//===- ADCE.cpp - Code to perform dead code elimination -------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the Aggressive Dead Code Elimination pass. This pass // optimistically assumes that all instructions are dead until proven otherwise, // allowing it to eliminate dead computations that other DCE passes do not // catch, particularly involving loop computations. // //===----------------------------------------------------------------------===// #include "llvm/Transforms/Scalar/ADCE.h" #include "llvm/ADT/DepthFirstIterator.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/Statistic.h" #include "llvm/Analysis/GlobalsModRef.h" #include "llvm/IR/BasicBlock.h" #include "llvm/IR/CFG.h" #include "llvm/IR/DebugInfoMetadata.h" #include "llvm/IR/InstIterator.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/IntrinsicInst.h" #include "llvm/Pass.h" #include "llvm/ProfileData/InstrProf.h" #include "llvm/Transforms/Scalar.h" using namespace llvm; #define DEBUG_TYPE "adce" STATISTIC(NumRemoved, "Number of instructions removed"); namespace { class AggressiveDeadCodeElimination { Function &F; /// Instructions known to be live. SmallPtrSet Alive; /// Instructions known to be live where we need to mark /// reaching definitions as live. SmallVector Worklist; /// Debug info scopes around a live instruction. SmallPtrSet AliveScopes; void initialize(); /// True for operations which are always treated as live. bool isAlwaysLive(Instruction &I); /// True for instrumentation instructions for value profiling. bool isInstrumentsConstant(Instruction &I); /// Propagate liveness to reaching definitions. void markLiveInstructions(); /// Mark an instruction as live. void markLive(Instruction &I); void collectLiveScopes(const DILocalScope &LS); void collectLiveScopes(const DILocation &DL); /// Remove instructions not marked live, return if any any instruction /// was removed. bool removeDeadInstructions(); public: AggressiveDeadCodeElimination(Function &F) : F(F) {} bool performDeadCodeElimination(); }; } bool AggressiveDeadCodeElimination::performDeadCodeElimination() { initialize(); markLiveInstructions(); return removeDeadInstructions(); } void AggressiveDeadCodeElimination::initialize() { // Collect the set of "root" instructions that are known live. for (Instruction &I : instructions(F)) if (isAlwaysLive(I)) markLive(I); } bool AggressiveDeadCodeElimination::isAlwaysLive(Instruction &I) { // TODO -- use llvm::isInstructionTriviallyDead if (isa(I) || I.isEHPad() || I.mayHaveSideEffects()) { // Skip any value profile instrumentation calls if they are // instrumenting constants. if (!isInstrumentsConstant(I)) return true; } return false; } // Check if this instruction is a runtime call for value profiling and // if it's instrumenting a constant. bool AggressiveDeadCodeElimination::isInstrumentsConstant(Instruction &I) { // TODO -- move this test into llvm::isInstructionTriviallyDead if (CallInst *CI = dyn_cast(&I)) if (Function *Callee = CI->getCalledFunction()) if (Callee->getName().equals(getInstrProfValueProfFuncName())) if (isa(CI->getArgOperand(0))) return true; return false; } void AggressiveDeadCodeElimination::markLiveInstructions() { // Propagate liveness backwards to operands. Keep track of live debug info // scopes. while (!Worklist.empty()) { Instruction *Curr = Worklist.pop_back_val(); // Collect the live debug info scopes attached to this instruction. if (const DILocation *DL = Curr->getDebugLoc()) collectLiveScopes(*DL); for (Use &OI : Curr->operands()) { if (Instruction *Inst = dyn_cast(OI)) markLive(*Inst); } } } void AggressiveDeadCodeElimination::collectLiveScopes(const DILocalScope &LS) { if (!AliveScopes.insert(&LS).second) return; if (isa(LS)) return; // Tail-recurse through the scope chain. collectLiveScopes(cast(*LS.getScope())); } void AggressiveDeadCodeElimination::collectLiveScopes(const DILocation &DL) { // Even though DILocations are not scopes, shove them into AliveScopes so we // don't revisit them. if (!AliveScopes.insert(&DL).second) return; // Collect live scopes from the scope chain. collectLiveScopes(*DL.getScope()); // Tail-recurse through the inlined-at chain. if (const DILocation *IA = DL.getInlinedAt()) collectLiveScopes(*IA); } void AggressiveDeadCodeElimination::markLive(Instruction &I) { if (!Alive.insert(&I).second) return; Worklist.push_back(&I); } bool AggressiveDeadCodeElimination::removeDeadInstructions() { // The inverse of the live set is the dead set. These are those instructions // which have no side effects and do not influence the control flow or return // value of the function, and may therefore be deleted safely. // NOTE: We reuse the Worklist vector here for memory efficiency. for (Instruction &I : instructions(F)) { // Check if the instruction is alive. if (Alive.count(&I)) continue; if (auto *DII = dyn_cast(&I)) { // Check if the scope of this variable location is alive. if (AliveScopes.count(DII->getDebugLoc()->getScope())) continue; // Fallthrough and drop the intrinsic. DEBUG({ // If intrinsic is pointing at a live SSA value, there may be an // earlier optimization bug: if we know the location of the variable, // why isn't the scope of the location alive? if (Value *V = DII->getVariableLocation()) if (Instruction *II = dyn_cast(V)) if (Alive.count(II)) dbgs() << "Dropping debug info for " << *DII << "\n"; }); } // Prepare to delete. Worklist.push_back(&I); I.dropAllReferences(); } for (Instruction *&I : Worklist) { ++NumRemoved; I->eraseFromParent(); } return !Worklist.empty(); } PreservedAnalyses ADCEPass::run(Function &F, FunctionAnalysisManager &) { if (!AggressiveDeadCodeElimination(F).performDeadCodeElimination()) return PreservedAnalyses::all(); // FIXME: This should also 'preserve the CFG'. auto PA = PreservedAnalyses(); PA.preserve(); return PA; } namespace { struct ADCELegacyPass : public FunctionPass { static char ID; // Pass identification, replacement for typeid ADCELegacyPass() : FunctionPass(ID) { initializeADCELegacyPassPass(*PassRegistry::getPassRegistry()); } bool runOnFunction(Function &F) override { if (skipFunction(F)) return false; return AggressiveDeadCodeElimination(F).performDeadCodeElimination(); } void getAnalysisUsage(AnalysisUsage &AU) const override { AU.setPreservesCFG(); AU.addPreserved(); } }; } char ADCELegacyPass::ID = 0; INITIALIZE_PASS(ADCELegacyPass, "adce", "Aggressive Dead Code Elimination", false, false) FunctionPass *llvm::createAggressiveDCEPass() { return new ADCELegacyPass(); }