This won't work for switch statements. if (hasDuplicates(Predecessors)) { errs() << "Multiple instances of the same predecessor.\n"; return false; } for (const VPBlockBase *Pred : Predecessors) { // Block and predecessor must be inside the same region. if (Pred->getParent() != VPB->getParent()) { errs() << "Predecessor is not in the same region.\n"; return false; } // There must be a bi-directional link between block and predecessor. const auto &PredSuccs = Pred->getSuccessors(); if (!is_contained(PredSuccs, VPB)) { errs() << "Missing successor link.\n"; return false; } } return !VPBB || verifyVPBasicBlock(VPBB); } bool VPlanVerifier::verifyBlocksInRegion(const VPRegionBlock *Region) { for (const VPBlockBase *VPB : vp_depth_first_shallow(Region->getEntry())) { // Check block's parent. if (VPB->getParent() != Region) { errs() << "VPBlockBase has wrong parent\n"; return false; } if (!verifyBlock(VPB)) return false; } return true; } bool VPlanVerifier::verifyRegion(const VPRegionBlock *Region) { const VPBlockBase *Entry = Region->getEntry(); const VPBlockBase *Exiting = Region->getExiting(); // Entry and Exiting shouldn't have any predecessor/successor, respectively. if (Entry->getNumPredecessors() != 0) { errs() << "region entry block has predecessors\n"; return false; } if (Exiting->getNumSuccessors() != 0) { errs() << "region exiting block has successors\n"; return false; } return verifyBlocksInRegion(Region); } bool VPlanVerifier::verifyRegionRec(const VPRegionBlock *Region) { // Recurse inside nested regions and check all blocks inside the region. return verifyRegion(Region) && all_of(vp_depth_first_shallow(Region->getEntry()), [this](const VPBlockBase *VPB) { const auto *SubRegion = dyn_cast(VPB); return !SubRegion || verifyRegionRec(SubRegion); }); } bool VPlanVerifier::verify(const VPlan &Plan) { if (any_of(vp_depth_first_shallow(Plan.getEntry()), [this](const VPBlockBase *VPB) { return !verifyBlock(VPB); })) return false; const VPRegionBlock *TopRegion = Plan.getVectorLoopRegion(); if (!verifyRegionRec(TopRegion)) return false; if (TopRegion->getParent()) { errs() << "VPlan Top Region should have no parent.\n"; return false; } const VPBasicBlock *Entry = dyn_cast(TopRegion->getEntry()); if (!Entry) { errs() << "VPlan entry block is not a VPBasicBlock\n"; return false; } if (!isa(&*Entry->begin())) { errs() << "VPlan vector loop header does not start with a " "VPCanonicalIVPHIRecipe\n"; return false; } const VPBasicBlock *Exiting = dyn_cast(TopRegion->getExiting()); if (!Exiting) { errs() << "VPlan exiting block is not a VPBasicBlock\n"; return false; } if (Exiting->empty()) { errs() << "VPlan vector loop exiting block must end with BranchOnCount or " "BranchOnCond VPInstruction but is empty\n"; return false; } auto *LastInst = dyn_cast(std::prev(Exiting->end())); if (!LastInst || (LastInst->getOpcode() != VPInstruction::BranchOnCount && LastInst->getOpcode() != VPInstruction::BranchOnCond)) { errs() << "VPlan vector loop exit must end with BranchOnCount or " "BranchOnCond VPInstruction\n"; return false; } return true; } bool llvm::verifyVPlanIsValid(const VPlan &Plan) { VPDominatorTree VPDT; VPDT.recalculate(const_cast(Plan)); VPTypeAnalysis TypeInfo( const_cast(Plan).getCanonicalIV()->getScalarType()); VPlanVerifier Verifier(VPDT, TypeInfo); return Verifier.verify(Plan); }