//===- X86CompressEVEX.cpp ------------------------------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This pass compresses instructions from EVEX space to legacy/VEX/EVEX space // when possible in order to reduce code size or facilitate HW decoding. // // Possible compression: // a. AVX512 instruction (EVEX) -> AVX instruction (VEX) // b. Promoted instruction (EVEX) -> pre-promotion instruction (legacy/VEX) // c. NDD (EVEX) -> non-NDD (legacy) // d. NF_ND (EVEX) -> NF (EVEX) // // Compression a, b and c can always reduce code size, with some exceptions // such as promoted 16-bit CRC32 which is as long as the legacy version. // // legacy: // crc32w %si, %eax ## encoding: [0x66,0xf2,0x0f,0x38,0xf1,0xc6] // promoted: // crc32w %si, %eax ## encoding: [0x62,0xf4,0x7d,0x08,0xf1,0xc6] // // From performance perspective, these should be same (same uops and same EXE // ports). From a FMV perspective, an older legacy encoding is preferred b/c it // can execute in more places (broader HW install base). So we will still do // the compression. // // Compression d can help hardware decode (HW may skip reading the NDD // register) although the instruction length remains unchanged. //===----------------------------------------------------------------------===// #include "MCTargetDesc/X86BaseInfo.h" #include "MCTargetDesc/X86InstComments.h" #include "X86.h" #include "X86InstrInfo.h" #include "X86Subtarget.h" #include "llvm/ADT/StringRef.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/MachineFunctionPass.h" #include "llvm/CodeGen/MachineInstr.h" #include "llvm/CodeGen/MachineOperand.h" #include "llvm/MC/MCInstrDesc.h" #include "llvm/Pass.h" #include #include #include using namespace llvm; // Including the generated EVEX compression tables. struct X86CompressEVEXTableEntry { uint16_t OldOpc; uint16_t NewOpc; bool operator<(const X86CompressEVEXTableEntry &RHS) const { return OldOpc < RHS.OldOpc; } friend bool operator<(const X86CompressEVEXTableEntry &TE, unsigned Opc) { return TE.OldOpc < Opc; } }; #include "X86GenCompressEVEXTables.inc" #define COMP_EVEX_DESC "Compressing EVEX instrs when possible" #define COMP_EVEX_NAME "x86-compress-evex" #define DEBUG_TYPE COMP_EVEX_NAME namespace { class CompressEVEXPass : public MachineFunctionPass { public: static char ID; CompressEVEXPass() : MachineFunctionPass(ID) {} StringRef getPassName() const override { return COMP_EVEX_DESC; } bool runOnMachineFunction(MachineFunction &MF) override; // This pass runs after regalloc and doesn't support VReg operands. MachineFunctionProperties getRequiredProperties() const override { return MachineFunctionProperties().set( MachineFunctionProperties::Property::NoVRegs); } }; } // end anonymous namespace char CompressEVEXPass::ID = 0; static bool usesExtendedRegister(const MachineInstr &MI) { auto isHiRegIdx = [](unsigned Reg) { // Check for XMM register with indexes between 16 - 31. if (Reg >= X86::XMM16 && Reg <= X86::XMM31) return true; // Check for YMM register with indexes between 16 - 31. if (Reg >= X86::YMM16 && Reg <= X86::YMM31) return true; // Check for GPR with indexes between 16 - 31. if (X86II::isApxExtendedReg(Reg)) return true; return false; }; // Check that operands are not ZMM regs or // XMM/YMM regs with hi indexes between 16 - 31. for (const MachineOperand &MO : MI.explicit_operands()) { if (!MO.isReg()) continue; Register Reg = MO.getReg(); assert(!X86II::isZMMReg(Reg) && "ZMM instructions should not be in the EVEX->VEX tables"); if (isHiRegIdx(Reg)) return true; } return false; } static bool checkVEXInstPredicate(unsigned OldOpc, const X86Subtarget &ST) { switch (OldOpc) { default: return true; case X86::VCVTNEPS2BF16Z128rm: case X86::VCVTNEPS2BF16Z128rr: case X86::VCVTNEPS2BF16Z256rm: case X86::VCVTNEPS2BF16Z256rr: return ST.hasAVXNECONVERT(); case X86::VPDPBUSDSZ128m: case X86::VPDPBUSDSZ128r: case X86::VPDPBUSDSZ256m: case X86::VPDPBUSDSZ256r: case X86::VPDPBUSDZ128m: case X86::VPDPBUSDZ128r: case X86::VPDPBUSDZ256m: case X86::VPDPBUSDZ256r: case X86::VPDPWSSDSZ128m: case X86::VPDPWSSDSZ128r: case X86::VPDPWSSDSZ256m: case X86::VPDPWSSDSZ256r: case X86::VPDPWSSDZ128m: case X86::VPDPWSSDZ128r: case X86::VPDPWSSDZ256m: case X86::VPDPWSSDZ256r: return ST.hasAVXVNNI(); case X86::VPMADD52HUQZ128m: case X86::VPMADD52HUQZ128r: case X86::VPMADD52HUQZ256m: case X86::VPMADD52HUQZ256r: case X86::VPMADD52LUQZ128m: case X86::VPMADD52LUQZ128r: case X86::VPMADD52LUQZ256m: case X86::VPMADD52LUQZ256r: return ST.hasAVXIFMA(); } } // Do any custom cleanup needed to finalize the conversion. static bool performCustomAdjustments(MachineInstr &MI, unsigned NewOpc) { (void)NewOpc; unsigned Opc = MI.getOpcode(); switch (Opc) { case X86::VALIGNDZ128rri: case X86::VALIGNDZ128rmi: case X86::VALIGNQZ128rri: case X86::VALIGNQZ128rmi: { assert((NewOpc == X86::VPALIGNRrri || NewOpc == X86::VPALIGNRrmi) && "Unexpected new opcode!"); unsigned Scale = (Opc == X86::VALIGNQZ128rri || Opc == X86::VALIGNQZ128rmi) ? 8 : 4; MachineOperand &Imm = MI.getOperand(MI.getNumExplicitOperands() - 1); Imm.setImm(Imm.getImm() * Scale); break; } case X86::VSHUFF32X4Z256rmi: case X86::VSHUFF32X4Z256rri: case X86::VSHUFF64X2Z256rmi: case X86::VSHUFF64X2Z256rri: case X86::VSHUFI32X4Z256rmi: case X86::VSHUFI32X4Z256rri: case X86::VSHUFI64X2Z256rmi: case X86::VSHUFI64X2Z256rri: { assert((NewOpc == X86::VPERM2F128rr || NewOpc == X86::VPERM2I128rr || NewOpc == X86::VPERM2F128rm || NewOpc == X86::VPERM2I128rm) && "Unexpected new opcode!"); MachineOperand &Imm = MI.getOperand(MI.getNumExplicitOperands() - 1); int64_t ImmVal = Imm.getImm(); // Set bit 5, move bit 1 to bit 4, copy bit 0. Imm.setImm(0x20 | ((ImmVal & 2) << 3) | (ImmVal & 1)); break; } case X86::VRNDSCALEPDZ128rri: case X86::VRNDSCALEPDZ128rmi: case X86::VRNDSCALEPSZ128rri: case X86::VRNDSCALEPSZ128rmi: case X86::VRNDSCALEPDZ256rri: case X86::VRNDSCALEPDZ256rmi: case X86::VRNDSCALEPSZ256rri: case X86::VRNDSCALEPSZ256rmi: case X86::VRNDSCALESDZr: case X86::VRNDSCALESDZm: case X86::VRNDSCALESSZr: case X86::VRNDSCALESSZm: case X86::VRNDSCALESDZr_Int: case X86::VRNDSCALESDZm_Int: case X86::VRNDSCALESSZr_Int: case X86::VRNDSCALESSZm_Int: const MachineOperand &Imm = MI.getOperand(MI.getNumExplicitOperands() - 1); int64_t ImmVal = Imm.getImm(); // Ensure that only bits 3:0 of the immediate are used. if ((ImmVal & 0xf) != ImmVal) return false; break; } return true; } static bool CompressEVEXImpl(MachineInstr &MI, const X86Subtarget &ST) { const MCInstrDesc &Desc = MI.getDesc(); // Check for EVEX instructions only. if ((Desc.TSFlags & X86II::EncodingMask) != X86II::EVEX) return false; // Check for EVEX instructions with mask or broadcast as in these cases // the EVEX prefix is needed in order to carry this information // thus preventing the transformation to VEX encoding. if (Desc.TSFlags & (X86II::EVEX_K | X86II::EVEX_B)) return false; // Check for EVEX instructions with L2 set. These instructions are 512-bits // and can't be converted to VEX. if (Desc.TSFlags & X86II::EVEX_L2) return false; ArrayRef Table = ArrayRef(X86CompressEVEXTable); unsigned Opc = MI.getOpcode(); const auto *I = llvm::lower_bound(Table, Opc); if (I == Table.end() || I->OldOpc != Opc) return false; if (usesExtendedRegister(MI)) return false; if (!checkVEXInstPredicate(Opc, ST)) return false; if (!performCustomAdjustments(MI, I->NewOpc)) return false; MI.setDesc(ST.getInstrInfo()->get(I->NewOpc)); MI.setAsmPrinterFlag(X86::AC_EVEX_2_VEX); return true; } bool CompressEVEXPass::runOnMachineFunction(MachineFunction &MF) { #ifndef NDEBUG // Make sure the tables are sorted. static std::atomic TableChecked(false); if (!TableChecked.load(std::memory_order_relaxed)) { assert(llvm::is_sorted(X86CompressEVEXTable) && "X86CompressEVEXTable is not sorted!"); TableChecked.store(true, std::memory_order_relaxed); } #endif const X86Subtarget &ST = MF.getSubtarget(); if (!ST.hasAVX512() && !ST.hasEGPR()) return false; bool Changed = false; for (MachineBasicBlock &MBB : MF) { // Traverse the basic block. for (MachineInstr &MI : MBB) Changed |= CompressEVEXImpl(MI, ST); } return Changed; } INITIALIZE_PASS(CompressEVEXPass, COMP_EVEX_NAME, COMP_EVEX_DESC, false, false) FunctionPass *llvm::createX86CompressEVEXPass() { return new CompressEVEXPass(); }