//===- SPIRVInstructionSelector.cpp ------------------------------*- C++ -*-==// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file implements the targeting of the InstructionSelector class for // SPIRV. // TODO: This should be generated by TableGen. // //===----------------------------------------------------------------------===// #include "MCTargetDesc/SPIRVBaseInfo.h" #include "MCTargetDesc/SPIRVMCTargetDesc.h" #include "SPIRV.h" #include "SPIRVGlobalRegistry.h" #include "SPIRVInstrInfo.h" #include "SPIRVRegisterBankInfo.h" #include "SPIRVRegisterInfo.h" #include "SPIRVTargetMachine.h" #include "SPIRVUtils.h" #include "llvm/ADT/APFloat.h" #include "llvm/ADT/StringExtras.h" #include "llvm/CodeGen/GlobalISel/GIMatchTableExecutorImpl.h" #include "llvm/CodeGen/GlobalISel/GenericMachineInstrs.h" #include "llvm/CodeGen/GlobalISel/InstructionSelector.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/CodeGen/MachineModuleInfoImpls.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/CodeGen/Register.h" #include "llvm/CodeGen/TargetOpcodes.h" #include "llvm/IR/IntrinsicsSPIRV.h" #include "llvm/Support/Debug.h" #include "llvm/Support/ErrorHandling.h" #define DEBUG_TYPE "spirv-isel" using namespace llvm; namespace CL = SPIRV::OpenCLExtInst; namespace GL = SPIRV::GLSLExtInst; using ExtInstList = std::vector>; namespace { llvm::SPIRV::SelectionControl::SelectionControl getSelectionOperandForImm(int Imm) { if (Imm == 2) return SPIRV::SelectionControl::Flatten; if (Imm == 1) return SPIRV::SelectionControl::DontFlatten; if (Imm == 0) return SPIRV::SelectionControl::None; llvm_unreachable("Invalid immediate"); } #define GET_GLOBALISEL_PREDICATE_BITSET #include "SPIRVGenGlobalISel.inc" #undef GET_GLOBALISEL_PREDICATE_BITSET class SPIRVInstructionSelector : public InstructionSelector { const SPIRVSubtarget &STI; const SPIRVInstrInfo &TII; const SPIRVRegisterInfo &TRI; const RegisterBankInfo &RBI; SPIRVGlobalRegistry &GR; MachineRegisterInfo *MRI; MachineFunction *HasVRegsReset = nullptr; /// We need to keep track of the number we give to anonymous global values to /// generate the same name every time when this is needed. mutable DenseMap UnnamedGlobalIDs; SmallPtrSet DeadMIs; public: SPIRVInstructionSelector(const SPIRVTargetMachine &TM, const SPIRVSubtarget &ST, const RegisterBankInfo &RBI); void setupMF(MachineFunction &MF, GISelKnownBits *KB, CodeGenCoverage *CoverageInfo, ProfileSummaryInfo *PSI, BlockFrequencyInfo *BFI) override; // Common selection code. Instruction-specific selection occurs in spvSelect. bool select(MachineInstr &I) override; static const char *getName() { return DEBUG_TYPE; } #define GET_GLOBALISEL_PREDICATES_DECL #include "SPIRVGenGlobalISel.inc" #undef GET_GLOBALISEL_PREDICATES_DECL #define GET_GLOBALISEL_TEMPORARIES_DECL #include "SPIRVGenGlobalISel.inc" #undef GET_GLOBALISEL_TEMPORARIES_DECL private: void resetVRegsType(MachineFunction &MF); // tblgen-erated 'select' implementation, used as the initial selector for // the patterns that don't require complex C++. bool selectImpl(MachineInstr &I, CodeGenCoverage &CoverageInfo) const; // All instruction-specific selection that didn't happen in "select()". // Is basically a large Switch/Case delegating to all other select method. bool spvSelect(Register ResVReg, const SPIRVType *ResType, MachineInstr &I) const; bool selectFirstBitHigh(Register ResVReg, const SPIRVType *ResType, MachineInstr &I, bool IsSigned) const; bool selectFirstBitLow(Register ResVReg, const SPIRVType *ResType, MachineInstr &I) const; bool selectFirstBitSet16(Register ResVReg, const SPIRVType *ResType, MachineInstr &I, unsigned ExtendOpcode, unsigned BitSetOpcode) const; bool selectFirstBitSet32(Register ResVReg, const SPIRVType *ResType, MachineInstr &I, Register SrcReg, unsigned BitSetOpcode) const; bool selectFirstBitSet64(Register ResVReg, const SPIRVType *ResType, MachineInstr &I, Register SrcReg, unsigned BitSetOpcode, bool SwapPrimarySide) const; bool selectFirstBitSet64Overflow(Register ResVReg, const SPIRVType *ResType, MachineInstr &I, Register SrcReg, unsigned BitSetOpcode, bool SwapPrimarySide) const; bool selectGlobalValue(Register ResVReg, MachineInstr &I, const MachineInstr *Init = nullptr) const; bool selectOpWithSrcs(Register ResVReg, const SPIRVType *ResType, MachineInstr &I, std::vector SrcRegs, unsigned Opcode) const; bool selectUnOp(Register ResVReg, const SPIRVType *ResType, MachineInstr &I, unsigned Opcode) const; bool selectBitcast(Register ResVReg, const SPIRVType *ResType, MachineInstr &I) const; bool selectLoad(Register ResVReg, const SPIRVType *ResType, MachineInstr &I) const; bool selectStore(MachineInstr &I) const; bool selectStackSave(Register ResVReg, const SPIRVType *ResType, MachineInstr &I) const; bool selectStackRestore(MachineInstr &I) const; bool selectMemOperation(Register ResVReg, MachineInstr &I) const; bool selectAtomicRMW(Register ResVReg, const SPIRVType *ResType, MachineInstr &I, unsigned NewOpcode, unsigned NegateOpcode = 0) const; bool selectAtomicCmpXchg(Register ResVReg, const SPIRVType *ResType, MachineInstr &I) const; bool selectFence(MachineInstr &I) const; bool selectAddrSpaceCast(Register ResVReg, const SPIRVType *ResType, MachineInstr &I) const; bool selectAnyOrAll(Register ResVReg, const SPIRVType *ResType, MachineInstr &I, unsigned OpType) const; bool selectAll(Register ResVReg, const SPIRVType *ResType, MachineInstr &I) const; bool selectAny(Register ResVReg, const SPIRVType *ResType, MachineInstr &I) const; bool selectBitreverse(Register ResVReg, const SPIRVType *ResType, MachineInstr &I) const; bool selectBuildVector(Register ResVReg, const SPIRVType *ResType, MachineInstr &I) const; bool selectSplatVector(Register ResVReg, const SPIRVType *ResType, MachineInstr &I) const; bool selectCmp(Register ResVReg, const SPIRVType *ResType, unsigned comparisonOpcode, MachineInstr &I) const; bool selectCross(Register ResVReg, const SPIRVType *ResType, MachineInstr &I) const; bool selectDiscard(Register ResVReg, const SPIRVType *ResType, MachineInstr &I) const; bool selectICmp(Register ResVReg, const SPIRVType *ResType, MachineInstr &I) const; bool selectFCmp(Register ResVReg, const SPIRVType *ResType, MachineInstr &I) const; bool selectSign(Register ResVReg, const SPIRVType *ResType, MachineInstr &I) const; bool selectFloatDot(Register ResVReg, const SPIRVType *ResType, MachineInstr &I) const; bool selectOverflowArith(Register ResVReg, const SPIRVType *ResType, MachineInstr &I, unsigned Opcode) const; bool selectIntegerDot(Register ResVReg, const SPIRVType *ResType, MachineInstr &I, bool Signed) const; bool selectIntegerDotExpansion(Register ResVReg, const SPIRVType *ResType, MachineInstr &I) const; template bool selectDot4AddPacked(Register ResVReg, const SPIRVType *ResType, MachineInstr &I) const; template bool selectDot4AddPackedExpansion(Register ResVReg, const SPIRVType *ResType, MachineInstr &I) const; bool selectWaveReduceMax(Register ResVReg, const SPIRVType *ResType, MachineInstr &I, bool IsUnsigned) const; bool selectWaveReduceSum(Register ResVReg, const SPIRVType *ResType, MachineInstr &I) const; void renderImm32(MachineInstrBuilder &MIB, const MachineInstr &I, int OpIdx) const; void renderFImm64(MachineInstrBuilder &MIB, const MachineInstr &I, int OpIdx) const; bool selectConst(Register ResVReg, const SPIRVType *ResType, const APInt &Imm, MachineInstr &I) const; bool selectSelect(Register ResVReg, const SPIRVType *ResType, MachineInstr &I, bool IsSigned) const; bool selectIToF(Register ResVReg, const SPIRVType *ResType, MachineInstr &I, bool IsSigned, unsigned Opcode) const; bool selectExt(Register ResVReg, const SPIRVType *ResType, MachineInstr &I, bool IsSigned) const; bool selectTrunc(Register ResVReg, const SPIRVType *ResType, MachineInstr &I) const; bool selectSUCmp(Register ResVReg, const SPIRVType *ResType, MachineInstr &I, bool IsSigned) const; bool selectIntToBool(Register IntReg, Register ResVReg, MachineInstr &I, const SPIRVType *intTy, const SPIRVType *boolTy) const; bool selectOpUndef(Register ResVReg, const SPIRVType *ResType, MachineInstr &I) const; bool selectFreeze(Register ResVReg, const SPIRVType *ResType, MachineInstr &I) const; bool selectIntrinsic(Register ResVReg, const SPIRVType *ResType, MachineInstr &I) const; bool selectExtractVal(Register ResVReg, const SPIRVType *ResType, MachineInstr &I) const; bool selectInsertVal(Register ResVReg, const SPIRVType *ResType, MachineInstr &I) const; bool selectExtractElt(Register ResVReg, const SPIRVType *ResType, MachineInstr &I) const; bool selectInsertElt(Register ResVReg, const SPIRVType *ResType, MachineInstr &I) const; bool selectGEP(Register ResVReg, const SPIRVType *ResType, MachineInstr &I) const; bool selectFrameIndex(Register ResVReg, const SPIRVType *ResType, MachineInstr &I) const; bool selectAllocaArray(Register ResVReg, const SPIRVType *ResType, MachineInstr &I) const; bool selectBranch(MachineInstr &I) const; bool selectBranchCond(MachineInstr &I) const; bool selectPhi(Register ResVReg, const SPIRVType *ResType, MachineInstr &I) const; [[maybe_unused]] bool selectExtInst(Register ResVReg, const SPIRVType *RestType, MachineInstr &I, GL::GLSLExtInst GLInst) const; bool selectExtInst(Register ResVReg, const SPIRVType *ResType, MachineInstr &I, CL::OpenCLExtInst CLInst) const; bool selectExtInst(Register ResVReg, const SPIRVType *ResType, MachineInstr &I, CL::OpenCLExtInst CLInst, GL::GLSLExtInst GLInst) const; bool selectExtInst(Register ResVReg, const SPIRVType *ResType, MachineInstr &I, const ExtInstList &ExtInsts) const; bool selectLog10(Register ResVReg, const SPIRVType *ResType, MachineInstr &I) const; bool selectSaturate(Register ResVReg, const SPIRVType *ResType, MachineInstr &I) const; bool selectWaveOpInst(Register ResVReg, const SPIRVType *ResType, MachineInstr &I, unsigned Opcode) const; bool selectWaveActiveCountBits(Register ResVReg, const SPIRVType *ResType, MachineInstr &I) const; bool selectUnmergeValues(MachineInstr &I) const; bool selectHandleFromBinding(Register &ResVReg, const SPIRVType *ResType, MachineInstr &I) const; bool selectReadImageIntrinsic(Register &ResVReg, const SPIRVType *ResType, MachineInstr &I) const; bool selectImageWriteIntrinsic(MachineInstr &I) const; bool selectResourceGetPointer(Register &ResVReg, const SPIRVType *ResType, MachineInstr &I) const; // Utilities std::pair buildI32Constant(uint32_t Val, MachineInstr &I, const SPIRVType *ResType = nullptr) const; Register buildZerosVal(const SPIRVType *ResType, MachineInstr &I) const; Register buildZerosValF(const SPIRVType *ResType, MachineInstr &I) const; Register buildOnesVal(bool AllOnes, const SPIRVType *ResType, MachineInstr &I) const; Register buildOnesValF(const SPIRVType *ResType, MachineInstr &I) const; bool wrapIntoSpecConstantOp(MachineInstr &I, SmallVector &CompositeArgs) const; Register getUcharPtrTypeReg(MachineInstr &I, SPIRV::StorageClass::StorageClass SC) const; MachineInstrBuilder buildSpecConstantOp(MachineInstr &I, Register Dest, Register Src, Register DestType, uint32_t Opcode) const; MachineInstrBuilder buildConstGenericPtr(MachineInstr &I, Register SrcPtr, SPIRVType *SrcPtrTy) const; Register buildPointerToResource(const SPIRVType *ResType, uint32_t Set, uint32_t Binding, uint32_t ArraySize, Register IndexReg, bool IsNonUniform, MachineIRBuilder MIRBuilder) const; SPIRVType *widenTypeToVec4(const SPIRVType *Type, MachineInstr &I) const; bool extractSubvector(Register &ResVReg, const SPIRVType *ResType, Register &ReadReg, MachineInstr &InsertionPoint) const; bool generateImageRead(Register &ResVReg, const SPIRVType *ResType, Register ImageReg, Register IdxReg, DebugLoc Loc, MachineInstr &Pos) const; bool BuildCOPY(Register DestReg, Register SrcReg, MachineInstr &I) const; bool loadVec3BuiltinInputID(SPIRV::BuiltIn::BuiltIn BuiltInValue, Register ResVReg, const SPIRVType *ResType, MachineInstr &I) const; bool loadHandleBeforePosition(Register &HandleReg, const SPIRVType *ResType, GIntrinsic &HandleDef, MachineInstr &Pos) const; }; } // end anonymous namespace #define GET_GLOBALISEL_IMPL #include "SPIRVGenGlobalISel.inc" #undef GET_GLOBALISEL_IMPL SPIRVInstructionSelector::SPIRVInstructionSelector(const SPIRVTargetMachine &TM, const SPIRVSubtarget &ST, const RegisterBankInfo &RBI) : InstructionSelector(), STI(ST), TII(*ST.getInstrInfo()), TRI(*ST.getRegisterInfo()), RBI(RBI), GR(*ST.getSPIRVGlobalRegistry()), #define GET_GLOBALISEL_PREDICATES_INIT #include "SPIRVGenGlobalISel.inc" #undef GET_GLOBALISEL_PREDICATES_INIT #define GET_GLOBALISEL_TEMPORARIES_INIT #include "SPIRVGenGlobalISel.inc" #undef GET_GLOBALISEL_TEMPORARIES_INIT { } void SPIRVInstructionSelector::setupMF(MachineFunction &MF, GISelKnownBits *KB, CodeGenCoverage *CoverageInfo, ProfileSummaryInfo *PSI, BlockFrequencyInfo *BFI) { MRI = &MF.getRegInfo(); GR.setCurrentFunc(MF); InstructionSelector::setupMF(MF, KB, CoverageInfo, PSI, BFI); } // Ensure that register classes correspond to pattern matching rules. void SPIRVInstructionSelector::resetVRegsType(MachineFunction &MF) { if (HasVRegsReset == &MF) return; HasVRegsReset = &MF; MachineRegisterInfo &MRI = MF.getRegInfo(); for (unsigned I = 0, E = MRI.getNumVirtRegs(); I != E; ++I) { Register Reg = Register::index2VirtReg(I); LLT RegType = MRI.getType(Reg); if (RegType.isScalar()) MRI.setType(Reg, LLT::scalar(64)); else if (RegType.isPointer()) MRI.setType(Reg, LLT::pointer(0, 64)); else if (RegType.isVector()) MRI.setType(Reg, LLT::fixed_vector(2, LLT::scalar(64))); } for (const auto &MBB : MF) { for (const auto &MI : MBB) { if (MI.getOpcode() != SPIRV::ASSIGN_TYPE) continue; Register DstReg = MI.getOperand(0).getReg(); LLT DstType = MRI.getType(DstReg); Register SrcReg = MI.getOperand(1).getReg(); LLT SrcType = MRI.getType(SrcReg); if (DstType != SrcType) MRI.setType(DstReg, MRI.getType(SrcReg)); const TargetRegisterClass *DstRC = MRI.getRegClassOrNull(DstReg); const TargetRegisterClass *SrcRC = MRI.getRegClassOrNull(SrcReg); if (DstRC != SrcRC && SrcRC) MRI.setRegClass(DstReg, SrcRC); } } } static bool isImm(const MachineOperand &MO, MachineRegisterInfo *MRI); // Defined in SPIRVLegalizerInfo.cpp. extern bool isTypeFoldingSupported(unsigned Opcode); bool isDead(const MachineInstr &MI, const MachineRegisterInfo &MRI) { for (const auto &MO : MI.all_defs()) { Register Reg = MO.getReg(); if (Reg.isPhysical() || !MRI.use_nodbg_empty(Reg)) return false; } if (MI.getOpcode() == TargetOpcode::LOCAL_ESCAPE || MI.isFakeUse() || MI.isLifetimeMarker()) return false; if (MI.isPHI()) return true; if (MI.mayStore() || MI.isCall() || (MI.mayLoad() && MI.hasOrderedMemoryRef()) || MI.isPosition() || MI.isDebugInstr() || MI.isTerminator() || MI.isJumpTableDebugInfo()) return false; return true; } bool SPIRVInstructionSelector::select(MachineInstr &I) { resetVRegsType(*I.getParent()->getParent()); assert(I.getParent() && "Instruction should be in a basic block!"); assert(I.getParent()->getParent() && "Instruction should be in a function!"); Register Opcode = I.getOpcode(); // If it's not a GMIR instruction, we've selected it already. if (!isPreISelGenericOpcode(Opcode)) { if (Opcode == SPIRV::ASSIGN_TYPE) { // These pseudos aren't needed any more. Register DstReg = I.getOperand(0).getReg(); Register SrcReg = I.getOperand(1).getReg(); auto *Def = MRI->getVRegDef(SrcReg); if (isTypeFoldingSupported(Def->getOpcode())) { bool Res = selectImpl(I, *CoverageInfo); LLVM_DEBUG({ if (!Res && Def->getOpcode() != TargetOpcode::G_CONSTANT) { dbgs() << "Unexpected pattern in ASSIGN_TYPE.\nInstruction: "; I.print(dbgs()); } }); assert(Res || Def->getOpcode() == TargetOpcode::G_CONSTANT); if (Res) { if (!isTriviallyDead(*Def, *MRI) && isDead(*Def, *MRI)) DeadMIs.insert(Def); return Res; } } MRI->setRegClass(SrcReg, MRI->getRegClass(DstReg)); MRI->replaceRegWith(SrcReg, DstReg); GR.invalidateMachineInstr(&I); I.removeFromParent(); return true; } else if (I.getNumDefs() == 1) { // Make all vregs 64 bits (for SPIR-V IDs). MRI->setType(I.getOperand(0).getReg(), LLT::scalar(64)); } return constrainSelectedInstRegOperands(I, TII, TRI, RBI); } if (DeadMIs.contains(&I)) { // if the instruction has been already made dead by folding it away // erase it LLVM_DEBUG(dbgs() << "Instruction is folded and dead.\n"); salvageDebugInfo(*MRI, I); GR.invalidateMachineInstr(&I); I.eraseFromParent(); return true; } if (I.getNumOperands() != I.getNumExplicitOperands()) { LLVM_DEBUG(errs() << "Generic instr has unexpected implicit operands\n"); return false; } // Common code for getting return reg+type, and removing selected instr // from parent occurs here. Instr-specific selection happens in spvSelect(). bool HasDefs = I.getNumDefs() > 0; Register ResVReg = HasDefs ? I.getOperand(0).getReg() : Register(0); SPIRVType *ResType = HasDefs ? GR.getSPIRVTypeForVReg(ResVReg) : nullptr; assert(!HasDefs || ResType || I.getOpcode() == TargetOpcode::G_GLOBAL_VALUE); if (spvSelect(ResVReg, ResType, I)) { if (HasDefs) // Make all vregs 64 bits (for SPIR-V IDs). for (unsigned i = 0; i < I.getNumDefs(); ++i) MRI->setType(I.getOperand(i).getReg(), LLT::scalar(64)); GR.invalidateMachineInstr(&I); I.removeFromParent(); return true; } return false; } static bool mayApplyGenericSelection(unsigned Opcode) { switch (Opcode) { case TargetOpcode::G_CONSTANT: return false; case TargetOpcode::G_SADDO: case TargetOpcode::G_SSUBO: return true; } return isTypeFoldingSupported(Opcode); } bool SPIRVInstructionSelector::BuildCOPY(Register DestReg, Register SrcReg, MachineInstr &I) const { const TargetRegisterClass *DstRC = MRI->getRegClassOrNull(DestReg); const TargetRegisterClass *SrcRC = MRI->getRegClassOrNull(SrcReg); if (DstRC != SrcRC && SrcRC) MRI->setRegClass(DestReg, SrcRC); return BuildMI(*I.getParent(), I, I.getDebugLoc(), TII.get(TargetOpcode::COPY)) .addDef(DestReg) .addUse(SrcReg) .constrainAllUses(TII, TRI, RBI); } bool SPIRVInstructionSelector::spvSelect(Register ResVReg, const SPIRVType *ResType, MachineInstr &I) const { const unsigned Opcode = I.getOpcode(); if (mayApplyGenericSelection(Opcode)) return selectImpl(I, *CoverageInfo); switch (Opcode) { case TargetOpcode::G_CONSTANT: return selectConst(ResVReg, ResType, I.getOperand(1).getCImm()->getValue(), I); case TargetOpcode::G_GLOBAL_VALUE: return selectGlobalValue(ResVReg, I); case TargetOpcode::G_IMPLICIT_DEF: return selectOpUndef(ResVReg, ResType, I); case TargetOpcode::G_FREEZE: return selectFreeze(ResVReg, ResType, I); case TargetOpcode::G_INTRINSIC: case TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS: case TargetOpcode::G_INTRINSIC_CONVERGENT: case TargetOpcode::G_INTRINSIC_CONVERGENT_W_SIDE_EFFECTS: return selectIntrinsic(ResVReg, ResType, I); case TargetOpcode::G_BITREVERSE: return selectBitreverse(ResVReg, ResType, I); case TargetOpcode::G_BUILD_VECTOR: return selectBuildVector(ResVReg, ResType, I); case TargetOpcode::G_SPLAT_VECTOR: return selectSplatVector(ResVReg, ResType, I); case TargetOpcode::G_SHUFFLE_VECTOR: { MachineBasicBlock &BB = *I.getParent(); auto MIB = BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpVectorShuffle)) .addDef(ResVReg) .addUse(GR.getSPIRVTypeID(ResType)) .addUse(I.getOperand(1).getReg()) .addUse(I.getOperand(2).getReg()); for (auto V : I.getOperand(3).getShuffleMask()) MIB.addImm(V); return MIB.constrainAllUses(TII, TRI, RBI); } case TargetOpcode::G_MEMMOVE: case TargetOpcode::G_MEMCPY: case TargetOpcode::G_MEMSET: return selectMemOperation(ResVReg, I); case TargetOpcode::G_ICMP: return selectICmp(ResVReg, ResType, I); case TargetOpcode::G_FCMP: return selectFCmp(ResVReg, ResType, I); case TargetOpcode::G_FRAME_INDEX: return selectFrameIndex(ResVReg, ResType, I); case TargetOpcode::G_LOAD: return selectLoad(ResVReg, ResType, I); case TargetOpcode::G_STORE: return selectStore(I); case TargetOpcode::G_BR: return selectBranch(I); case TargetOpcode::G_BRCOND: return selectBranchCond(I); case TargetOpcode::G_PHI: return selectPhi(ResVReg, ResType, I); case TargetOpcode::G_FPTOSI: return selectUnOp(ResVReg, ResType, I, SPIRV::OpConvertFToS); case TargetOpcode::G_FPTOUI: return selectUnOp(ResVReg, ResType, I, SPIRV::OpConvertFToU); case TargetOpcode::G_SITOFP: return selectIToF(ResVReg, ResType, I, true, SPIRV::OpConvertSToF); case TargetOpcode::G_UITOFP: return selectIToF(ResVReg, ResType, I, false, SPIRV::OpConvertUToF); case TargetOpcode::G_CTPOP: return selectUnOp(ResVReg, ResType, I, SPIRV::OpBitCount); case TargetOpcode::G_SMIN: return selectExtInst(ResVReg, ResType, I, CL::s_min, GL::SMin); case TargetOpcode::G_UMIN: return selectExtInst(ResVReg, ResType, I, CL::u_min, GL::UMin); case TargetOpcode::G_SMAX: return selectExtInst(ResVReg, ResType, I, CL::s_max, GL::SMax); case TargetOpcode::G_UMAX: return selectExtInst(ResVReg, ResType, I, CL::u_max, GL::UMax); case TargetOpcode::G_SCMP: return selectSUCmp(ResVReg, ResType, I, true); case TargetOpcode::G_UCMP: return selectSUCmp(ResVReg, ResType, I, false); case TargetOpcode::G_STRICT_FMA: case TargetOpcode::G_FMA: return selectExtInst(ResVReg, ResType, I, CL::fma, GL::Fma); case TargetOpcode::G_STRICT_FLDEXP: return selectExtInst(ResVReg, ResType, I, CL::ldexp); case TargetOpcode::G_FPOW: return selectExtInst(ResVReg, ResType, I, CL::pow, GL::Pow); case TargetOpcode::G_FPOWI: return selectExtInst(ResVReg, ResType, I, CL::pown); case TargetOpcode::G_FEXP: return selectExtInst(ResVReg, ResType, I, CL::exp, GL::Exp); case TargetOpcode::G_FEXP2: return selectExtInst(ResVReg, ResType, I, CL::exp2, GL::Exp2); case TargetOpcode::G_FLOG: return selectExtInst(ResVReg, ResType, I, CL::log, GL::Log); case TargetOpcode::G_FLOG2: return selectExtInst(ResVReg, ResType, I, CL::log2, GL::Log2); case TargetOpcode::G_FLOG10: return selectLog10(ResVReg, ResType, I); case TargetOpcode::G_FABS: return selectExtInst(ResVReg, ResType, I, CL::fabs, GL::FAbs); case TargetOpcode::G_ABS: return selectExtInst(ResVReg, ResType, I, CL::s_abs, GL::SAbs); case TargetOpcode::G_FMINNUM: case TargetOpcode::G_FMINIMUM: return selectExtInst(ResVReg, ResType, I, CL::fmin, GL::NMin); case TargetOpcode::G_FMAXNUM: case TargetOpcode::G_FMAXIMUM: return selectExtInst(ResVReg, ResType, I, CL::fmax, GL::NMax); case TargetOpcode::G_FCOPYSIGN: return selectExtInst(ResVReg, ResType, I, CL::copysign); case TargetOpcode::G_FCEIL: return selectExtInst(ResVReg, ResType, I, CL::ceil, GL::Ceil); case TargetOpcode::G_FFLOOR: return selectExtInst(ResVReg, ResType, I, CL::floor, GL::Floor); case TargetOpcode::G_FCOS: return selectExtInst(ResVReg, ResType, I, CL::cos, GL::Cos); case TargetOpcode::G_FSIN: return selectExtInst(ResVReg, ResType, I, CL::sin, GL::Sin); case TargetOpcode::G_FTAN: return selectExtInst(ResVReg, ResType, I, CL::tan, GL::Tan); case TargetOpcode::G_FACOS: return selectExtInst(ResVReg, ResType, I, CL::acos, GL::Acos); case TargetOpcode::G_FASIN: return selectExtInst(ResVReg, ResType, I, CL::asin, GL::Asin); case TargetOpcode::G_FATAN: return selectExtInst(ResVReg, ResType, I, CL::atan, GL::Atan); case TargetOpcode::G_FATAN2: return selectExtInst(ResVReg, ResType, I, CL::atan2, GL::Atan2); case TargetOpcode::G_FCOSH: return selectExtInst(ResVReg, ResType, I, CL::cosh, GL::Cosh); case TargetOpcode::G_FSINH: return selectExtInst(ResVReg, ResType, I, CL::sinh, GL::Sinh); case TargetOpcode::G_FTANH: return selectExtInst(ResVReg, ResType, I, CL::tanh, GL::Tanh); case TargetOpcode::G_STRICT_FSQRT: case TargetOpcode::G_FSQRT: return selectExtInst(ResVReg, ResType, I, CL::sqrt, GL::Sqrt); case TargetOpcode::G_CTTZ: case TargetOpcode::G_CTTZ_ZERO_UNDEF: return selectExtInst(ResVReg, ResType, I, CL::ctz); case TargetOpcode::G_CTLZ: case TargetOpcode::G_CTLZ_ZERO_UNDEF: return selectExtInst(ResVReg, ResType, I, CL::clz); case TargetOpcode::G_INTRINSIC_ROUND: return selectExtInst(ResVReg, ResType, I, CL::round, GL::Round); case TargetOpcode::G_INTRINSIC_ROUNDEVEN: return selectExtInst(ResVReg, ResType, I, CL::rint, GL::RoundEven); case TargetOpcode::G_INTRINSIC_TRUNC: return selectExtInst(ResVReg, ResType, I, CL::trunc, GL::Trunc); case TargetOpcode::G_FRINT: case TargetOpcode::G_FNEARBYINT: return selectExtInst(ResVReg, ResType, I, CL::rint, GL::RoundEven); case TargetOpcode::G_SMULH: return selectExtInst(ResVReg, ResType, I, CL::s_mul_hi); case TargetOpcode::G_UMULH: return selectExtInst(ResVReg, ResType, I, CL::u_mul_hi); case TargetOpcode::G_SADDSAT: return selectExtInst(ResVReg, ResType, I, CL::s_add_sat); case TargetOpcode::G_UADDSAT: return selectExtInst(ResVReg, ResType, I, CL::u_add_sat); case TargetOpcode::G_SSUBSAT: return selectExtInst(ResVReg, ResType, I, CL::s_sub_sat); case TargetOpcode::G_USUBSAT: return selectExtInst(ResVReg, ResType, I, CL::u_sub_sat); case TargetOpcode::G_UADDO: return selectOverflowArith(ResVReg, ResType, I, ResType->getOpcode() == SPIRV::OpTypeVector ? SPIRV::OpIAddCarryV : SPIRV::OpIAddCarryS); case TargetOpcode::G_USUBO: return selectOverflowArith(ResVReg, ResType, I, ResType->getOpcode() == SPIRV::OpTypeVector ? SPIRV::OpISubBorrowV : SPIRV::OpISubBorrowS); case TargetOpcode::G_UMULO: return selectOverflowArith(ResVReg, ResType, I, SPIRV::OpUMulExtended); case TargetOpcode::G_SMULO: return selectOverflowArith(ResVReg, ResType, I, SPIRV::OpSMulExtended); case TargetOpcode::G_SEXT: return selectExt(ResVReg, ResType, I, true); case TargetOpcode::G_ANYEXT: case TargetOpcode::G_ZEXT: return selectExt(ResVReg, ResType, I, false); case TargetOpcode::G_TRUNC: return selectTrunc(ResVReg, ResType, I); case TargetOpcode::G_FPTRUNC: case TargetOpcode::G_FPEXT: return selectUnOp(ResVReg, ResType, I, SPIRV::OpFConvert); case TargetOpcode::G_PTRTOINT: return selectUnOp(ResVReg, ResType, I, SPIRV::OpConvertPtrToU); case TargetOpcode::G_INTTOPTR: return selectUnOp(ResVReg, ResType, I, SPIRV::OpConvertUToPtr); case TargetOpcode::G_BITCAST: return selectBitcast(ResVReg, ResType, I); case TargetOpcode::G_ADDRSPACE_CAST: return selectAddrSpaceCast(ResVReg, ResType, I); case TargetOpcode::G_PTR_ADD: { // Currently, we get G_PTR_ADD only applied to global variables. assert(I.getOperand(1).isReg() && I.getOperand(2).isReg()); Register GV = I.getOperand(1).getReg(); MachineRegisterInfo::def_instr_iterator II = MRI->def_instr_begin(GV); (void)II; assert(((*II).getOpcode() == TargetOpcode::G_GLOBAL_VALUE || (*II).getOpcode() == TargetOpcode::COPY || (*II).getOpcode() == SPIRV::OpVariable) && isImm(I.getOperand(2), MRI)); // It may be the initialization of a global variable. bool IsGVInit = false; for (MachineRegisterInfo::use_instr_iterator UseIt = MRI->use_instr_begin(I.getOperand(0).getReg()), UseEnd = MRI->use_instr_end(); UseIt != UseEnd; UseIt = std::next(UseIt)) { if ((*UseIt).getOpcode() == TargetOpcode::G_GLOBAL_VALUE || (*UseIt).getOpcode() == SPIRV::OpVariable) { IsGVInit = true; break; } } MachineBasicBlock &BB = *I.getParent(); if (!IsGVInit) { SPIRVType *GVType = GR.getSPIRVTypeForVReg(GV); SPIRVType *GVPointeeType = GR.getPointeeType(GVType); SPIRVType *ResPointeeType = GR.getPointeeType(ResType); if (GVPointeeType && ResPointeeType && GVPointeeType != ResPointeeType) { // Build a new virtual register that is associated with the required // data type. Register NewVReg = MRI->createGenericVirtualRegister(MRI->getType(GV)); MRI->setRegClass(NewVReg, MRI->getRegClass(GV)); // Having a correctly typed base we are ready to build the actually // required GEP. It may not be a constant though, because all Operands // of OpSpecConstantOp is to originate from other const instructions, // and only the AccessChain named opcodes accept a global OpVariable // instruction. We can't use an AccessChain opcode because of the type // mismatch between result and base types. if (!GR.isBitcastCompatible(ResType, GVType)) report_fatal_error( "incompatible result and operand types in a bitcast"); Register ResTypeReg = GR.getSPIRVTypeID(ResType); MachineInstrBuilder MIB = BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpBitcast)) .addDef(NewVReg) .addUse(ResTypeReg) .addUse(GV); return MIB.constrainAllUses(TII, TRI, RBI) && BuildMI(BB, I, I.getDebugLoc(), TII.get(STI.isVulkanEnv() ? SPIRV::OpInBoundsAccessChain : SPIRV::OpInBoundsPtrAccessChain)) .addDef(ResVReg) .addUse(ResTypeReg) .addUse(NewVReg) .addUse(I.getOperand(2).getReg()) .constrainAllUses(TII, TRI, RBI); } else { return BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpSpecConstantOp)) .addDef(ResVReg) .addUse(GR.getSPIRVTypeID(ResType)) .addImm( static_cast(SPIRV::Opcode::InBoundsPtrAccessChain)) .addUse(GV) .addUse(I.getOperand(2).getReg()) .constrainAllUses(TII, TRI, RBI); } } // It's possible to translate G_PTR_ADD to OpSpecConstantOp: either to // initialize a global variable with a constant expression (e.g., the test // case opencl/basic/progvar_prog_scope_init.ll), or for another use case Register Idx = buildZerosVal(GR.getOrCreateSPIRVIntegerType(32, I, TII), I); auto MIB = BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpSpecConstantOp)) .addDef(ResVReg) .addUse(GR.getSPIRVTypeID(ResType)) .addImm(static_cast( SPIRV::Opcode::InBoundsPtrAccessChain)) .addUse(GV) .addUse(Idx) .addUse(I.getOperand(2).getReg()); return MIB.constrainAllUses(TII, TRI, RBI); } case TargetOpcode::G_ATOMICRMW_OR: return selectAtomicRMW(ResVReg, ResType, I, SPIRV::OpAtomicOr); case TargetOpcode::G_ATOMICRMW_ADD: return selectAtomicRMW(ResVReg, ResType, I, SPIRV::OpAtomicIAdd); case TargetOpcode::G_ATOMICRMW_AND: return selectAtomicRMW(ResVReg, ResType, I, SPIRV::OpAtomicAnd); case TargetOpcode::G_ATOMICRMW_MAX: return selectAtomicRMW(ResVReg, ResType, I, SPIRV::OpAtomicSMax); case TargetOpcode::G_ATOMICRMW_MIN: return selectAtomicRMW(ResVReg, ResType, I, SPIRV::OpAtomicSMin); case TargetOpcode::G_ATOMICRMW_SUB: return selectAtomicRMW(ResVReg, ResType, I, SPIRV::OpAtomicISub); case TargetOpcode::G_ATOMICRMW_XOR: return selectAtomicRMW(ResVReg, ResType, I, SPIRV::OpAtomicXor); case TargetOpcode::G_ATOMICRMW_UMAX: return selectAtomicRMW(ResVReg, ResType, I, SPIRV::OpAtomicUMax); case TargetOpcode::G_ATOMICRMW_UMIN: return selectAtomicRMW(ResVReg, ResType, I, SPIRV::OpAtomicUMin); case TargetOpcode::G_ATOMICRMW_XCHG: return selectAtomicRMW(ResVReg, ResType, I, SPIRV::OpAtomicExchange); case TargetOpcode::G_ATOMIC_CMPXCHG: return selectAtomicCmpXchg(ResVReg, ResType, I); case TargetOpcode::G_ATOMICRMW_FADD: return selectAtomicRMW(ResVReg, ResType, I, SPIRV::OpAtomicFAddEXT); case TargetOpcode::G_ATOMICRMW_FSUB: // Translate G_ATOMICRMW_FSUB to OpAtomicFAddEXT with negative value operand return selectAtomicRMW(ResVReg, ResType, I, SPIRV::OpAtomicFAddEXT, SPIRV::OpFNegate); case TargetOpcode::G_ATOMICRMW_FMIN: return selectAtomicRMW(ResVReg, ResType, I, SPIRV::OpAtomicFMinEXT); case TargetOpcode::G_ATOMICRMW_FMAX: return selectAtomicRMW(ResVReg, ResType, I, SPIRV::OpAtomicFMaxEXT); case TargetOpcode::G_FENCE: return selectFence(I); case TargetOpcode::G_STACKSAVE: return selectStackSave(ResVReg, ResType, I); case TargetOpcode::G_STACKRESTORE: return selectStackRestore(I); case TargetOpcode::G_UNMERGE_VALUES: return selectUnmergeValues(I); // Discard gen opcodes for intrinsics which we do not expect to actually // represent code after lowering or intrinsics which are not implemented but // should not crash when found in a customer's LLVM IR input. case TargetOpcode::G_TRAP: case TargetOpcode::G_DEBUGTRAP: case TargetOpcode::G_UBSANTRAP: case TargetOpcode::DBG_LABEL: return true; default: return false; } } bool SPIRVInstructionSelector::selectExtInst(Register ResVReg, const SPIRVType *ResType, MachineInstr &I, GL::GLSLExtInst GLInst) const { return selectExtInst(ResVReg, ResType, I, {{SPIRV::InstructionSet::GLSL_std_450, GLInst}}); } bool SPIRVInstructionSelector::selectExtInst(Register ResVReg, const SPIRVType *ResType, MachineInstr &I, CL::OpenCLExtInst CLInst) const { return selectExtInst(ResVReg, ResType, I, {{SPIRV::InstructionSet::OpenCL_std, CLInst}}); } bool SPIRVInstructionSelector::selectExtInst(Register ResVReg, const SPIRVType *ResType, MachineInstr &I, CL::OpenCLExtInst CLInst, GL::GLSLExtInst GLInst) const { ExtInstList ExtInsts = {{SPIRV::InstructionSet::OpenCL_std, CLInst}, {SPIRV::InstructionSet::GLSL_std_450, GLInst}}; return selectExtInst(ResVReg, ResType, I, ExtInsts); } bool SPIRVInstructionSelector::selectExtInst(Register ResVReg, const SPIRVType *ResType, MachineInstr &I, const ExtInstList &Insts) const { for (const auto &Ex : Insts) { SPIRV::InstructionSet::InstructionSet Set = Ex.first; uint32_t Opcode = Ex.second; if (STI.canUseExtInstSet(Set)) { MachineBasicBlock &BB = *I.getParent(); auto MIB = BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpExtInst)) .addDef(ResVReg) .addUse(GR.getSPIRVTypeID(ResType)) .addImm(static_cast(Set)) .addImm(Opcode); const unsigned NumOps = I.getNumOperands(); unsigned Index = 1; if (Index < NumOps && I.getOperand(Index).getType() == MachineOperand::MachineOperandType::MO_IntrinsicID) Index = 2; for (; Index < NumOps; ++Index) MIB.add(I.getOperand(Index)); return MIB.constrainAllUses(TII, TRI, RBI); } } return false; } bool SPIRVInstructionSelector::selectOpWithSrcs(Register ResVReg, const SPIRVType *ResType, MachineInstr &I, std::vector Srcs, unsigned Opcode) const { auto MIB = BuildMI(*I.getParent(), I, I.getDebugLoc(), TII.get(Opcode)) .addDef(ResVReg) .addUse(GR.getSPIRVTypeID(ResType)); for (Register SReg : Srcs) { MIB.addUse(SReg); } return MIB.constrainAllUses(TII, TRI, RBI); } bool SPIRVInstructionSelector::selectUnOp(Register ResVReg, const SPIRVType *ResType, MachineInstr &I, unsigned Opcode) const { if (STI.isOpenCLEnv() && I.getOperand(1).isReg()) { Register SrcReg = I.getOperand(1).getReg(); bool IsGV = false; for (MachineRegisterInfo::def_instr_iterator DefIt = MRI->def_instr_begin(SrcReg); DefIt != MRI->def_instr_end(); DefIt = std::next(DefIt)) { if ((*DefIt).getOpcode() == TargetOpcode::G_GLOBAL_VALUE) { IsGV = true; break; } } if (IsGV) { uint32_t SpecOpcode = 0; switch (Opcode) { case SPIRV::OpConvertPtrToU: SpecOpcode = static_cast(SPIRV::Opcode::ConvertPtrToU); break; case SPIRV::OpConvertUToPtr: SpecOpcode = static_cast(SPIRV::Opcode::ConvertUToPtr); break; } if (SpecOpcode) return BuildMI(*I.getParent(), I, I.getDebugLoc(), TII.get(SPIRV::OpSpecConstantOp)) .addDef(ResVReg) .addUse(GR.getSPIRVTypeID(ResType)) .addImm(SpecOpcode) .addUse(SrcReg) .constrainAllUses(TII, TRI, RBI); } } return selectOpWithSrcs(ResVReg, ResType, I, {I.getOperand(1).getReg()}, Opcode); } bool SPIRVInstructionSelector::selectBitcast(Register ResVReg, const SPIRVType *ResType, MachineInstr &I) const { Register OpReg = I.getOperand(1).getReg(); SPIRVType *OpType = OpReg.isValid() ? GR.getSPIRVTypeForVReg(OpReg) : nullptr; if (!GR.isBitcastCompatible(ResType, OpType)) report_fatal_error("incompatible result and operand types in a bitcast"); return selectUnOp(ResVReg, ResType, I, SPIRV::OpBitcast); } static void addMemoryOperands(MachineMemOperand *MemOp, MachineInstrBuilder &MIB) { uint32_t SpvMemOp = static_cast(SPIRV::MemoryOperand::None); if (MemOp->isVolatile()) SpvMemOp |= static_cast(SPIRV::MemoryOperand::Volatile); if (MemOp->isNonTemporal()) SpvMemOp |= static_cast(SPIRV::MemoryOperand::Nontemporal); if (MemOp->getAlign().value()) SpvMemOp |= static_cast(SPIRV::MemoryOperand::Aligned); if (SpvMemOp != static_cast(SPIRV::MemoryOperand::None)) { MIB.addImm(SpvMemOp); if (SpvMemOp & static_cast(SPIRV::MemoryOperand::Aligned)) MIB.addImm(MemOp->getAlign().value()); } } static void addMemoryOperands(uint64_t Flags, MachineInstrBuilder &MIB) { uint32_t SpvMemOp = static_cast(SPIRV::MemoryOperand::None); if (Flags & MachineMemOperand::Flags::MOVolatile) SpvMemOp |= static_cast(SPIRV::MemoryOperand::Volatile); if (Flags & MachineMemOperand::Flags::MONonTemporal) SpvMemOp |= static_cast(SPIRV::MemoryOperand::Nontemporal); if (SpvMemOp != static_cast(SPIRV::MemoryOperand::None)) MIB.addImm(SpvMemOp); } bool SPIRVInstructionSelector::selectLoad(Register ResVReg, const SPIRVType *ResType, MachineInstr &I) const { unsigned OpOffset = isa(I) ? 1 : 0; Register Ptr = I.getOperand(1 + OpOffset).getReg(); auto *PtrDef = getVRegDef(*MRI, Ptr); auto *IntPtrDef = dyn_cast(PtrDef); if (IntPtrDef && IntPtrDef->getIntrinsicID() == Intrinsic::spv_resource_getpointer) { Register ImageReg = IntPtrDef->getOperand(2).getReg(); Register NewImageReg = MRI->createVirtualRegister(MRI->getRegClass(ImageReg)); auto *ImageDef = cast(getVRegDef(*MRI, ImageReg)); if (!loadHandleBeforePosition(NewImageReg, GR.getSPIRVTypeForVReg(ImageReg), *ImageDef, I)) { return false; } Register IdxReg = IntPtrDef->getOperand(3).getReg(); return generateImageRead(ResVReg, ResType, NewImageReg, IdxReg, I.getDebugLoc(), I); } auto MIB = BuildMI(*I.getParent(), I, I.getDebugLoc(), TII.get(SPIRV::OpLoad)) .addDef(ResVReg) .addUse(GR.getSPIRVTypeID(ResType)) .addUse(Ptr); if (!I.getNumMemOperands()) { assert(I.getOpcode() == TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS || I.getOpcode() == TargetOpcode::G_INTRINSIC_CONVERGENT_W_SIDE_EFFECTS); addMemoryOperands(I.getOperand(2 + OpOffset).getImm(), MIB); } else { addMemoryOperands(*I.memoperands_begin(), MIB); } return MIB.constrainAllUses(TII, TRI, RBI); } bool SPIRVInstructionSelector::selectStore(MachineInstr &I) const { unsigned OpOffset = isa(I) ? 1 : 0; Register StoreVal = I.getOperand(0 + OpOffset).getReg(); Register Ptr = I.getOperand(1 + OpOffset).getReg(); auto *PtrDef = getVRegDef(*MRI, Ptr); auto *IntPtrDef = dyn_cast(PtrDef); if (IntPtrDef && IntPtrDef->getIntrinsicID() == Intrinsic::spv_resource_getpointer) { Register ImageReg = IntPtrDef->getOperand(2).getReg(); Register NewImageReg = MRI->createVirtualRegister(MRI->getRegClass(ImageReg)); auto *ImageDef = cast(getVRegDef(*MRI, ImageReg)); if (!loadHandleBeforePosition(NewImageReg, GR.getSPIRVTypeForVReg(ImageReg), *ImageDef, I)) { return false; } Register IdxReg = IntPtrDef->getOperand(3).getReg(); return BuildMI(*I.getParent(), I, I.getDebugLoc(), TII.get(SPIRV::OpImageWrite)) .addUse(NewImageReg) .addUse(IdxReg) .addUse(StoreVal) .constrainAllUses(TII, TRI, RBI); } MachineBasicBlock &BB = *I.getParent(); auto MIB = BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpStore)) .addUse(Ptr) .addUse(StoreVal); if (!I.getNumMemOperands()) { assert(I.getOpcode() == TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS || I.getOpcode() == TargetOpcode::G_INTRINSIC_CONVERGENT_W_SIDE_EFFECTS); addMemoryOperands(I.getOperand(2 + OpOffset).getImm(), MIB); } else { addMemoryOperands(*I.memoperands_begin(), MIB); } return MIB.constrainAllUses(TII, TRI, RBI); } bool SPIRVInstructionSelector::selectStackSave(Register ResVReg, const SPIRVType *ResType, MachineInstr &I) const { if (!STI.canUseExtension(SPIRV::Extension::SPV_INTEL_variable_length_array)) report_fatal_error( "llvm.stacksave intrinsic: this instruction requires the following " "SPIR-V extension: SPV_INTEL_variable_length_array", false); MachineBasicBlock &BB = *I.getParent(); return BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpSaveMemoryINTEL)) .addDef(ResVReg) .addUse(GR.getSPIRVTypeID(ResType)) .constrainAllUses(TII, TRI, RBI); } bool SPIRVInstructionSelector::selectStackRestore(MachineInstr &I) const { if (!STI.canUseExtension(SPIRV::Extension::SPV_INTEL_variable_length_array)) report_fatal_error( "llvm.stackrestore intrinsic: this instruction requires the following " "SPIR-V extension: SPV_INTEL_variable_length_array", false); if (!I.getOperand(0).isReg()) return false; MachineBasicBlock &BB = *I.getParent(); return BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpRestoreMemoryINTEL)) .addUse(I.getOperand(0).getReg()) .constrainAllUses(TII, TRI, RBI); } bool SPIRVInstructionSelector::selectMemOperation(Register ResVReg, MachineInstr &I) const { MachineBasicBlock &BB = *I.getParent(); Register SrcReg = I.getOperand(1).getReg(); bool Result = true; if (I.getOpcode() == TargetOpcode::G_MEMSET) { assert(I.getOperand(1).isReg() && I.getOperand(2).isReg()); unsigned Val = getIConstVal(I.getOperand(1).getReg(), MRI); unsigned Num = getIConstVal(I.getOperand(2).getReg(), MRI); SPIRVType *ValTy = GR.getOrCreateSPIRVIntegerType(8, I, TII); SPIRVType *ArrTy = GR.getOrCreateSPIRVArrayType(ValTy, Num, I, TII); Register Const = GR.getOrCreateConstIntArray(Val, Num, I, ArrTy, TII); SPIRVType *VarTy = GR.getOrCreateSPIRVPointerType( ArrTy, I, TII, SPIRV::StorageClass::UniformConstant); // TODO: check if we have such GV, add init, use buildGlobalVariable. Function &CurFunction = GR.CurMF->getFunction(); Type *LLVMArrTy = ArrayType::get(IntegerType::get(CurFunction.getContext(), 8), Num); // Module takes ownership of the global var. GlobalVariable *GV = new GlobalVariable(*CurFunction.getParent(), LLVMArrTy, true, GlobalValue::InternalLinkage, Constant::getNullValue(LLVMArrTy)); Register VarReg = MRI->createGenericVirtualRegister(LLT::scalar(64)); GR.add(GV, GR.CurMF, VarReg); GR.addGlobalObject(GV, GR.CurMF, VarReg); Result &= BuildMI(*I.getParent(), I, I.getDebugLoc(), TII.get(SPIRV::OpVariable)) .addDef(VarReg) .addUse(GR.getSPIRVTypeID(VarTy)) .addImm(SPIRV::StorageClass::UniformConstant) .addUse(Const) .constrainAllUses(TII, TRI, RBI); buildOpDecorate(VarReg, I, TII, SPIRV::Decoration::Constant, {}); SPIRVType *SourceTy = GR.getOrCreateSPIRVPointerType( ValTy, I, TII, SPIRV::StorageClass::UniformConstant); SrcReg = MRI->createGenericVirtualRegister(LLT::scalar(64)); selectOpWithSrcs(SrcReg, SourceTy, I, {VarReg}, SPIRV::OpBitcast); } auto MIB = BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpCopyMemorySized)) .addUse(I.getOperand(0).getReg()) .addUse(SrcReg) .addUse(I.getOperand(2).getReg()); if (I.getNumMemOperands()) addMemoryOperands(*I.memoperands_begin(), MIB); Result &= MIB.constrainAllUses(TII, TRI, RBI); if (ResVReg.isValid() && ResVReg != MIB->getOperand(0).getReg()) Result &= BuildCOPY(ResVReg, MIB->getOperand(0).getReg(), I); return Result; } bool SPIRVInstructionSelector::selectAtomicRMW(Register ResVReg, const SPIRVType *ResType, MachineInstr &I, unsigned NewOpcode, unsigned NegateOpcode) const { bool Result = true; assert(I.hasOneMemOperand()); const MachineMemOperand *MemOp = *I.memoperands_begin(); uint32_t Scope = static_cast(getMemScope( GR.CurMF->getFunction().getContext(), MemOp->getSyncScopeID())); auto ScopeConstant = buildI32Constant(Scope, I); Register ScopeReg = ScopeConstant.first; Result &= ScopeConstant.second; Register Ptr = I.getOperand(1).getReg(); // TODO: Changed as it's implemented in the translator. See test/atomicrmw.ll // auto ScSem = // getMemSemanticsForStorageClass(GR.getPointerStorageClass(Ptr)); AtomicOrdering AO = MemOp->getSuccessOrdering(); uint32_t MemSem = static_cast(getMemSemantics(AO)); auto MemSemConstant = buildI32Constant(MemSem /*| ScSem*/, I); Register MemSemReg = MemSemConstant.first; Result &= MemSemConstant.second; Register ValueReg = I.getOperand(2).getReg(); if (NegateOpcode != 0) { // Translation with negative value operand is requested Register TmpReg = MRI->createVirtualRegister(&SPIRV::iIDRegClass); Result &= selectOpWithSrcs(TmpReg, ResType, I, {ValueReg}, NegateOpcode); ValueReg = TmpReg; } return Result && BuildMI(*I.getParent(), I, I.getDebugLoc(), TII.get(NewOpcode)) .addDef(ResVReg) .addUse(GR.getSPIRVTypeID(ResType)) .addUse(Ptr) .addUse(ScopeReg) .addUse(MemSemReg) .addUse(ValueReg) .constrainAllUses(TII, TRI, RBI); } bool SPIRVInstructionSelector::selectUnmergeValues(MachineInstr &I) const { unsigned ArgI = I.getNumOperands() - 1; Register SrcReg = I.getOperand(ArgI).isReg() ? I.getOperand(ArgI).getReg() : Register(0); SPIRVType *DefType = SrcReg.isValid() ? GR.getSPIRVTypeForVReg(SrcReg) : nullptr; if (!DefType || DefType->getOpcode() != SPIRV::OpTypeVector) report_fatal_error( "cannot select G_UNMERGE_VALUES with a non-vector argument"); SPIRVType *ScalarType = GR.getSPIRVTypeForVReg(DefType->getOperand(1).getReg()); MachineBasicBlock &BB = *I.getParent(); bool Res = false; for (unsigned i = 0; i < I.getNumDefs(); ++i) { Register ResVReg = I.getOperand(i).getReg(); SPIRVType *ResType = GR.getSPIRVTypeForVReg(ResVReg); if (!ResType) { // There was no "assign type" actions, let's fix this now ResType = ScalarType; MRI->setRegClass(ResVReg, GR.getRegClass(ResType)); MRI->setType(ResVReg, LLT::scalar(GR.getScalarOrVectorBitWidth(ResType))); GR.assignSPIRVTypeToVReg(ResType, ResVReg, *GR.CurMF); } auto MIB = BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpCompositeExtract)) .addDef(ResVReg) .addUse(GR.getSPIRVTypeID(ResType)) .addUse(SrcReg) .addImm(static_cast(i)); Res |= MIB.constrainAllUses(TII, TRI, RBI); } return Res; } bool SPIRVInstructionSelector::selectFence(MachineInstr &I) const { AtomicOrdering AO = AtomicOrdering(I.getOperand(0).getImm()); uint32_t MemSem = static_cast(getMemSemantics(AO)); auto MemSemConstant = buildI32Constant(MemSem, I); Register MemSemReg = MemSemConstant.first; bool Result = MemSemConstant.second; SyncScope::ID Ord = SyncScope::ID(I.getOperand(1).getImm()); uint32_t Scope = static_cast( getMemScope(GR.CurMF->getFunction().getContext(), Ord)); auto ScopeConstant = buildI32Constant(Scope, I); Register ScopeReg = ScopeConstant.first; Result &= ScopeConstant.second; MachineBasicBlock &BB = *I.getParent(); return Result && BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpMemoryBarrier)) .addUse(ScopeReg) .addUse(MemSemReg) .constrainAllUses(TII, TRI, RBI); } bool SPIRVInstructionSelector::selectOverflowArith(Register ResVReg, const SPIRVType *ResType, MachineInstr &I, unsigned Opcode) const { Type *ResTy = nullptr; StringRef ResName; if (!GR.findValueAttrs(&I, ResTy, ResName)) report_fatal_error( "Not enough info to select the arithmetic with overflow instruction"); if (!ResTy || !ResTy->isStructTy()) report_fatal_error("Expect struct type result for the arithmetic " "with overflow instruction"); // "Result Type must be from OpTypeStruct. The struct must have two members, // and the two members must be the same type." Type *ResElemTy = cast(ResTy)->getElementType(0); ResTy = StructType::get(ResElemTy, ResElemTy); // Build SPIR-V types and constant(s) if needed. MachineIRBuilder MIRBuilder(I); SPIRVType *StructType = GR.getOrCreateSPIRVType( ResTy, MIRBuilder, SPIRV::AccessQualifier::ReadWrite, false); assert(I.getNumDefs() > 1 && "Not enought operands"); SPIRVType *BoolType = GR.getOrCreateSPIRVBoolType(I, TII); unsigned N = GR.getScalarOrVectorComponentCount(ResType); if (N > 1) BoolType = GR.getOrCreateSPIRVVectorType(BoolType, N, I, TII); Register BoolTypeReg = GR.getSPIRVTypeID(BoolType); Register ZeroReg = buildZerosVal(ResType, I); // A new virtual register to store the result struct. Register StructVReg = MRI->createGenericVirtualRegister(LLT::scalar(64)); MRI->setRegClass(StructVReg, &SPIRV::IDRegClass); // Build the result name if needed. if (ResName.size() > 0) buildOpName(StructVReg, ResName, MIRBuilder); // Build the arithmetic with overflow instruction. MachineBasicBlock &BB = *I.getParent(); auto MIB = BuildMI(BB, MIRBuilder.getInsertPt(), I.getDebugLoc(), TII.get(Opcode)) .addDef(StructVReg) .addUse(GR.getSPIRVTypeID(StructType)); for (unsigned i = I.getNumDefs(); i < I.getNumOperands(); ++i) MIB.addUse(I.getOperand(i).getReg()); bool Result = MIB.constrainAllUses(TII, TRI, RBI); // Build instructions to extract fields of the instruction's result. // A new virtual register to store the higher part of the result struct. Register HigherVReg = MRI->createGenericVirtualRegister(LLT::scalar(64)); MRI->setRegClass(HigherVReg, &SPIRV::iIDRegClass); for (unsigned i = 0; i < I.getNumDefs(); ++i) { auto MIB = BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpCompositeExtract)) .addDef(i == 1 ? HigherVReg : I.getOperand(i).getReg()) .addUse(GR.getSPIRVTypeID(ResType)) .addUse(StructVReg) .addImm(i); Result &= MIB.constrainAllUses(TII, TRI, RBI); } // Build boolean value from the higher part. return Result && BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpINotEqual)) .addDef(I.getOperand(1).getReg()) .addUse(BoolTypeReg) .addUse(HigherVReg) .addUse(ZeroReg) .constrainAllUses(TII, TRI, RBI); } bool SPIRVInstructionSelector::selectAtomicCmpXchg(Register ResVReg, const SPIRVType *ResType, MachineInstr &I) const { bool Result = true; Register ScopeReg; Register MemSemEqReg; Register MemSemNeqReg; Register Ptr = I.getOperand(2).getReg(); if (!isa(I)) { assert(I.hasOneMemOperand()); const MachineMemOperand *MemOp = *I.memoperands_begin(); unsigned Scope = static_cast(getMemScope( GR.CurMF->getFunction().getContext(), MemOp->getSyncScopeID())); auto ScopeConstant = buildI32Constant(Scope, I); ScopeReg = ScopeConstant.first; Result &= ScopeConstant.second; unsigned ScSem = static_cast( getMemSemanticsForStorageClass(GR.getPointerStorageClass(Ptr))); AtomicOrdering AO = MemOp->getSuccessOrdering(); unsigned MemSemEq = static_cast(getMemSemantics(AO)) | ScSem; auto MemSemEqConstant = buildI32Constant(MemSemEq, I); MemSemEqReg = MemSemEqConstant.first; Result &= MemSemEqConstant.second; AtomicOrdering FO = MemOp->getFailureOrdering(); unsigned MemSemNeq = static_cast(getMemSemantics(FO)) | ScSem; if (MemSemEq == MemSemNeq) MemSemNeqReg = MemSemEqReg; else { auto MemSemNeqConstant = buildI32Constant(MemSemEq, I); MemSemNeqReg = MemSemNeqConstant.first; Result &= MemSemNeqConstant.second; } } else { ScopeReg = I.getOperand(5).getReg(); MemSemEqReg = I.getOperand(6).getReg(); MemSemNeqReg = I.getOperand(7).getReg(); } Register Cmp = I.getOperand(3).getReg(); Register Val = I.getOperand(4).getReg(); SPIRVType *SpvValTy = GR.getSPIRVTypeForVReg(Val); Register ACmpRes = MRI->createVirtualRegister(&SPIRV::iIDRegClass); const DebugLoc &DL = I.getDebugLoc(); Result &= BuildMI(*I.getParent(), I, DL, TII.get(SPIRV::OpAtomicCompareExchange)) .addDef(ACmpRes) .addUse(GR.getSPIRVTypeID(SpvValTy)) .addUse(Ptr) .addUse(ScopeReg) .addUse(MemSemEqReg) .addUse(MemSemNeqReg) .addUse(Val) .addUse(Cmp) .constrainAllUses(TII, TRI, RBI); Register CmpSuccReg = MRI->createVirtualRegister(&SPIRV::iIDRegClass); SPIRVType *BoolTy = GR.getOrCreateSPIRVBoolType(I, TII); Result &= BuildMI(*I.getParent(), I, DL, TII.get(SPIRV::OpIEqual)) .addDef(CmpSuccReg) .addUse(GR.getSPIRVTypeID(BoolTy)) .addUse(ACmpRes) .addUse(Cmp) .constrainAllUses(TII, TRI, RBI); Register TmpReg = MRI->createVirtualRegister(&SPIRV::iIDRegClass); Result &= BuildMI(*I.getParent(), I, DL, TII.get(SPIRV::OpCompositeInsert)) .addDef(TmpReg) .addUse(GR.getSPIRVTypeID(ResType)) .addUse(ACmpRes) .addUse(GR.getOrCreateUndef(I, ResType, TII)) .addImm(0) .constrainAllUses(TII, TRI, RBI); return Result && BuildMI(*I.getParent(), I, DL, TII.get(SPIRV::OpCompositeInsert)) .addDef(ResVReg) .addUse(GR.getSPIRVTypeID(ResType)) .addUse(CmpSuccReg) .addUse(TmpReg) .addImm(1) .constrainAllUses(TII, TRI, RBI); } static bool isGenericCastablePtr(SPIRV::StorageClass::StorageClass SC) { switch (SC) { case SPIRV::StorageClass::Workgroup: case SPIRV::StorageClass::CrossWorkgroup: case SPIRV::StorageClass::Function: return true; default: return false; } } static bool isUSMStorageClass(SPIRV::StorageClass::StorageClass SC) { switch (SC) { case SPIRV::StorageClass::DeviceOnlyINTEL: case SPIRV::StorageClass::HostOnlyINTEL: return true; default: return false; } } // Returns true ResVReg is referred only from global vars and OpName's. static bool isASCastInGVar(MachineRegisterInfo *MRI, Register ResVReg) { bool IsGRef = false; bool IsAllowedRefs = std::all_of(MRI->use_instr_begin(ResVReg), MRI->use_instr_end(), [&IsGRef](auto const &It) { unsigned Opcode = It.getOpcode(); if (Opcode == SPIRV::OpConstantComposite || Opcode == SPIRV::OpVariable || isSpvIntrinsic(It, Intrinsic::spv_init_global)) return IsGRef = true; return Opcode == SPIRV::OpName; }); return IsAllowedRefs && IsGRef; } Register SPIRVInstructionSelector::getUcharPtrTypeReg( MachineInstr &I, SPIRV::StorageClass::StorageClass SC) const { return GR.getSPIRVTypeID(GR.getOrCreateSPIRVPointerType( GR.getOrCreateSPIRVIntegerType(8, I, TII), I, TII, SC)); } MachineInstrBuilder SPIRVInstructionSelector::buildSpecConstantOp(MachineInstr &I, Register Dest, Register Src, Register DestType, uint32_t Opcode) const { return BuildMI(*I.getParent(), I, I.getDebugLoc(), TII.get(SPIRV::OpSpecConstantOp)) .addDef(Dest) .addUse(DestType) .addImm(Opcode) .addUse(Src); } MachineInstrBuilder SPIRVInstructionSelector::buildConstGenericPtr(MachineInstr &I, Register SrcPtr, SPIRVType *SrcPtrTy) const { SPIRVType *GenericPtrTy = GR.getOrCreateSPIRVPointerType( GR.getPointeeType(SrcPtrTy), I, TII, SPIRV::StorageClass::Generic); Register Tmp = MRI->createVirtualRegister(&SPIRV::pIDRegClass); MRI->setType(Tmp, LLT::pointer(storageClassToAddressSpace( SPIRV::StorageClass::Generic), GR.getPointerSize())); MachineFunction *MF = I.getParent()->getParent(); GR.assignSPIRVTypeToVReg(GenericPtrTy, Tmp, *MF); MachineInstrBuilder MIB = buildSpecConstantOp( I, Tmp, SrcPtr, GR.getSPIRVTypeID(GenericPtrTy), static_cast(SPIRV::Opcode::PtrCastToGeneric)); GR.add(MIB.getInstr(), MF, Tmp); return MIB; } // In SPIR-V address space casting can only happen to and from the Generic // storage class. We can also only cast Workgroup, CrossWorkgroup, or Function // pointers to and from Generic pointers. As such, we can convert e.g. from // Workgroup to Function by going via a Generic pointer as an intermediary. All // other combinations can only be done by a bitcast, and are probably not safe. bool SPIRVInstructionSelector::selectAddrSpaceCast(Register ResVReg, const SPIRVType *ResType, MachineInstr &I) const { MachineBasicBlock &BB = *I.getParent(); const DebugLoc &DL = I.getDebugLoc(); Register SrcPtr = I.getOperand(1).getReg(); SPIRVType *SrcPtrTy = GR.getSPIRVTypeForVReg(SrcPtr); // don't generate a cast for a null that may be represented by OpTypeInt if (SrcPtrTy->getOpcode() != SPIRV::OpTypePointer || ResType->getOpcode() != SPIRV::OpTypePointer) return BuildCOPY(ResVReg, SrcPtr, I); SPIRV::StorageClass::StorageClass SrcSC = GR.getPointerStorageClass(SrcPtrTy); SPIRV::StorageClass::StorageClass DstSC = GR.getPointerStorageClass(ResType); if (isASCastInGVar(MRI, ResVReg)) { // AddrSpaceCast uses within OpVariable and OpConstantComposite instructions // are expressed by OpSpecConstantOp with an Opcode. // TODO: maybe insert a check whether the Kernel capability was declared and // so PtrCastToGeneric/GenericCastToPtr are available. unsigned SpecOpcode = DstSC == SPIRV::StorageClass::Generic && isGenericCastablePtr(SrcSC) ? static_cast(SPIRV::Opcode::PtrCastToGeneric) : (SrcSC == SPIRV::StorageClass::Generic && isGenericCastablePtr(DstSC) ? static_cast(SPIRV::Opcode::GenericCastToPtr) : 0); // TODO: OpConstantComposite expects i8*, so we are forced to forget a // correct value of ResType and use general i8* instead. Maybe this should // be addressed in the emit-intrinsic step to infer a correct // OpConstantComposite type. if (SpecOpcode) { return buildSpecConstantOp(I, ResVReg, SrcPtr, getUcharPtrTypeReg(I, DstSC), SpecOpcode) .constrainAllUses(TII, TRI, RBI); } else if (isGenericCastablePtr(SrcSC) && isGenericCastablePtr(DstSC)) { MachineInstrBuilder MIB = buildConstGenericPtr(I, SrcPtr, SrcPtrTy); return MIB.constrainAllUses(TII, TRI, RBI) && buildSpecConstantOp( I, ResVReg, MIB->getOperand(0).getReg(), getUcharPtrTypeReg(I, DstSC), static_cast(SPIRV::Opcode::GenericCastToPtr)) .constrainAllUses(TII, TRI, RBI); } } // don't generate a cast between identical storage classes if (SrcSC == DstSC) return BuildCOPY(ResVReg, SrcPtr, I); if ((SrcSC == SPIRV::StorageClass::Function && DstSC == SPIRV::StorageClass::Private) || (DstSC == SPIRV::StorageClass::Function && SrcSC == SPIRV::StorageClass::Private)) return BuildCOPY(ResVReg, SrcPtr, I); // Casting from an eligible pointer to Generic. if (DstSC == SPIRV::StorageClass::Generic && isGenericCastablePtr(SrcSC)) return selectUnOp(ResVReg, ResType, I, SPIRV::OpPtrCastToGeneric); // Casting from Generic to an eligible pointer. if (SrcSC == SPIRV::StorageClass::Generic && isGenericCastablePtr(DstSC)) return selectUnOp(ResVReg, ResType, I, SPIRV::OpGenericCastToPtr); // Casting between 2 eligible pointers using Generic as an intermediary. if (isGenericCastablePtr(SrcSC) && isGenericCastablePtr(DstSC)) { Register Tmp = MRI->createVirtualRegister(&SPIRV::iIDRegClass); SPIRVType *GenericPtrTy = GR.getOrCreateSPIRVPointerType( GR.getPointeeType(SrcPtrTy), I, TII, SPIRV::StorageClass::Generic); bool Result = BuildMI(BB, I, DL, TII.get(SPIRV::OpPtrCastToGeneric)) .addDef(Tmp) .addUse(GR.getSPIRVTypeID(GenericPtrTy)) .addUse(SrcPtr) .constrainAllUses(TII, TRI, RBI); return Result && BuildMI(BB, I, DL, TII.get(SPIRV::OpGenericCastToPtr)) .addDef(ResVReg) .addUse(GR.getSPIRVTypeID(ResType)) .addUse(Tmp) .constrainAllUses(TII, TRI, RBI); } // Check if instructions from the SPV_INTEL_usm_storage_classes extension may // be applied if (isUSMStorageClass(SrcSC) && DstSC == SPIRV::StorageClass::CrossWorkgroup) return selectUnOp(ResVReg, ResType, I, SPIRV::OpPtrCastToCrossWorkgroupINTEL); if (SrcSC == SPIRV::StorageClass::CrossWorkgroup && isUSMStorageClass(DstSC)) return selectUnOp(ResVReg, ResType, I, SPIRV::OpCrossWorkgroupCastToPtrINTEL); if (isUSMStorageClass(SrcSC) && DstSC == SPIRV::StorageClass::Generic) return selectUnOp(ResVReg, ResType, I, SPIRV::OpPtrCastToGeneric); if (SrcSC == SPIRV::StorageClass::Generic && isUSMStorageClass(DstSC)) return selectUnOp(ResVReg, ResType, I, SPIRV::OpGenericCastToPtr); // Bitcast for pointers requires that the address spaces must match return false; } static unsigned getFCmpOpcode(unsigned PredNum) { auto Pred = static_cast(PredNum); switch (Pred) { case CmpInst::FCMP_OEQ: return SPIRV::OpFOrdEqual; case CmpInst::FCMP_OGE: return SPIRV::OpFOrdGreaterThanEqual; case CmpInst::FCMP_OGT: return SPIRV::OpFOrdGreaterThan; case CmpInst::FCMP_OLE: return SPIRV::OpFOrdLessThanEqual; case CmpInst::FCMP_OLT: return SPIRV::OpFOrdLessThan; case CmpInst::FCMP_ONE: return SPIRV::OpFOrdNotEqual; case CmpInst::FCMP_ORD: return SPIRV::OpOrdered; case CmpInst::FCMP_UEQ: return SPIRV::OpFUnordEqual; case CmpInst::FCMP_UGE: return SPIRV::OpFUnordGreaterThanEqual; case CmpInst::FCMP_UGT: return SPIRV::OpFUnordGreaterThan; case CmpInst::FCMP_ULE: return SPIRV::OpFUnordLessThanEqual; case CmpInst::FCMP_ULT: return SPIRV::OpFUnordLessThan; case CmpInst::FCMP_UNE: return SPIRV::OpFUnordNotEqual; case CmpInst::FCMP_UNO: return SPIRV::OpUnordered; default: llvm_unreachable("Unknown predicate type for FCmp"); } } static unsigned getICmpOpcode(unsigned PredNum) { auto Pred = static_cast(PredNum); switch (Pred) { case CmpInst::ICMP_EQ: return SPIRV::OpIEqual; case CmpInst::ICMP_NE: return SPIRV::OpINotEqual; case CmpInst::ICMP_SGE: return SPIRV::OpSGreaterThanEqual; case CmpInst::ICMP_SGT: return SPIRV::OpSGreaterThan; case CmpInst::ICMP_SLE: return SPIRV::OpSLessThanEqual; case CmpInst::ICMP_SLT: return SPIRV::OpSLessThan; case CmpInst::ICMP_UGE: return SPIRV::OpUGreaterThanEqual; case CmpInst::ICMP_UGT: return SPIRV::OpUGreaterThan; case CmpInst::ICMP_ULE: return SPIRV::OpULessThanEqual; case CmpInst::ICMP_ULT: return SPIRV::OpULessThan; default: llvm_unreachable("Unknown predicate type for ICmp"); } } static unsigned getPtrCmpOpcode(unsigned Pred) { switch (static_cast(Pred)) { case CmpInst::ICMP_EQ: return SPIRV::OpPtrEqual; case CmpInst::ICMP_NE: return SPIRV::OpPtrNotEqual; default: llvm_unreachable("Unknown predicate type for pointer comparison"); } } // Return the logical operation, or abort if none exists. static unsigned getBoolCmpOpcode(unsigned PredNum) { auto Pred = static_cast(PredNum); switch (Pred) { case CmpInst::ICMP_EQ: return SPIRV::OpLogicalEqual; case CmpInst::ICMP_NE: return SPIRV::OpLogicalNotEqual; default: llvm_unreachable("Unknown predicate type for Bool comparison"); } } static APFloat getZeroFP(const Type *LLVMFloatTy) { if (!LLVMFloatTy) return APFloat::getZero(APFloat::IEEEsingle()); switch (LLVMFloatTy->getScalarType()->getTypeID()) { case Type::HalfTyID: return APFloat::getZero(APFloat::IEEEhalf()); default: case Type::FloatTyID: return APFloat::getZero(APFloat::IEEEsingle()); case Type::DoubleTyID: return APFloat::getZero(APFloat::IEEEdouble()); } } static APFloat getOneFP(const Type *LLVMFloatTy) { if (!LLVMFloatTy) return APFloat::getOne(APFloat::IEEEsingle()); switch (LLVMFloatTy->getScalarType()->getTypeID()) { case Type::HalfTyID: return APFloat::getOne(APFloat::IEEEhalf()); default: case Type::FloatTyID: return APFloat::getOne(APFloat::IEEEsingle()); case Type::DoubleTyID: return APFloat::getOne(APFloat::IEEEdouble()); } } bool SPIRVInstructionSelector::selectAnyOrAll(Register ResVReg, const SPIRVType *ResType, MachineInstr &I, unsigned OpAnyOrAll) const { assert(I.getNumOperands() == 3); assert(I.getOperand(2).isReg()); MachineBasicBlock &BB = *I.getParent(); Register InputRegister = I.getOperand(2).getReg(); SPIRVType *InputType = GR.getSPIRVTypeForVReg(InputRegister); if (!InputType) report_fatal_error("Input Type could not be determined."); bool IsBoolTy = GR.isScalarOrVectorOfType(InputRegister, SPIRV::OpTypeBool); bool IsVectorTy = InputType->getOpcode() == SPIRV::OpTypeVector; if (IsBoolTy && !IsVectorTy) { assert(ResVReg == I.getOperand(0).getReg()); return BuildCOPY(ResVReg, InputRegister, I); } bool IsFloatTy = GR.isScalarOrVectorOfType(InputRegister, SPIRV::OpTypeFloat); unsigned SpirvNotEqualId = IsFloatTy ? SPIRV::OpFOrdNotEqual : SPIRV::OpINotEqual; SPIRVType *SpvBoolScalarTy = GR.getOrCreateSPIRVBoolType(I, TII); SPIRVType *SpvBoolTy = SpvBoolScalarTy; Register NotEqualReg = ResVReg; if (IsVectorTy) { NotEqualReg = IsBoolTy ? InputRegister : MRI->createVirtualRegister(&SPIRV::iIDRegClass); const unsigned NumElts = InputType->getOperand(2).getImm(); SpvBoolTy = GR.getOrCreateSPIRVVectorType(SpvBoolTy, NumElts, I, TII); } bool Result = true; if (!IsBoolTy) { Register ConstZeroReg = IsFloatTy ? buildZerosValF(InputType, I) : buildZerosVal(InputType, I); Result &= BuildMI(BB, I, I.getDebugLoc(), TII.get(SpirvNotEqualId)) .addDef(NotEqualReg) .addUse(GR.getSPIRVTypeID(SpvBoolTy)) .addUse(InputRegister) .addUse(ConstZeroReg) .constrainAllUses(TII, TRI, RBI); } if (!IsVectorTy) return Result; return Result && BuildMI(BB, I, I.getDebugLoc(), TII.get(OpAnyOrAll)) .addDef(ResVReg) .addUse(GR.getSPIRVTypeID(SpvBoolScalarTy)) .addUse(NotEqualReg) .constrainAllUses(TII, TRI, RBI); } bool SPIRVInstructionSelector::selectAll(Register ResVReg, const SPIRVType *ResType, MachineInstr &I) const { return selectAnyOrAll(ResVReg, ResType, I, SPIRV::OpAll); } bool SPIRVInstructionSelector::selectAny(Register ResVReg, const SPIRVType *ResType, MachineInstr &I) const { return selectAnyOrAll(ResVReg, ResType, I, SPIRV::OpAny); } // Select the OpDot instruction for the given float dot bool SPIRVInstructionSelector::selectFloatDot(Register ResVReg, const SPIRVType *ResType, MachineInstr &I) const { assert(I.getNumOperands() == 4); assert(I.getOperand(2).isReg()); assert(I.getOperand(3).isReg()); [[maybe_unused]] SPIRVType *VecType = GR.getSPIRVTypeForVReg(I.getOperand(2).getReg()); assert(VecType->getOpcode() == SPIRV::OpTypeVector && GR.getScalarOrVectorComponentCount(VecType) > 1 && "dot product requires a vector of at least 2 components"); [[maybe_unused]] SPIRVType *EltType = GR.getSPIRVTypeForVReg(VecType->getOperand(1).getReg()); assert(EltType->getOpcode() == SPIRV::OpTypeFloat); MachineBasicBlock &BB = *I.getParent(); return BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpDot)) .addDef(ResVReg) .addUse(GR.getSPIRVTypeID(ResType)) .addUse(I.getOperand(2).getReg()) .addUse(I.getOperand(3).getReg()) .constrainAllUses(TII, TRI, RBI); } bool SPIRVInstructionSelector::selectIntegerDot(Register ResVReg, const SPIRVType *ResType, MachineInstr &I, bool Signed) const { assert(I.getNumOperands() == 4); assert(I.getOperand(2).isReg()); assert(I.getOperand(3).isReg()); MachineBasicBlock &BB = *I.getParent(); auto DotOp = Signed ? SPIRV::OpSDot : SPIRV::OpUDot; return BuildMI(BB, I, I.getDebugLoc(), TII.get(DotOp)) .addDef(ResVReg) .addUse(GR.getSPIRVTypeID(ResType)) .addUse(I.getOperand(2).getReg()) .addUse(I.getOperand(3).getReg()) .constrainAllUses(TII, TRI, RBI); } // Since pre-1.6 SPIRV has no integer dot implementation, // expand by piecewise multiplying and adding the results bool SPIRVInstructionSelector::selectIntegerDotExpansion( Register ResVReg, const SPIRVType *ResType, MachineInstr &I) const { assert(I.getNumOperands() == 4); assert(I.getOperand(2).isReg()); assert(I.getOperand(3).isReg()); MachineBasicBlock &BB = *I.getParent(); // Multiply the vectors, then sum the results Register Vec0 = I.getOperand(2).getReg(); Register Vec1 = I.getOperand(3).getReg(); Register TmpVec = MRI->createVirtualRegister(GR.getRegClass(ResType)); SPIRVType *VecType = GR.getSPIRVTypeForVReg(Vec0); bool Result = BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpIMulV)) .addDef(TmpVec) .addUse(GR.getSPIRVTypeID(VecType)) .addUse(Vec0) .addUse(Vec1) .constrainAllUses(TII, TRI, RBI); assert(VecType->getOpcode() == SPIRV::OpTypeVector && GR.getScalarOrVectorComponentCount(VecType) > 1 && "dot product requires a vector of at least 2 components"); Register Res = MRI->createVirtualRegister(GR.getRegClass(ResType)); Result &= BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpCompositeExtract)) .addDef(Res) .addUse(GR.getSPIRVTypeID(ResType)) .addUse(TmpVec) .addImm(0) .constrainAllUses(TII, TRI, RBI); for (unsigned i = 1; i < GR.getScalarOrVectorComponentCount(VecType); i++) { Register Elt = MRI->createVirtualRegister(GR.getRegClass(ResType)); Result &= BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpCompositeExtract)) .addDef(Elt) .addUse(GR.getSPIRVTypeID(ResType)) .addUse(TmpVec) .addImm(i) .constrainAllUses(TII, TRI, RBI); Register Sum = i < GR.getScalarOrVectorComponentCount(VecType) - 1 ? MRI->createVirtualRegister(GR.getRegClass(ResType)) : ResVReg; Result &= BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpIAddS)) .addDef(Sum) .addUse(GR.getSPIRVTypeID(ResType)) .addUse(Res) .addUse(Elt) .constrainAllUses(TII, TRI, RBI); Res = Sum; } return Result; } template bool SPIRVInstructionSelector::selectDot4AddPacked(Register ResVReg, const SPIRVType *ResType, MachineInstr &I) const { assert(I.getNumOperands() == 5); assert(I.getOperand(2).isReg()); assert(I.getOperand(3).isReg()); assert(I.getOperand(4).isReg()); MachineBasicBlock &BB = *I.getParent(); auto DotOp = Signed ? SPIRV::OpSDot : SPIRV::OpUDot; Register Dot = MRI->createVirtualRegister(GR.getRegClass(ResType)); bool Result = BuildMI(BB, I, I.getDebugLoc(), TII.get(DotOp)) .addDef(Dot) .addUse(GR.getSPIRVTypeID(ResType)) .addUse(I.getOperand(2).getReg()) .addUse(I.getOperand(3).getReg()) .constrainAllUses(TII, TRI, RBI); return Result && BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpIAddS)) .addDef(ResVReg) .addUse(GR.getSPIRVTypeID(ResType)) .addUse(Dot) .addUse(I.getOperand(4).getReg()) .constrainAllUses(TII, TRI, RBI); } // Since pre-1.6 SPIRV has no DotProductInput4x8BitPacked implementation, // extract the elements of the packed inputs, multiply them and add the result // to the accumulator. template bool SPIRVInstructionSelector::selectDot4AddPackedExpansion( Register ResVReg, const SPIRVType *ResType, MachineInstr &I) const { assert(I.getNumOperands() == 5); assert(I.getOperand(2).isReg()); assert(I.getOperand(3).isReg()); assert(I.getOperand(4).isReg()); MachineBasicBlock &BB = *I.getParent(); bool Result = true; // Acc = C Register Acc = I.getOperand(4).getReg(); SPIRVType *EltType = GR.getOrCreateSPIRVIntegerType(8, I, TII); auto ExtractOp = Signed ? SPIRV::OpBitFieldSExtract : SPIRV::OpBitFieldUExtract; // Extract the i8 element, multiply and add it to the accumulator for (unsigned i = 0; i < 4; i++) { // A[i] Register AElt = MRI->createVirtualRegister(&SPIRV::IDRegClass); Result &= BuildMI(BB, I, I.getDebugLoc(), TII.get(ExtractOp)) .addDef(AElt) .addUse(GR.getSPIRVTypeID(ResType)) .addUse(I.getOperand(2).getReg()) .addUse(GR.getOrCreateConstInt(i * 8, I, EltType, TII)) .addUse(GR.getOrCreateConstInt(8, I, EltType, TII)) .constrainAllUses(TII, TRI, RBI); // B[i] Register BElt = MRI->createVirtualRegister(&SPIRV::IDRegClass); Result &= BuildMI(BB, I, I.getDebugLoc(), TII.get(ExtractOp)) .addDef(BElt) .addUse(GR.getSPIRVTypeID(ResType)) .addUse(I.getOperand(3).getReg()) .addUse(GR.getOrCreateConstInt(i * 8, I, EltType, TII)) .addUse(GR.getOrCreateConstInt(8, I, EltType, TII)) .constrainAllUses(TII, TRI, RBI); // A[i] * B[i] Register Mul = MRI->createVirtualRegister(&SPIRV::IDRegClass); Result &= BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpIMulS)) .addDef(Mul) .addUse(GR.getSPIRVTypeID(ResType)) .addUse(AElt) .addUse(BElt) .constrainAllUses(TII, TRI, RBI); // Discard 24 highest-bits so that stored i32 register is i8 equivalent Register MaskMul = MRI->createVirtualRegister(&SPIRV::IDRegClass); Result &= BuildMI(BB, I, I.getDebugLoc(), TII.get(ExtractOp)) .addDef(MaskMul) .addUse(GR.getSPIRVTypeID(ResType)) .addUse(Mul) .addUse(GR.getOrCreateConstInt(0, I, EltType, TII)) .addUse(GR.getOrCreateConstInt(8, I, EltType, TII)) .constrainAllUses(TII, TRI, RBI); // Acc = Acc + A[i] * B[i] Register Sum = i < 3 ? MRI->createVirtualRegister(&SPIRV::IDRegClass) : ResVReg; Result &= BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpIAddS)) .addDef(Sum) .addUse(GR.getSPIRVTypeID(ResType)) .addUse(Acc) .addUse(MaskMul) .constrainAllUses(TII, TRI, RBI); Acc = Sum; } return Result; } /// Transform saturate(x) to clamp(x, 0.0f, 1.0f) as SPIRV /// does not have a saturate builtin. bool SPIRVInstructionSelector::selectSaturate(Register ResVReg, const SPIRVType *ResType, MachineInstr &I) const { assert(I.getNumOperands() == 3); assert(I.getOperand(2).isReg()); MachineBasicBlock &BB = *I.getParent(); Register VZero = buildZerosValF(ResType, I); Register VOne = buildOnesValF(ResType, I); return BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpExtInst)) .addDef(ResVReg) .addUse(GR.getSPIRVTypeID(ResType)) .addImm(static_cast(SPIRV::InstructionSet::GLSL_std_450)) .addImm(GL::FClamp) .addUse(I.getOperand(2).getReg()) .addUse(VZero) .addUse(VOne) .constrainAllUses(TII, TRI, RBI); } bool SPIRVInstructionSelector::selectSign(Register ResVReg, const SPIRVType *ResType, MachineInstr &I) const { assert(I.getNumOperands() == 3); assert(I.getOperand(2).isReg()); MachineBasicBlock &BB = *I.getParent(); Register InputRegister = I.getOperand(2).getReg(); SPIRVType *InputType = GR.getSPIRVTypeForVReg(InputRegister); auto &DL = I.getDebugLoc(); if (!InputType) report_fatal_error("Input Type could not be determined."); bool IsFloatTy = GR.isScalarOrVectorOfType(InputRegister, SPIRV::OpTypeFloat); unsigned SignBitWidth = GR.getScalarOrVectorBitWidth(InputType); unsigned ResBitWidth = GR.getScalarOrVectorBitWidth(ResType); bool NeedsConversion = IsFloatTy || SignBitWidth != ResBitWidth; auto SignOpcode = IsFloatTy ? GL::FSign : GL::SSign; Register SignReg = NeedsConversion ? MRI->createVirtualRegister(&SPIRV::IDRegClass) : ResVReg; bool Result = BuildMI(BB, I, DL, TII.get(SPIRV::OpExtInst)) .addDef(SignReg) .addUse(GR.getSPIRVTypeID(InputType)) .addImm(static_cast(SPIRV::InstructionSet::GLSL_std_450)) .addImm(SignOpcode) .addUse(InputRegister) .constrainAllUses(TII, TRI, RBI); if (NeedsConversion) { auto ConvertOpcode = IsFloatTy ? SPIRV::OpConvertFToS : SPIRV::OpSConvert; Result &= BuildMI(*I.getParent(), I, DL, TII.get(ConvertOpcode)) .addDef(ResVReg) .addUse(GR.getSPIRVTypeID(ResType)) .addUse(SignReg) .constrainAllUses(TII, TRI, RBI); } return Result; } bool SPIRVInstructionSelector::selectWaveOpInst(Register ResVReg, const SPIRVType *ResType, MachineInstr &I, unsigned Opcode) const { MachineBasicBlock &BB = *I.getParent(); SPIRVType *IntTy = GR.getOrCreateSPIRVIntegerType(32, I, TII); auto BMI = BuildMI(BB, I, I.getDebugLoc(), TII.get(Opcode)) .addDef(ResVReg) .addUse(GR.getSPIRVTypeID(ResType)) .addUse(GR.getOrCreateConstInt(SPIRV::Scope::Subgroup, I, IntTy, TII)); for (unsigned J = 2; J < I.getNumOperands(); J++) { BMI.addUse(I.getOperand(J).getReg()); } return BMI.constrainAllUses(TII, TRI, RBI); } bool SPIRVInstructionSelector::selectWaveActiveCountBits( Register ResVReg, const SPIRVType *ResType, MachineInstr &I) const { SPIRVType *IntTy = GR.getOrCreateSPIRVIntegerType(32, I, TII); SPIRVType *BallotType = GR.getOrCreateSPIRVVectorType(IntTy, 4, I, TII); Register BallotReg = MRI->createVirtualRegister(GR.getRegClass(BallotType)); bool Result = selectWaveOpInst(BallotReg, BallotType, I, SPIRV::OpGroupNonUniformBallot); MachineBasicBlock &BB = *I.getParent(); Result &= BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpGroupNonUniformBallotBitCount)) .addDef(ResVReg) .addUse(GR.getSPIRVTypeID(ResType)) .addUse(GR.getOrCreateConstInt(SPIRV::Scope::Subgroup, I, IntTy, TII)) .addImm(SPIRV::GroupOperation::Reduce) .addUse(BallotReg) .constrainAllUses(TII, TRI, RBI); return Result; } bool SPIRVInstructionSelector::selectWaveReduceMax(Register ResVReg, const SPIRVType *ResType, MachineInstr &I, bool IsUnsigned) const { assert(I.getNumOperands() == 3); assert(I.getOperand(2).isReg()); MachineBasicBlock &BB = *I.getParent(); Register InputRegister = I.getOperand(2).getReg(); SPIRVType *InputType = GR.getSPIRVTypeForVReg(InputRegister); if (!InputType) report_fatal_error("Input Type could not be determined."); SPIRVType *IntTy = GR.getOrCreateSPIRVIntegerType(32, I, TII); // Retreive the operation to use based on input type bool IsFloatTy = GR.isScalarOrVectorOfType(InputRegister, SPIRV::OpTypeFloat); auto IntegerOpcodeType = IsUnsigned ? SPIRV::OpGroupNonUniformUMax : SPIRV::OpGroupNonUniformSMax; auto Opcode = IsFloatTy ? SPIRV::OpGroupNonUniformFMax : IntegerOpcodeType; return BuildMI(BB, I, I.getDebugLoc(), TII.get(Opcode)) .addDef(ResVReg) .addUse(GR.getSPIRVTypeID(ResType)) .addUse(GR.getOrCreateConstInt(SPIRV::Scope::Subgroup, I, IntTy, TII)) .addImm(SPIRV::GroupOperation::Reduce) .addUse(I.getOperand(2).getReg()) .constrainAllUses(TII, TRI, RBI); } bool SPIRVInstructionSelector::selectWaveReduceSum(Register ResVReg, const SPIRVType *ResType, MachineInstr &I) const { assert(I.getNumOperands() == 3); assert(I.getOperand(2).isReg()); MachineBasicBlock &BB = *I.getParent(); Register InputRegister = I.getOperand(2).getReg(); SPIRVType *InputType = GR.getSPIRVTypeForVReg(InputRegister); if (!InputType) report_fatal_error("Input Type could not be determined."); SPIRVType *IntTy = GR.getOrCreateSPIRVIntegerType(32, I, TII); // Retreive the operation to use based on input type bool IsFloatTy = GR.isScalarOrVectorOfType(InputRegister, SPIRV::OpTypeFloat); auto Opcode = IsFloatTy ? SPIRV::OpGroupNonUniformFAdd : SPIRV::OpGroupNonUniformIAdd; return BuildMI(BB, I, I.getDebugLoc(), TII.get(Opcode)) .addDef(ResVReg) .addUse(GR.getSPIRVTypeID(ResType)) .addUse(GR.getOrCreateConstInt(SPIRV::Scope::Subgroup, I, IntTy, TII)) .addImm(SPIRV::GroupOperation::Reduce) .addUse(I.getOperand(2).getReg()); } bool SPIRVInstructionSelector::selectBitreverse(Register ResVReg, const SPIRVType *ResType, MachineInstr &I) const { MachineBasicBlock &BB = *I.getParent(); return BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpBitReverse)) .addDef(ResVReg) .addUse(GR.getSPIRVTypeID(ResType)) .addUse(I.getOperand(1).getReg()) .constrainAllUses(TII, TRI, RBI); } bool SPIRVInstructionSelector::selectFreeze(Register ResVReg, const SPIRVType *ResType, MachineInstr &I) const { // There is no way to implement `freeze` correctly without support on SPIR-V // standard side, but we may at least address a simple (static) case when // undef/poison value presence is obvious. The main benefit of even // incomplete `freeze` support is preventing of translation from crashing due // to lack of support on legalization and instruction selection steps. if (!I.getOperand(0).isReg() || !I.getOperand(1).isReg()) return false; Register OpReg = I.getOperand(1).getReg(); if (MachineInstr *Def = MRI->getVRegDef(OpReg)) { Register Reg; switch (Def->getOpcode()) { case SPIRV::ASSIGN_TYPE: if (MachineInstr *AssignToDef = MRI->getVRegDef(Def->getOperand(1).getReg())) { if (AssignToDef->getOpcode() == TargetOpcode::G_IMPLICIT_DEF) Reg = Def->getOperand(2).getReg(); } break; case SPIRV::OpUndef: Reg = Def->getOperand(1).getReg(); break; } unsigned DestOpCode; if (Reg.isValid()) { DestOpCode = SPIRV::OpConstantNull; } else { DestOpCode = TargetOpcode::COPY; Reg = OpReg; } return BuildMI(*I.getParent(), I, I.getDebugLoc(), TII.get(DestOpCode)) .addDef(I.getOperand(0).getReg()) .addUse(Reg) .constrainAllUses(TII, TRI, RBI); } return false; } static unsigned getArrayComponentCount(MachineRegisterInfo *MRI, const SPIRVType *ResType) { Register OpReg = ResType->getOperand(2).getReg(); SPIRVType *OpDef = MRI->getVRegDef(OpReg); if (!OpDef) return 0; if (OpDef->getOpcode() == SPIRV::ASSIGN_TYPE && OpDef->getOperand(1).isReg()) { if (SPIRVType *RefDef = MRI->getVRegDef(OpDef->getOperand(1).getReg())) OpDef = RefDef; } unsigned N = OpDef->getOpcode() == TargetOpcode::G_CONSTANT ? OpDef->getOperand(1).getCImm()->getValue().getZExtValue() : 0; return N; } // Return true if the type represents a constant register static bool isConstReg(MachineRegisterInfo *MRI, SPIRVType *OpDef, SmallPtrSet &Visited) { if (OpDef->getOpcode() == SPIRV::ASSIGN_TYPE && OpDef->getOperand(1).isReg()) { if (SPIRVType *RefDef = MRI->getVRegDef(OpDef->getOperand(1).getReg())) OpDef = RefDef; } if (Visited.contains(OpDef)) return true; Visited.insert(OpDef); unsigned Opcode = OpDef->getOpcode(); switch (Opcode) { case TargetOpcode::G_CONSTANT: case TargetOpcode::G_FCONSTANT: return true; case TargetOpcode::G_INTRINSIC: case TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS: case TargetOpcode::G_INTRINSIC_CONVERGENT_W_SIDE_EFFECTS: return cast(*OpDef).getIntrinsicID() == Intrinsic::spv_const_composite; case TargetOpcode::G_BUILD_VECTOR: case TargetOpcode::G_SPLAT_VECTOR: { for (unsigned i = OpDef->getNumExplicitDefs(); i < OpDef->getNumOperands(); i++) { SPIRVType *OpNestedDef = OpDef->getOperand(i).isReg() ? MRI->getVRegDef(OpDef->getOperand(i).getReg()) : nullptr; if (OpNestedDef && !isConstReg(MRI, OpNestedDef, Visited)) return false; } return true; } } return false; } // Return true if the virtual register represents a constant static bool isConstReg(MachineRegisterInfo *MRI, Register OpReg) { SmallPtrSet Visited; if (SPIRVType *OpDef = MRI->getVRegDef(OpReg)) return isConstReg(MRI, OpDef, Visited); return false; } bool SPIRVInstructionSelector::selectBuildVector(Register ResVReg, const SPIRVType *ResType, MachineInstr &I) const { unsigned N = 0; if (ResType->getOpcode() == SPIRV::OpTypeVector) N = GR.getScalarOrVectorComponentCount(ResType); else if (ResType->getOpcode() == SPIRV::OpTypeArray) N = getArrayComponentCount(MRI, ResType); else report_fatal_error("Cannot select G_BUILD_VECTOR with a non-vector result"); if (I.getNumExplicitOperands() - I.getNumExplicitDefs() != N) report_fatal_error("G_BUILD_VECTOR and the result type are inconsistent"); // check if we may construct a constant vector bool IsConst = true; for (unsigned i = I.getNumExplicitDefs(); i < I.getNumExplicitOperands() && IsConst; ++i) if (!isConstReg(MRI, I.getOperand(i).getReg())) IsConst = false; if (!IsConst && N < 2) report_fatal_error( "There must be at least two constituent operands in a vector"); MRI->setRegClass(ResVReg, GR.getRegClass(ResType)); auto MIB = BuildMI(*I.getParent(), I, I.getDebugLoc(), TII.get(IsConst ? SPIRV::OpConstantComposite : SPIRV::OpCompositeConstruct)) .addDef(ResVReg) .addUse(GR.getSPIRVTypeID(ResType)); for (unsigned i = I.getNumExplicitDefs(); i < I.getNumExplicitOperands(); ++i) MIB.addUse(I.getOperand(i).getReg()); return MIB.constrainAllUses(TII, TRI, RBI); } bool SPIRVInstructionSelector::selectSplatVector(Register ResVReg, const SPIRVType *ResType, MachineInstr &I) const { unsigned N = 0; if (ResType->getOpcode() == SPIRV::OpTypeVector) N = GR.getScalarOrVectorComponentCount(ResType); else if (ResType->getOpcode() == SPIRV::OpTypeArray) N = getArrayComponentCount(MRI, ResType); else report_fatal_error("Cannot select G_SPLAT_VECTOR with a non-vector result"); unsigned OpIdx = I.getNumExplicitDefs(); if (!I.getOperand(OpIdx).isReg()) report_fatal_error("Unexpected argument in G_SPLAT_VECTOR"); // check if we may construct a constant vector Register OpReg = I.getOperand(OpIdx).getReg(); bool IsConst = isConstReg(MRI, OpReg); if (!IsConst && N < 2) report_fatal_error( "There must be at least two constituent operands in a vector"); MRI->setRegClass(ResVReg, GR.getRegClass(ResType)); auto MIB = BuildMI(*I.getParent(), I, I.getDebugLoc(), TII.get(IsConst ? SPIRV::OpConstantComposite : SPIRV::OpCompositeConstruct)) .addDef(ResVReg) .addUse(GR.getSPIRVTypeID(ResType)); for (unsigned i = 0; i < N; ++i) MIB.addUse(OpReg); return MIB.constrainAllUses(TII, TRI, RBI); } bool SPIRVInstructionSelector::selectDiscard(Register ResVReg, const SPIRVType *ResType, MachineInstr &I) const { unsigned Opcode; if (STI.canUseExtension( SPIRV::Extension::SPV_EXT_demote_to_helper_invocation) || STI.isAtLeastSPIRVVer(llvm::VersionTuple(1, 6))) { Opcode = SPIRV::OpDemoteToHelperInvocation; } else { Opcode = SPIRV::OpKill; // OpKill must be the last operation of any basic block. if (MachineInstr *NextI = I.getNextNode()) { GR.invalidateMachineInstr(NextI); NextI->removeFromParent(); } } MachineBasicBlock &BB = *I.getParent(); return BuildMI(BB, I, I.getDebugLoc(), TII.get(Opcode)) .constrainAllUses(TII, TRI, RBI); } bool SPIRVInstructionSelector::selectCmp(Register ResVReg, const SPIRVType *ResType, unsigned CmpOpc, MachineInstr &I) const { Register Cmp0 = I.getOperand(2).getReg(); Register Cmp1 = I.getOperand(3).getReg(); assert(GR.getSPIRVTypeForVReg(Cmp0)->getOpcode() == GR.getSPIRVTypeForVReg(Cmp1)->getOpcode() && "CMP operands should have the same type"); return BuildMI(*I.getParent(), I, I.getDebugLoc(), TII.get(CmpOpc)) .addDef(ResVReg) .addUse(GR.getSPIRVTypeID(ResType)) .addUse(Cmp0) .addUse(Cmp1) .constrainAllUses(TII, TRI, RBI); } bool SPIRVInstructionSelector::selectICmp(Register ResVReg, const SPIRVType *ResType, MachineInstr &I) const { auto Pred = I.getOperand(1).getPredicate(); unsigned CmpOpc; Register CmpOperand = I.getOperand(2).getReg(); if (GR.isScalarOfType(CmpOperand, SPIRV::OpTypePointer)) CmpOpc = getPtrCmpOpcode(Pred); else if (GR.isScalarOrVectorOfType(CmpOperand, SPIRV::OpTypeBool)) CmpOpc = getBoolCmpOpcode(Pred); else CmpOpc = getICmpOpcode(Pred); return selectCmp(ResVReg, ResType, CmpOpc, I); } void SPIRVInstructionSelector::renderFImm64(MachineInstrBuilder &MIB, const MachineInstr &I, int OpIdx) const { assert(I.getOpcode() == TargetOpcode::G_FCONSTANT && OpIdx == -1 && "Expected G_FCONSTANT"); const ConstantFP *FPImm = I.getOperand(1).getFPImm(); addNumImm(FPImm->getValueAPF().bitcastToAPInt(), MIB); } void SPIRVInstructionSelector::renderImm32(MachineInstrBuilder &MIB, const MachineInstr &I, int OpIdx) const { assert(I.getOpcode() == TargetOpcode::G_CONSTANT && OpIdx == -1 && "Expected G_CONSTANT"); addNumImm(I.getOperand(1).getCImm()->getValue(), MIB); } std::pair SPIRVInstructionSelector::buildI32Constant(uint32_t Val, MachineInstr &I, const SPIRVType *ResType) const { Type *LLVMTy = IntegerType::get(GR.CurMF->getFunction().getContext(), 32); const SPIRVType *SpvI32Ty = ResType ? ResType : GR.getOrCreateSPIRVIntegerType(32, I, TII); // Find a constant in DT or build a new one. auto ConstInt = ConstantInt::get(LLVMTy, Val); Register NewReg = GR.find(ConstInt, GR.CurMF); bool Result = true; if (!NewReg.isValid()) { NewReg = MRI->createGenericVirtualRegister(LLT::scalar(64)); GR.add(ConstInt, GR.CurMF, NewReg); MachineInstr *MI; MachineBasicBlock &BB = *I.getParent(); if (Val == 0) { MI = BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpConstantNull)) .addDef(NewReg) .addUse(GR.getSPIRVTypeID(SpvI32Ty)); } else { MI = BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpConstantI)) .addDef(NewReg) .addUse(GR.getSPIRVTypeID(SpvI32Ty)) .addImm(APInt(32, Val).getZExtValue()); } Result &= constrainSelectedInstRegOperands(*MI, TII, TRI, RBI); } return {NewReg, Result}; } bool SPIRVInstructionSelector::selectFCmp(Register ResVReg, const SPIRVType *ResType, MachineInstr &I) const { unsigned CmpOp = getFCmpOpcode(I.getOperand(1).getPredicate()); return selectCmp(ResVReg, ResType, CmpOp, I); } Register SPIRVInstructionSelector::buildZerosVal(const SPIRVType *ResType, MachineInstr &I) const { // OpenCL uses nulls for Zero. In HLSL we don't use null constants. bool ZeroAsNull = STI.isOpenCLEnv(); if (ResType->getOpcode() == SPIRV::OpTypeVector) return GR.getOrCreateConstVector(0UL, I, ResType, TII, ZeroAsNull); return GR.getOrCreateConstInt(0, I, ResType, TII, ZeroAsNull); } Register SPIRVInstructionSelector::buildZerosValF(const SPIRVType *ResType, MachineInstr &I) const { // OpenCL uses nulls for Zero. In HLSL we don't use null constants. bool ZeroAsNull = STI.isOpenCLEnv(); APFloat VZero = getZeroFP(GR.getTypeForSPIRVType(ResType)); if (ResType->getOpcode() == SPIRV::OpTypeVector) return GR.getOrCreateConstVector(VZero, I, ResType, TII, ZeroAsNull); return GR.getOrCreateConstFP(VZero, I, ResType, TII, ZeroAsNull); } Register SPIRVInstructionSelector::buildOnesValF(const SPIRVType *ResType, MachineInstr &I) const { // OpenCL uses nulls for Zero. In HLSL we don't use null constants. bool ZeroAsNull = STI.isOpenCLEnv(); APFloat VOne = getOneFP(GR.getTypeForSPIRVType(ResType)); if (ResType->getOpcode() == SPIRV::OpTypeVector) return GR.getOrCreateConstVector(VOne, I, ResType, TII, ZeroAsNull); return GR.getOrCreateConstFP(VOne, I, ResType, TII, ZeroAsNull); } Register SPIRVInstructionSelector::buildOnesVal(bool AllOnes, const SPIRVType *ResType, MachineInstr &I) const { unsigned BitWidth = GR.getScalarOrVectorBitWidth(ResType); APInt One = AllOnes ? APInt::getAllOnes(BitWidth) : APInt::getOneBitSet(BitWidth, 0); if (ResType->getOpcode() == SPIRV::OpTypeVector) return GR.getOrCreateConstVector(One.getZExtValue(), I, ResType, TII); return GR.getOrCreateConstInt(One.getZExtValue(), I, ResType, TII); } bool SPIRVInstructionSelector::selectSelect(Register ResVReg, const SPIRVType *ResType, MachineInstr &I, bool IsSigned) const { // To extend a bool, we need to use OpSelect between constants. Register ZeroReg = buildZerosVal(ResType, I); Register OneReg = buildOnesVal(IsSigned, ResType, I); bool IsScalarBool = GR.isScalarOfType(I.getOperand(1).getReg(), SPIRV::OpTypeBool); unsigned Opcode = IsScalarBool ? SPIRV::OpSelectSISCond : SPIRV::OpSelectVIVCond; return BuildMI(*I.getParent(), I, I.getDebugLoc(), TII.get(Opcode)) .addDef(ResVReg) .addUse(GR.getSPIRVTypeID(ResType)) .addUse(I.getOperand(1).getReg()) .addUse(OneReg) .addUse(ZeroReg) .constrainAllUses(TII, TRI, RBI); } bool SPIRVInstructionSelector::selectIToF(Register ResVReg, const SPIRVType *ResType, MachineInstr &I, bool IsSigned, unsigned Opcode) const { Register SrcReg = I.getOperand(1).getReg(); // We can convert bool value directly to float type without OpConvert*ToF, // however the translator generates OpSelect+OpConvert*ToF, so we do the same. if (GR.isScalarOrVectorOfType(I.getOperand(1).getReg(), SPIRV::OpTypeBool)) { unsigned BitWidth = GR.getScalarOrVectorBitWidth(ResType); SPIRVType *TmpType = GR.getOrCreateSPIRVIntegerType(BitWidth, I, TII); if (ResType->getOpcode() == SPIRV::OpTypeVector) { const unsigned NumElts = ResType->getOperand(2).getImm(); TmpType = GR.getOrCreateSPIRVVectorType(TmpType, NumElts, I, TII); } SrcReg = MRI->createVirtualRegister(&SPIRV::iIDRegClass); selectSelect(SrcReg, TmpType, I, false); } return selectOpWithSrcs(ResVReg, ResType, I, {SrcReg}, Opcode); } bool SPIRVInstructionSelector::selectExt(Register ResVReg, const SPIRVType *ResType, MachineInstr &I, bool IsSigned) const { Register SrcReg = I.getOperand(1).getReg(); if (GR.isScalarOrVectorOfType(SrcReg, SPIRV::OpTypeBool)) return selectSelect(ResVReg, ResType, I, IsSigned); SPIRVType *SrcType = GR.getSPIRVTypeForVReg(SrcReg); if (SrcType == ResType) return BuildCOPY(ResVReg, SrcReg, I); unsigned Opcode = IsSigned ? SPIRV::OpSConvert : SPIRV::OpUConvert; return selectUnOp(ResVReg, ResType, I, Opcode); } bool SPIRVInstructionSelector::selectSUCmp(Register ResVReg, const SPIRVType *ResType, MachineInstr &I, bool IsSigned) const { MachineIRBuilder MIRBuilder(I); MachineRegisterInfo *MRI = MIRBuilder.getMRI(); MachineBasicBlock &BB = *I.getParent(); // Ensure we have bool. SPIRVType *BoolType = GR.getOrCreateSPIRVBoolType(I, TII); unsigned N = GR.getScalarOrVectorComponentCount(ResType); if (N > 1) BoolType = GR.getOrCreateSPIRVVectorType(BoolType, N, I, TII); Register BoolTypeReg = GR.getSPIRVTypeID(BoolType); // Build less-than-equal and less-than. // TODO: replace with one-liner createVirtualRegister() from // llvm/lib/Target/SPIRV/SPIRVUtils.cpp when PR #116609 is merged. Register IsLessEqReg = MRI->createVirtualRegister(GR.getRegClass(ResType)); MRI->setType(IsLessEqReg, LLT::scalar(64)); GR.assignSPIRVTypeToVReg(ResType, IsLessEqReg, MIRBuilder.getMF()); bool Result = BuildMI(BB, I, I.getDebugLoc(), TII.get(IsSigned ? SPIRV::OpSLessThanEqual : SPIRV::OpULessThanEqual)) .addDef(IsLessEqReg) .addUse(BoolTypeReg) .addUse(I.getOperand(1).getReg()) .addUse(I.getOperand(2).getReg()) .constrainAllUses(TII, TRI, RBI); Register IsLessReg = MRI->createVirtualRegister(GR.getRegClass(ResType)); MRI->setType(IsLessReg, LLT::scalar(64)); GR.assignSPIRVTypeToVReg(ResType, IsLessReg, MIRBuilder.getMF()); Result &= BuildMI(BB, I, I.getDebugLoc(), TII.get(IsSigned ? SPIRV::OpSLessThan : SPIRV::OpULessThan)) .addDef(IsLessReg) .addUse(BoolTypeReg) .addUse(I.getOperand(1).getReg()) .addUse(I.getOperand(2).getReg()) .constrainAllUses(TII, TRI, RBI); // Build selects. Register ResTypeReg = GR.getSPIRVTypeID(ResType); Register NegOneOrZeroReg = MRI->createVirtualRegister(GR.getRegClass(ResType)); MRI->setType(NegOneOrZeroReg, LLT::scalar(64)); GR.assignSPIRVTypeToVReg(ResType, NegOneOrZeroReg, MIRBuilder.getMF()); unsigned SelectOpcode = N > 1 ? SPIRV::OpSelectVIVCond : SPIRV::OpSelectSISCond; Result &= BuildMI(BB, I, I.getDebugLoc(), TII.get(SelectOpcode)) .addDef(NegOneOrZeroReg) .addUse(ResTypeReg) .addUse(IsLessReg) .addUse(buildOnesVal(true, ResType, I)) // -1 .addUse(buildZerosVal(ResType, I)) .constrainAllUses(TII, TRI, RBI); return Result & BuildMI(BB, I, I.getDebugLoc(), TII.get(SelectOpcode)) .addDef(ResVReg) .addUse(ResTypeReg) .addUse(IsLessEqReg) .addUse(NegOneOrZeroReg) // -1 or 0 .addUse(buildOnesVal(false, ResType, I)) .constrainAllUses(TII, TRI, RBI); } bool SPIRVInstructionSelector::selectIntToBool(Register IntReg, Register ResVReg, MachineInstr &I, const SPIRVType *IntTy, const SPIRVType *BoolTy) const { // To truncate to a bool, we use OpBitwiseAnd 1 and OpINotEqual to zero. Register BitIntReg = MRI->createVirtualRegister(&SPIRV::iIDRegClass); bool IsVectorTy = IntTy->getOpcode() == SPIRV::OpTypeVector; unsigned Opcode = IsVectorTy ? SPIRV::OpBitwiseAndV : SPIRV::OpBitwiseAndS; Register Zero = buildZerosVal(IntTy, I); Register One = buildOnesVal(false, IntTy, I); MachineBasicBlock &BB = *I.getParent(); bool Result = BuildMI(BB, I, I.getDebugLoc(), TII.get(Opcode)) .addDef(BitIntReg) .addUse(GR.getSPIRVTypeID(IntTy)) .addUse(IntReg) .addUse(One) .constrainAllUses(TII, TRI, RBI); return Result && BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpINotEqual)) .addDef(ResVReg) .addUse(GR.getSPIRVTypeID(BoolTy)) .addUse(BitIntReg) .addUse(Zero) .constrainAllUses(TII, TRI, RBI); } bool SPIRVInstructionSelector::selectTrunc(Register ResVReg, const SPIRVType *ResType, MachineInstr &I) const { Register IntReg = I.getOperand(1).getReg(); const SPIRVType *ArgType = GR.getSPIRVTypeForVReg(IntReg); if (GR.isScalarOrVectorOfType(ResVReg, SPIRV::OpTypeBool)) return selectIntToBool(IntReg, ResVReg, I, ArgType, ResType); if (ArgType == ResType) return BuildCOPY(ResVReg, IntReg, I); bool IsSigned = GR.isScalarOrVectorSigned(ResType); unsigned Opcode = IsSigned ? SPIRV::OpSConvert : SPIRV::OpUConvert; return selectUnOp(ResVReg, ResType, I, Opcode); } bool SPIRVInstructionSelector::selectConst(Register ResVReg, const SPIRVType *ResType, const APInt &Imm, MachineInstr &I) const { unsigned TyOpcode = ResType->getOpcode(); assert(TyOpcode != SPIRV::OpTypePointer || Imm.isZero()); MachineBasicBlock &BB = *I.getParent(); if ((TyOpcode == SPIRV::OpTypePointer || TyOpcode == SPIRV::OpTypeEvent) && Imm.isZero()) return BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpConstantNull)) .addDef(ResVReg) .addUse(GR.getSPIRVTypeID(ResType)) .constrainAllUses(TII, TRI, RBI); if (TyOpcode == SPIRV::OpTypeInt) { assert(Imm.getBitWidth() <= 64 && "Unsupported integer width!"); Register Reg = GR.getOrCreateConstInt(Imm.getZExtValue(), I, ResType, TII); return Reg == ResVReg ? true : BuildCOPY(ResVReg, Reg, I); } auto MIB = BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpConstantI)) .addDef(ResVReg) .addUse(GR.getSPIRVTypeID(ResType)); // <=32-bit integers should be caught by the sdag pattern. assert(Imm.getBitWidth() > 32); addNumImm(Imm, MIB); return MIB.constrainAllUses(TII, TRI, RBI); } bool SPIRVInstructionSelector::selectOpUndef(Register ResVReg, const SPIRVType *ResType, MachineInstr &I) const { return BuildMI(*I.getParent(), I, I.getDebugLoc(), TII.get(SPIRV::OpUndef)) .addDef(ResVReg) .addUse(GR.getSPIRVTypeID(ResType)) .constrainAllUses(TII, TRI, RBI); } static bool isImm(const MachineOperand &MO, MachineRegisterInfo *MRI) { assert(MO.isReg()); const SPIRVType *TypeInst = MRI->getVRegDef(MO.getReg()); if (TypeInst->getOpcode() == SPIRV::ASSIGN_TYPE) { assert(TypeInst->getOperand(1).isReg()); MachineInstr *ImmInst = MRI->getVRegDef(TypeInst->getOperand(1).getReg()); return ImmInst->getOpcode() == TargetOpcode::G_CONSTANT; } return TypeInst->getOpcode() == SPIRV::OpConstantI; } static int64_t foldImm(const MachineOperand &MO, MachineRegisterInfo *MRI) { const SPIRVType *TypeInst = MRI->getVRegDef(MO.getReg()); if (TypeInst->getOpcode() == SPIRV::OpConstantI) return TypeInst->getOperand(2).getImm(); MachineInstr *ImmInst = MRI->getVRegDef(TypeInst->getOperand(1).getReg()); assert(ImmInst->getOpcode() == TargetOpcode::G_CONSTANT); return ImmInst->getOperand(1).getCImm()->getZExtValue(); } bool SPIRVInstructionSelector::selectInsertVal(Register ResVReg, const SPIRVType *ResType, MachineInstr &I) const { MachineBasicBlock &BB = *I.getParent(); auto MIB = BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpCompositeInsert)) .addDef(ResVReg) .addUse(GR.getSPIRVTypeID(ResType)) // object to insert .addUse(I.getOperand(3).getReg()) // composite to insert into .addUse(I.getOperand(2).getReg()); for (unsigned i = 4; i < I.getNumOperands(); i++) MIB.addImm(foldImm(I.getOperand(i), MRI)); return MIB.constrainAllUses(TII, TRI, RBI); } bool SPIRVInstructionSelector::selectExtractVal(Register ResVReg, const SPIRVType *ResType, MachineInstr &I) const { MachineBasicBlock &BB = *I.getParent(); auto MIB = BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpCompositeExtract)) .addDef(ResVReg) .addUse(GR.getSPIRVTypeID(ResType)) .addUse(I.getOperand(2).getReg()); for (unsigned i = 3; i < I.getNumOperands(); i++) MIB.addImm(foldImm(I.getOperand(i), MRI)); return MIB.constrainAllUses(TII, TRI, RBI); } bool SPIRVInstructionSelector::selectInsertElt(Register ResVReg, const SPIRVType *ResType, MachineInstr &I) const { if (isImm(I.getOperand(4), MRI)) return selectInsertVal(ResVReg, ResType, I); MachineBasicBlock &BB = *I.getParent(); return BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpVectorInsertDynamic)) .addDef(ResVReg) .addUse(GR.getSPIRVTypeID(ResType)) .addUse(I.getOperand(2).getReg()) .addUse(I.getOperand(3).getReg()) .addUse(I.getOperand(4).getReg()) .constrainAllUses(TII, TRI, RBI); } bool SPIRVInstructionSelector::selectExtractElt(Register ResVReg, const SPIRVType *ResType, MachineInstr &I) const { if (isImm(I.getOperand(3), MRI)) return selectExtractVal(ResVReg, ResType, I); MachineBasicBlock &BB = *I.getParent(); return BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpVectorExtractDynamic)) .addDef(ResVReg) .addUse(GR.getSPIRVTypeID(ResType)) .addUse(I.getOperand(2).getReg()) .addUse(I.getOperand(3).getReg()) .constrainAllUses(TII, TRI, RBI); } bool SPIRVInstructionSelector::selectGEP(Register ResVReg, const SPIRVType *ResType, MachineInstr &I) const { const bool IsGEPInBounds = I.getOperand(2).getImm(); // OpAccessChain could be used for OpenCL, but the SPIRV-LLVM Translator only // relies on PtrAccessChain, so we'll try not to deviate. For Vulkan however, // we have to use Op[InBounds]AccessChain. const unsigned Opcode = STI.isVulkanEnv() ? (IsGEPInBounds ? SPIRV::OpInBoundsAccessChain : SPIRV::OpAccessChain) : (IsGEPInBounds ? SPIRV::OpInBoundsPtrAccessChain : SPIRV::OpPtrAccessChain); auto Res = BuildMI(*I.getParent(), I, I.getDebugLoc(), TII.get(Opcode)) .addDef(ResVReg) .addUse(GR.getSPIRVTypeID(ResType)) // Object to get a pointer to. .addUse(I.getOperand(3).getReg()); // Adding indices. const unsigned StartingIndex = (Opcode == SPIRV::OpAccessChain || Opcode == SPIRV::OpInBoundsAccessChain) ? 5 : 4; for (unsigned i = StartingIndex; i < I.getNumExplicitOperands(); ++i) Res.addUse(I.getOperand(i).getReg()); return Res.constrainAllUses(TII, TRI, RBI); } // Maybe wrap a value into OpSpecConstantOp bool SPIRVInstructionSelector::wrapIntoSpecConstantOp( MachineInstr &I, SmallVector &CompositeArgs) const { bool Result = true; unsigned Lim = I.getNumExplicitOperands(); for (unsigned i = I.getNumExplicitDefs() + 1; i < Lim; ++i) { Register OpReg = I.getOperand(i).getReg(); SPIRVType *OpDefine = MRI->getVRegDef(OpReg); SPIRVType *OpType = GR.getSPIRVTypeForVReg(OpReg); SmallPtrSet Visited; if (!OpDefine || !OpType || isConstReg(MRI, OpDefine, Visited) || OpDefine->getOpcode() == TargetOpcode::G_ADDRSPACE_CAST || GR.isAggregateType(OpType)) { // The case of G_ADDRSPACE_CAST inside spv_const_composite() is processed // by selectAddrSpaceCast() CompositeArgs.push_back(OpReg); continue; } MachineFunction *MF = I.getMF(); Register WrapReg = GR.find(OpDefine, MF); if (WrapReg.isValid()) { CompositeArgs.push_back(WrapReg); continue; } // Create a new register for the wrapper WrapReg = MRI->createVirtualRegister(GR.getRegClass(OpType)); GR.add(OpDefine, MF, WrapReg); CompositeArgs.push_back(WrapReg); // Decorate the wrapper register and generate a new instruction MRI->setType(WrapReg, LLT::pointer(0, 64)); GR.assignSPIRVTypeToVReg(OpType, WrapReg, *MF); MachineBasicBlock &BB = *I.getParent(); Result = BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpSpecConstantOp)) .addDef(WrapReg) .addUse(GR.getSPIRVTypeID(OpType)) .addImm(static_cast(SPIRV::Opcode::Bitcast)) .addUse(OpReg) .constrainAllUses(TII, TRI, RBI); if (!Result) break; } return Result; } bool SPIRVInstructionSelector::selectIntrinsic(Register ResVReg, const SPIRVType *ResType, MachineInstr &I) const { MachineBasicBlock &BB = *I.getParent(); Intrinsic::ID IID = cast(I).getIntrinsicID(); switch (IID) { case Intrinsic::spv_load: return selectLoad(ResVReg, ResType, I); case Intrinsic::spv_store: return selectStore(I); case Intrinsic::spv_extractv: return selectExtractVal(ResVReg, ResType, I); case Intrinsic::spv_insertv: return selectInsertVal(ResVReg, ResType, I); case Intrinsic::spv_extractelt: return selectExtractElt(ResVReg, ResType, I); case Intrinsic::spv_insertelt: return selectInsertElt(ResVReg, ResType, I); case Intrinsic::spv_gep: return selectGEP(ResVReg, ResType, I); case Intrinsic::spv_unref_global: case Intrinsic::spv_init_global: { MachineInstr *MI = MRI->getVRegDef(I.getOperand(1).getReg()); MachineInstr *Init = I.getNumExplicitOperands() > 2 ? MRI->getVRegDef(I.getOperand(2).getReg()) : nullptr; assert(MI); return selectGlobalValue(MI->getOperand(0).getReg(), *MI, Init); } case Intrinsic::spv_undef: { auto MIB = BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpUndef)) .addDef(ResVReg) .addUse(GR.getSPIRVTypeID(ResType)); return MIB.constrainAllUses(TII, TRI, RBI); } case Intrinsic::spv_const_composite: { // If no values are attached, the composite is null constant. bool IsNull = I.getNumExplicitDefs() + 1 == I.getNumExplicitOperands(); // Select a proper instruction. unsigned Opcode = SPIRV::OpConstantNull; SmallVector CompositeArgs; if (!IsNull) { Opcode = SPIRV::OpConstantComposite; if (!wrapIntoSpecConstantOp(I, CompositeArgs)) return false; } MRI->setRegClass(ResVReg, GR.getRegClass(ResType)); auto MIB = BuildMI(BB, I, I.getDebugLoc(), TII.get(Opcode)) .addDef(ResVReg) .addUse(GR.getSPIRVTypeID(ResType)); // skip type MD node we already used when generated assign.type for this if (!IsNull) { for (Register OpReg : CompositeArgs) MIB.addUse(OpReg); } return MIB.constrainAllUses(TII, TRI, RBI); } case Intrinsic::spv_assign_name: { auto MIB = BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpName)); MIB.addUse(I.getOperand(I.getNumExplicitDefs() + 1).getReg()); for (unsigned i = I.getNumExplicitDefs() + 2; i < I.getNumExplicitOperands(); ++i) { MIB.addImm(I.getOperand(i).getImm()); } return MIB.constrainAllUses(TII, TRI, RBI); } case Intrinsic::spv_switch: { auto MIB = BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpSwitch)); for (unsigned i = 1; i < I.getNumExplicitOperands(); ++i) { if (I.getOperand(i).isReg()) MIB.addReg(I.getOperand(i).getReg()); else if (I.getOperand(i).isCImm()) addNumImm(I.getOperand(i).getCImm()->getValue(), MIB); else if (I.getOperand(i).isMBB()) MIB.addMBB(I.getOperand(i).getMBB()); else llvm_unreachable("Unexpected OpSwitch operand"); } return MIB.constrainAllUses(TII, TRI, RBI); } case Intrinsic::spv_loop_merge: { auto MIB = BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpLoopMerge)); for (unsigned i = 1; i < I.getNumExplicitOperands(); ++i) { assert(I.getOperand(i).isMBB()); MIB.addMBB(I.getOperand(i).getMBB()); } MIB.addImm(SPIRV::SelectionControl::None); return MIB.constrainAllUses(TII, TRI, RBI); } case Intrinsic::spv_selection_merge: { auto MIB = BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpSelectionMerge)); assert(I.getOperand(1).isMBB() && "operand 1 to spv_selection_merge must be a basic block"); MIB.addMBB(I.getOperand(1).getMBB()); MIB.addImm(getSelectionOperandForImm(I.getOperand(2).getImm())); return MIB.constrainAllUses(TII, TRI, RBI); } case Intrinsic::spv_cmpxchg: return selectAtomicCmpXchg(ResVReg, ResType, I); case Intrinsic::spv_unreachable: return BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpUnreachable)) .constrainAllUses(TII, TRI, RBI); case Intrinsic::spv_alloca: return selectFrameIndex(ResVReg, ResType, I); case Intrinsic::spv_alloca_array: return selectAllocaArray(ResVReg, ResType, I); case Intrinsic::spv_assume: if (STI.canUseExtension(SPIRV::Extension::SPV_KHR_expect_assume)) return BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpAssumeTrueKHR)) .addUse(I.getOperand(1).getReg()) .constrainAllUses(TII, TRI, RBI); break; case Intrinsic::spv_expect: if (STI.canUseExtension(SPIRV::Extension::SPV_KHR_expect_assume)) return BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpExpectKHR)) .addDef(ResVReg) .addUse(GR.getSPIRVTypeID(ResType)) .addUse(I.getOperand(2).getReg()) .addUse(I.getOperand(3).getReg()) .constrainAllUses(TII, TRI, RBI); break; case Intrinsic::arithmetic_fence: if (STI.canUseExtension(SPIRV::Extension::SPV_EXT_arithmetic_fence)) return BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpArithmeticFenceEXT)) .addDef(ResVReg) .addUse(GR.getSPIRVTypeID(ResType)) .addUse(I.getOperand(2).getReg()) .constrainAllUses(TII, TRI, RBI); else return BuildCOPY(ResVReg, I.getOperand(2).getReg(), I); break; case Intrinsic::spv_thread_id: // The HLSL SV_DispatchThreadID semantic is lowered to llvm.spv.thread.id // intrinsic in LLVM IR for SPIR-V backend. // // In SPIR-V backend, llvm.spv.thread.id is now correctly translated to a // `GlobalInvocationId` builtin variable return loadVec3BuiltinInputID(SPIRV::BuiltIn::GlobalInvocationId, ResVReg, ResType, I); case Intrinsic::spv_thread_id_in_group: // The HLSL SV_GroupThreadId semantic is lowered to // llvm.spv.thread.id.in.group intrinsic in LLVM IR for SPIR-V backend. // // In SPIR-V backend, llvm.spv.thread.id.in.group is now correctly // translated to a `LocalInvocationId` builtin variable return loadVec3BuiltinInputID(SPIRV::BuiltIn::LocalInvocationId, ResVReg, ResType, I); case Intrinsic::spv_group_id: // The HLSL SV_GroupId semantic is lowered to // llvm.spv.group.id intrinsic in LLVM IR for SPIR-V backend. // // In SPIR-V backend, llvm.spv.group.id is now translated to a `WorkgroupId` // builtin variable return loadVec3BuiltinInputID(SPIRV::BuiltIn::WorkgroupId, ResVReg, ResType, I); case Intrinsic::spv_fdot: return selectFloatDot(ResVReg, ResType, I); case Intrinsic::spv_udot: case Intrinsic::spv_sdot: if (STI.canUseExtension(SPIRV::Extension::SPV_KHR_integer_dot_product) || STI.isAtLeastSPIRVVer(VersionTuple(1, 6))) return selectIntegerDot(ResVReg, ResType, I, /*Signed=*/IID == Intrinsic::spv_sdot); return selectIntegerDotExpansion(ResVReg, ResType, I); case Intrinsic::spv_dot4add_i8packed: if (STI.canUseExtension(SPIRV::Extension::SPV_KHR_integer_dot_product) || STI.isAtLeastSPIRVVer(VersionTuple(1, 6))) return selectDot4AddPacked(ResVReg, ResType, I); return selectDot4AddPackedExpansion(ResVReg, ResType, I); case Intrinsic::spv_dot4add_u8packed: if (STI.canUseExtension(SPIRV::Extension::SPV_KHR_integer_dot_product) || STI.isAtLeastSPIRVVer(VersionTuple(1, 6))) return selectDot4AddPacked(ResVReg, ResType, I); return selectDot4AddPackedExpansion(ResVReg, ResType, I); case Intrinsic::spv_all: return selectAll(ResVReg, ResType, I); case Intrinsic::spv_any: return selectAny(ResVReg, ResType, I); case Intrinsic::spv_cross: return selectExtInst(ResVReg, ResType, I, CL::cross, GL::Cross); case Intrinsic::spv_distance: return selectExtInst(ResVReg, ResType, I, CL::distance, GL::Distance); case Intrinsic::spv_lerp: return selectExtInst(ResVReg, ResType, I, CL::mix, GL::FMix); case Intrinsic::spv_length: return selectExtInst(ResVReg, ResType, I, CL::length, GL::Length); case Intrinsic::spv_degrees: return selectExtInst(ResVReg, ResType, I, CL::degrees, GL::Degrees); case Intrinsic::spv_frac: return selectExtInst(ResVReg, ResType, I, CL::fract, GL::Fract); case Intrinsic::spv_normalize: return selectExtInst(ResVReg, ResType, I, CL::normalize, GL::Normalize); case Intrinsic::spv_rsqrt: return selectExtInst(ResVReg, ResType, I, CL::rsqrt, GL::InverseSqrt); case Intrinsic::spv_sign: return selectSign(ResVReg, ResType, I); case Intrinsic::spv_firstbituhigh: // There is no CL equivalent of FindUMsb return selectFirstBitHigh(ResVReg, ResType, I, /*IsSigned=*/false); case Intrinsic::spv_firstbitshigh: // There is no CL equivalent of FindSMsb return selectFirstBitHigh(ResVReg, ResType, I, /*IsSigned=*/true); case Intrinsic::spv_firstbitlow: // There is no CL equivlent of FindILsb return selectFirstBitLow(ResVReg, ResType, I); case Intrinsic::spv_group_memory_barrier_with_group_sync: { bool Result = true; auto MemSemConstant = buildI32Constant(SPIRV::MemorySemantics::SequentiallyConsistent, I); Register MemSemReg = MemSemConstant.first; Result &= MemSemConstant.second; auto ScopeConstant = buildI32Constant(SPIRV::Scope::Workgroup, I); Register ScopeReg = ScopeConstant.first; Result &= ScopeConstant.second; MachineBasicBlock &BB = *I.getParent(); return Result && BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpControlBarrier)) .addUse(ScopeReg) .addUse(ScopeReg) .addUse(MemSemReg) .constrainAllUses(TII, TRI, RBI); } case Intrinsic::spv_lifetime_start: case Intrinsic::spv_lifetime_end: { unsigned Op = IID == Intrinsic::spv_lifetime_start ? SPIRV::OpLifetimeStart : SPIRV::OpLifetimeStop; int64_t Size = I.getOperand(I.getNumExplicitDefs() + 1).getImm(); Register PtrReg = I.getOperand(I.getNumExplicitDefs() + 2).getReg(); if (Size == -1) Size = 0; return BuildMI(BB, I, I.getDebugLoc(), TII.get(Op)) .addUse(PtrReg) .addImm(Size) .constrainAllUses(TII, TRI, RBI); } case Intrinsic::spv_saturate: return selectSaturate(ResVReg, ResType, I); case Intrinsic::spv_nclamp: return selectExtInst(ResVReg, ResType, I, CL::fclamp, GL::NClamp); case Intrinsic::spv_uclamp: return selectExtInst(ResVReg, ResType, I, CL::u_clamp, GL::UClamp); case Intrinsic::spv_sclamp: return selectExtInst(ResVReg, ResType, I, CL::s_clamp, GL::SClamp); case Intrinsic::spv_wave_active_countbits: return selectWaveActiveCountBits(ResVReg, ResType, I); case Intrinsic::spv_wave_all: return selectWaveOpInst(ResVReg, ResType, I, SPIRV::OpGroupNonUniformAll); case Intrinsic::spv_wave_any: return selectWaveOpInst(ResVReg, ResType, I, SPIRV::OpGroupNonUniformAny); case Intrinsic::spv_wave_is_first_lane: return selectWaveOpInst(ResVReg, ResType, I, SPIRV::OpGroupNonUniformElect); case Intrinsic::spv_wave_reduce_umax: return selectWaveReduceMax(ResVReg, ResType, I, /*IsUnsigned*/ true); case Intrinsic::spv_wave_reduce_max: return selectWaveReduceMax(ResVReg, ResType, I, /*IsUnsigned*/ false); case Intrinsic::spv_wave_reduce_sum: return selectWaveReduceSum(ResVReg, ResType, I); case Intrinsic::spv_wave_readlane: return selectWaveOpInst(ResVReg, ResType, I, SPIRV::OpGroupNonUniformShuffle); case Intrinsic::spv_step: return selectExtInst(ResVReg, ResType, I, CL::step, GL::Step); case Intrinsic::spv_radians: return selectExtInst(ResVReg, ResType, I, CL::radians, GL::Radians); // Discard intrinsics which we do not expect to actually represent code after // lowering or intrinsics which are not implemented but should not crash when // found in a customer's LLVM IR input. case Intrinsic::instrprof_increment: case Intrinsic::instrprof_increment_step: case Intrinsic::instrprof_value_profile: break; // Discard internal intrinsics. case Intrinsic::spv_value_md: break; case Intrinsic::spv_resource_handlefrombinding: { return selectHandleFromBinding(ResVReg, ResType, I); } case Intrinsic::spv_resource_store_typedbuffer: { return selectImageWriteIntrinsic(I); } case Intrinsic::spv_resource_load_typedbuffer: { return selectReadImageIntrinsic(ResVReg, ResType, I); } case Intrinsic::spv_resource_getpointer: { return selectResourceGetPointer(ResVReg, ResType, I); } case Intrinsic::spv_discard: { return selectDiscard(ResVReg, ResType, I); } default: { std::string DiagMsg; raw_string_ostream OS(DiagMsg); I.print(OS); DiagMsg = "Intrinsic selection not implemented: " + DiagMsg; report_fatal_error(DiagMsg.c_str(), false); } } return true; } bool SPIRVInstructionSelector::selectHandleFromBinding(Register &ResVReg, const SPIRVType *ResType, MachineInstr &I) const { return true; } bool SPIRVInstructionSelector::selectReadImageIntrinsic( Register &ResVReg, const SPIRVType *ResType, MachineInstr &I) const { // If the load of the image is in a different basic block, then // this will generate invalid code. A proper solution is to move // the OpLoad from selectHandleFromBinding here. However, to do // that we will need to change the return type of the intrinsic. // We will do that when we can, but for now trying to move forward with other // issues. Register ImageReg = I.getOperand(2).getReg(); auto *ImageDef = cast(getVRegDef(*MRI, ImageReg)); Register NewImageReg = MRI->createVirtualRegister(MRI->getRegClass(ImageReg)); if (!loadHandleBeforePosition(NewImageReg, GR.getSPIRVTypeForVReg(ImageReg), *ImageDef, I)) { return false; } Register IdxReg = I.getOperand(3).getReg(); DebugLoc Loc = I.getDebugLoc(); MachineInstr &Pos = I; return generateImageRead(ResVReg, ResType, NewImageReg, IdxReg, Loc, Pos); } bool SPIRVInstructionSelector::generateImageRead(Register &ResVReg, const SPIRVType *ResType, Register ImageReg, Register IdxReg, DebugLoc Loc, MachineInstr &Pos) const { uint64_t ResultSize = GR.getScalarOrVectorComponentCount(ResType); if (ResultSize == 4) { return BuildMI(*Pos.getParent(), Pos, Loc, TII.get(SPIRV::OpImageRead)) .addDef(ResVReg) .addUse(GR.getSPIRVTypeID(ResType)) .addUse(ImageReg) .addUse(IdxReg) .constrainAllUses(TII, TRI, RBI); } SPIRVType *ReadType = widenTypeToVec4(ResType, Pos); Register ReadReg = MRI->createVirtualRegister(GR.getRegClass(ReadType)); bool Succeed = BuildMI(*Pos.getParent(), Pos, Loc, TII.get(SPIRV::OpImageRead)) .addDef(ReadReg) .addUse(GR.getSPIRVTypeID(ReadType)) .addUse(ImageReg) .addUse(IdxReg) .constrainAllUses(TII, TRI, RBI); if (!Succeed) return false; if (ResultSize == 1) { return BuildMI(*Pos.getParent(), Pos, Loc, TII.get(SPIRV::OpCompositeExtract)) .addDef(ResVReg) .addUse(GR.getSPIRVTypeID(ResType)) .addUse(ReadReg) .addImm(0) .constrainAllUses(TII, TRI, RBI); } return extractSubvector(ResVReg, ResType, ReadReg, Pos); } bool SPIRVInstructionSelector::selectResourceGetPointer( Register &ResVReg, const SPIRVType *ResType, MachineInstr &I) const { #ifdef ASSERT // For now, the operand is an image. This will change once we start handling // more resource types. Register ResourcePtr = I.getOperand(2).getReg(); SPIRVType *RegType = GR.getResultType(ResourcePtr); assert(RegType->getOpcode() == SPIRV::OpTypeImage && "Can only handle texel buffers for now."); #endif // For texel buffers, the index into the image is part of the OpImageRead or // OpImageWrite instructions. So we will do nothing in this case. This // intrinsic will be combined with the load or store when selecting the load // or store. return true; } bool SPIRVInstructionSelector::extractSubvector( Register &ResVReg, const SPIRVType *ResType, Register &ReadReg, MachineInstr &InsertionPoint) const { SPIRVType *InputType = GR.getResultType(ReadReg); [[maybe_unused]] uint64_t InputSize = GR.getScalarOrVectorComponentCount(InputType); uint64_t ResultSize = GR.getScalarOrVectorComponentCount(ResType); assert(InputSize > 1 && "The input must be a vector."); assert(ResultSize > 1 && "The result must be a vector."); assert(ResultSize < InputSize && "Cannot extract more element than there are in the input."); SmallVector ComponentRegisters; SPIRVType *ScalarType = GR.getScalarOrVectorComponentType(ResType); const TargetRegisterClass *ScalarRegClass = GR.getRegClass(ScalarType); for (uint64_t I = 0; I < ResultSize; I++) { Register ComponentReg = MRI->createVirtualRegister(ScalarRegClass); bool Succeed = BuildMI(*InsertionPoint.getParent(), InsertionPoint, InsertionPoint.getDebugLoc(), TII.get(SPIRV::OpCompositeExtract)) .addDef(ComponentReg) .addUse(ScalarType->getOperand(0).getReg()) .addUse(ReadReg) .addImm(I) .constrainAllUses(TII, TRI, RBI); if (!Succeed) return false; ComponentRegisters.emplace_back(ComponentReg); } MachineInstrBuilder MIB = BuildMI(*InsertionPoint.getParent(), InsertionPoint, InsertionPoint.getDebugLoc(), TII.get(SPIRV::OpCompositeConstruct)) .addDef(ResVReg) .addUse(GR.getSPIRVTypeID(ResType)); for (Register ComponentReg : ComponentRegisters) MIB.addUse(ComponentReg); return MIB.constrainAllUses(TII, TRI, RBI); } bool SPIRVInstructionSelector::selectImageWriteIntrinsic( MachineInstr &I) const { // If the load of the image is in a different basic block, then // this will generate invalid code. A proper solution is to move // the OpLoad from selectHandleFromBinding here. However, to do // that we will need to change the return type of the intrinsic. // We will do that when we can, but for now trying to move forward with other // issues. Register ImageReg = I.getOperand(1).getReg(); auto *ImageDef = cast(getVRegDef(*MRI, ImageReg)); Register NewImageReg = MRI->createVirtualRegister(MRI->getRegClass(ImageReg)); if (!loadHandleBeforePosition(NewImageReg, GR.getSPIRVTypeForVReg(ImageReg), *ImageDef, I)) { return false; } Register CoordinateReg = I.getOperand(2).getReg(); Register DataReg = I.getOperand(3).getReg(); assert(GR.getResultType(DataReg)->getOpcode() == SPIRV::OpTypeVector); assert(GR.getScalarOrVectorComponentCount(GR.getResultType(DataReg)) == 4); return BuildMI(*I.getParent(), I, I.getDebugLoc(), TII.get(SPIRV::OpImageWrite)) .addUse(NewImageReg) .addUse(CoordinateReg) .addUse(DataReg) .constrainAllUses(TII, TRI, RBI); } Register SPIRVInstructionSelector::buildPointerToResource( const SPIRVType *ResType, uint32_t Set, uint32_t Binding, uint32_t ArraySize, Register IndexReg, bool IsNonUniform, MachineIRBuilder MIRBuilder) const { if (ArraySize == 1) return GR.getOrCreateGlobalVariableWithBinding(ResType, Set, Binding, MIRBuilder); const SPIRVType *VarType = GR.getOrCreateSPIRVArrayType( ResType, ArraySize, *MIRBuilder.getInsertPt(), TII); Register VarReg = GR.getOrCreateGlobalVariableWithBinding( VarType, Set, Binding, MIRBuilder); SPIRVType *ResPointerType = GR.getOrCreateSPIRVPointerType( ResType, MIRBuilder, SPIRV::StorageClass::UniformConstant); Register AcReg = MRI->createVirtualRegister(&SPIRV::iIDRegClass); if (IsNonUniform) { // It is unclear which value needs to be marked an non-uniform, so both // the index and the access changed are decorated as non-uniform. buildOpDecorate(IndexReg, MIRBuilder, SPIRV::Decoration::NonUniformEXT, {}); buildOpDecorate(AcReg, MIRBuilder, SPIRV::Decoration::NonUniformEXT, {}); } MIRBuilder.buildInstr(SPIRV::OpAccessChain) .addDef(AcReg) .addUse(GR.getSPIRVTypeID(ResPointerType)) .addUse(VarReg) .addUse(IndexReg); return AcReg; } bool SPIRVInstructionSelector::selectFirstBitSet16( Register ResVReg, const SPIRVType *ResType, MachineInstr &I, unsigned ExtendOpcode, unsigned BitSetOpcode) const { Register ExtReg = MRI->createVirtualRegister(GR.getRegClass(ResType)); bool Result = selectOpWithSrcs(ExtReg, ResType, I, {I.getOperand(2).getReg()}, ExtendOpcode); return Result && selectFirstBitSet32(ResVReg, ResType, I, ExtReg, BitSetOpcode); } bool SPIRVInstructionSelector::selectFirstBitSet32( Register ResVReg, const SPIRVType *ResType, MachineInstr &I, Register SrcReg, unsigned BitSetOpcode) const { return BuildMI(*I.getParent(), I, I.getDebugLoc(), TII.get(SPIRV::OpExtInst)) .addDef(ResVReg) .addUse(GR.getSPIRVTypeID(ResType)) .addImm(static_cast(SPIRV::InstructionSet::GLSL_std_450)) .addImm(BitSetOpcode) .addUse(SrcReg) .constrainAllUses(TII, TRI, RBI); } bool SPIRVInstructionSelector::selectFirstBitSet64Overflow( Register ResVReg, const SPIRVType *ResType, MachineInstr &I, Register SrcReg, unsigned BitSetOpcode, bool SwapPrimarySide) const { // SPIR-V allow vectors of size 2,3,4 only. Calling with a larger vectors // requires creating a param register and return register with an invalid // vector size. If that is resolved, then this function can be used for // vectors of any component size. unsigned ComponentCount = GR.getScalarOrVectorComponentCount(ResType); assert(ComponentCount < 5 && "Vec 5+ will generate invalid SPIR-V ops"); MachineIRBuilder MIRBuilder(I); SPIRVType *BaseType = GR.retrieveScalarOrVectorIntType(ResType); SPIRVType *I64Type = GR.getOrCreateSPIRVIntegerType(64, MIRBuilder); SPIRVType *I64x2Type = GR.getOrCreateSPIRVVectorType(I64Type, 2, MIRBuilder); SPIRVType *Vec2ResType = GR.getOrCreateSPIRVVectorType(BaseType, 2, MIRBuilder); std::vector PartialRegs; // Loops 0, 2, 4, ... but stops one loop early when ComponentCount is odd unsigned CurrentComponent = 0; for (; CurrentComponent + 1 < ComponentCount; CurrentComponent += 2) { // This register holds the firstbitX result for each of the i64x2 vectors // extracted from SrcReg Register BitSetResult = MRI->createVirtualRegister(GR.getRegClass(I64x2Type)); auto MIB = BuildMI(*I.getParent(), I, I.getDebugLoc(), TII.get(SPIRV::OpVectorShuffle)) .addDef(BitSetResult) .addUse(GR.getSPIRVTypeID(I64x2Type)) .addUse(SrcReg) .addUse(SrcReg) .addImm(CurrentComponent) .addImm(CurrentComponent + 1); if (!MIB.constrainAllUses(TII, TRI, RBI)) return false; Register SubVecBitSetReg = MRI->createVirtualRegister(GR.getRegClass(Vec2ResType)); if (!selectFirstBitSet64(SubVecBitSetReg, Vec2ResType, I, BitSetResult, BitSetOpcode, SwapPrimarySide)) return false; PartialRegs.push_back(SubVecBitSetReg); } // On odd component counts we need to handle one more component if (CurrentComponent != ComponentCount) { bool ZeroAsNull = STI.isOpenCLEnv(); Register FinalElemReg = MRI->createVirtualRegister(GR.getRegClass(I64Type)); Register ConstIntLastIdx = GR.getOrCreateConstInt( ComponentCount - 1, I, BaseType, TII, ZeroAsNull); if (!selectOpWithSrcs(FinalElemReg, I64Type, I, {SrcReg, ConstIntLastIdx}, SPIRV::OpVectorExtractDynamic)) return false; Register FinalElemBitSetReg = MRI->createVirtualRegister(GR.getRegClass(BaseType)); if (!selectFirstBitSet64(FinalElemBitSetReg, BaseType, I, FinalElemReg, BitSetOpcode, SwapPrimarySide)) return false; PartialRegs.push_back(FinalElemBitSetReg); } // Join all the resulting registers back into the return type in order // (ie i32x2, i32x2, i32x1 -> i32x5) return selectOpWithSrcs(ResVReg, ResType, I, PartialRegs, SPIRV::OpCompositeConstruct); } bool SPIRVInstructionSelector::selectFirstBitSet64( Register ResVReg, const SPIRVType *ResType, MachineInstr &I, Register SrcReg, unsigned BitSetOpcode, bool SwapPrimarySide) const { unsigned ComponentCount = GR.getScalarOrVectorComponentCount(ResType); SPIRVType *BaseType = GR.retrieveScalarOrVectorIntType(ResType); bool ZeroAsNull = STI.isOpenCLEnv(); Register ConstIntZero = GR.getOrCreateConstInt(0, I, BaseType, TII, ZeroAsNull); Register ConstIntOne = GR.getOrCreateConstInt(1, I, BaseType, TII, ZeroAsNull); // SPIRV doesn't support vectors with more than 4 components. Since the // algoritm below converts i64 -> i32x2 and i64x4 -> i32x8 it can only // operate on vectors with 2 or less components. When largers vectors are // seen. Split them, recurse, then recombine them. if (ComponentCount > 2) { return selectFirstBitSet64Overflow(ResVReg, ResType, I, SrcReg, BitSetOpcode, SwapPrimarySide); } // 1. Split int64 into 2 pieces using a bitcast MachineIRBuilder MIRBuilder(I); SPIRVType *PostCastType = GR.getOrCreateSPIRVVectorType(BaseType, 2 * ComponentCount, MIRBuilder); Register BitcastReg = MRI->createVirtualRegister(GR.getRegClass(PostCastType)); if (!selectOpWithSrcs(BitcastReg, PostCastType, I, {SrcReg}, SPIRV::OpBitcast)) return false; // 2. Find the first set bit from the primary side for all the pieces in #1 Register FBSReg = MRI->createVirtualRegister(GR.getRegClass(PostCastType)); if (!selectFirstBitSet32(FBSReg, PostCastType, I, BitcastReg, BitSetOpcode)) return false; // 3. Split result vector into high bits and low bits Register HighReg = MRI->createVirtualRegister(GR.getRegClass(ResType)); Register LowReg = MRI->createVirtualRegister(GR.getRegClass(ResType)); bool IsScalarRes = ResType->getOpcode() != SPIRV::OpTypeVector; if (IsScalarRes) { // if scalar do a vector extract if (!selectOpWithSrcs(HighReg, ResType, I, {FBSReg, ConstIntZero}, SPIRV::OpVectorExtractDynamic)) return false; if (!selectOpWithSrcs(LowReg, ResType, I, {FBSReg, ConstIntOne}, SPIRV::OpVectorExtractDynamic)) return false; } else { // if vector do a shufflevector auto MIB = BuildMI(*I.getParent(), I, I.getDebugLoc(), TII.get(SPIRV::OpVectorShuffle)) .addDef(HighReg) .addUse(GR.getSPIRVTypeID(ResType)) .addUse(FBSReg) // Per the spec, repeat the vector if only one vec is needed .addUse(FBSReg); // high bits are stored in even indexes. Extract them from FBSReg for (unsigned J = 0; J < ComponentCount * 2; J += 2) { MIB.addImm(J); } if (!MIB.constrainAllUses(TII, TRI, RBI)) return false; MIB = BuildMI(*I.getParent(), I, I.getDebugLoc(), TII.get(SPIRV::OpVectorShuffle)) .addDef(LowReg) .addUse(GR.getSPIRVTypeID(ResType)) .addUse(FBSReg) // Per the spec, repeat the vector if only one vec is needed .addUse(FBSReg); // low bits are stored in odd indexes. Extract them from FBSReg for (unsigned J = 1; J < ComponentCount * 2; J += 2) { MIB.addImm(J); } if (!MIB.constrainAllUses(TII, TRI, RBI)) return false; } // 4. Check the result. When primary bits == -1 use secondary, otherwise use // primary SPIRVType *BoolType = GR.getOrCreateSPIRVBoolType(I, TII); Register NegOneReg; Register Reg0; Register Reg32; unsigned SelectOp; unsigned AddOp; if (IsScalarRes) { NegOneReg = GR.getOrCreateConstInt((unsigned)-1, I, ResType, TII, ZeroAsNull); Reg0 = GR.getOrCreateConstInt(0, I, ResType, TII, ZeroAsNull); Reg32 = GR.getOrCreateConstInt(32, I, ResType, TII, ZeroAsNull); SelectOp = SPIRV::OpSelectSISCond; AddOp = SPIRV::OpIAddS; } else { BoolType = GR.getOrCreateSPIRVVectorType(BoolType, ComponentCount, MIRBuilder); NegOneReg = GR.getOrCreateConstVector((unsigned)-1, I, ResType, TII, ZeroAsNull); Reg0 = GR.getOrCreateConstVector(0, I, ResType, TII, ZeroAsNull); Reg32 = GR.getOrCreateConstVector(32, I, ResType, TII, ZeroAsNull); SelectOp = SPIRV::OpSelectVIVCond; AddOp = SPIRV::OpIAddV; } Register PrimaryReg = HighReg; Register SecondaryReg = LowReg; Register PrimaryShiftReg = Reg32; Register SecondaryShiftReg = Reg0; // By default the emitted opcodes check for the set bit from the MSB side. // Setting SwapPrimarySide checks the set bit from the LSB side if (SwapPrimarySide) { PrimaryReg = LowReg; SecondaryReg = HighReg; PrimaryShiftReg = Reg0; SecondaryShiftReg = Reg32; } // Check if the primary bits are == -1 Register BReg = MRI->createVirtualRegister(GR.getRegClass(BoolType)); if (!selectOpWithSrcs(BReg, BoolType, I, {PrimaryReg, NegOneReg}, SPIRV::OpIEqual)) return false; // Select secondary bits if true in BReg, otherwise primary bits Register TmpReg = MRI->createVirtualRegister(GR.getRegClass(ResType)); if (!selectOpWithSrcs(TmpReg, ResType, I, {BReg, SecondaryReg, PrimaryReg}, SelectOp)) return false; // 5. Add 32 when high bits are used, otherwise 0 for low bits Register ValReg = MRI->createVirtualRegister(GR.getRegClass(ResType)); if (!selectOpWithSrcs(ValReg, ResType, I, {BReg, SecondaryShiftReg, PrimaryShiftReg}, SelectOp)) return false; return selectOpWithSrcs(ResVReg, ResType, I, {ValReg, TmpReg}, AddOp); } bool SPIRVInstructionSelector::selectFirstBitHigh(Register ResVReg, const SPIRVType *ResType, MachineInstr &I, bool IsSigned) const { // FindUMsb and FindSMsb intrinsics only support 32 bit integers Register OpReg = I.getOperand(2).getReg(); SPIRVType *OpType = GR.getSPIRVTypeForVReg(OpReg); // zero or sign extend unsigned ExtendOpcode = IsSigned ? SPIRV::OpSConvert : SPIRV::OpUConvert; unsigned BitSetOpcode = IsSigned ? GL::FindSMsb : GL::FindUMsb; switch (GR.getScalarOrVectorBitWidth(OpType)) { case 16: return selectFirstBitSet16(ResVReg, ResType, I, ExtendOpcode, BitSetOpcode); case 32: return selectFirstBitSet32(ResVReg, ResType, I, OpReg, BitSetOpcode); case 64: return selectFirstBitSet64(ResVReg, ResType, I, OpReg, BitSetOpcode, /*SwapPrimarySide=*/false); default: report_fatal_error( "spv_firstbituhigh and spv_firstbitshigh only support 16,32,64 bits."); } } bool SPIRVInstructionSelector::selectFirstBitLow(Register ResVReg, const SPIRVType *ResType, MachineInstr &I) const { // FindILsb intrinsic only supports 32 bit integers Register OpReg = I.getOperand(2).getReg(); SPIRVType *OpType = GR.getSPIRVTypeForVReg(OpReg); // OpUConvert treats the operand bits as an unsigned i16 and zero extends it // to an unsigned i32. As this leaves all the least significant bits unchanged // so the first set bit from the LSB side doesn't change. unsigned ExtendOpcode = SPIRV::OpUConvert; unsigned BitSetOpcode = GL::FindILsb; switch (GR.getScalarOrVectorBitWidth(OpType)) { case 16: return selectFirstBitSet16(ResVReg, ResType, I, ExtendOpcode, BitSetOpcode); case 32: return selectFirstBitSet32(ResVReg, ResType, I, OpReg, BitSetOpcode); case 64: return selectFirstBitSet64(ResVReg, ResType, I, OpReg, BitSetOpcode, /*SwapPrimarySide=*/true); default: report_fatal_error("spv_firstbitlow only supports 16,32,64 bits."); } } bool SPIRVInstructionSelector::selectAllocaArray(Register ResVReg, const SPIRVType *ResType, MachineInstr &I) const { // there was an allocation size parameter to the allocation instruction // that is not 1 MachineBasicBlock &BB = *I.getParent(); bool Res = BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpVariableLengthArrayINTEL)) .addDef(ResVReg) .addUse(GR.getSPIRVTypeID(ResType)) .addUse(I.getOperand(2).getReg()) .constrainAllUses(TII, TRI, RBI); if (!STI.isVulkanEnv()) { unsigned Alignment = I.getOperand(3).getImm(); buildOpDecorate(ResVReg, I, TII, SPIRV::Decoration::Alignment, {Alignment}); } return Res; } bool SPIRVInstructionSelector::selectFrameIndex(Register ResVReg, const SPIRVType *ResType, MachineInstr &I) const { // Change order of instructions if needed: all OpVariable instructions in a // function must be the first instructions in the first block auto It = getOpVariableMBBIt(I); bool Res = BuildMI(*It->getParent(), It, It->getDebugLoc(), TII.get(SPIRV::OpVariable)) .addDef(ResVReg) .addUse(GR.getSPIRVTypeID(ResType)) .addImm(static_cast(SPIRV::StorageClass::Function)) .constrainAllUses(TII, TRI, RBI); if (!STI.isVulkanEnv()) { unsigned Alignment = I.getOperand(2).getImm(); buildOpDecorate(ResVReg, *It, TII, SPIRV::Decoration::Alignment, {Alignment}); } return Res; } bool SPIRVInstructionSelector::selectBranch(MachineInstr &I) const { // InstructionSelector walks backwards through the instructions. We can use // both a G_BR and a G_BRCOND to create an OpBranchConditional. We hit G_BR // first, so can generate an OpBranchConditional here. If there is no // G_BRCOND, we just use OpBranch for a regular unconditional branch. const MachineInstr *PrevI = I.getPrevNode(); MachineBasicBlock &MBB = *I.getParent(); if (PrevI != nullptr && PrevI->getOpcode() == TargetOpcode::G_BRCOND) { return BuildMI(MBB, I, I.getDebugLoc(), TII.get(SPIRV::OpBranchConditional)) .addUse(PrevI->getOperand(0).getReg()) .addMBB(PrevI->getOperand(1).getMBB()) .addMBB(I.getOperand(0).getMBB()) .constrainAllUses(TII, TRI, RBI); } return BuildMI(MBB, I, I.getDebugLoc(), TII.get(SPIRV::OpBranch)) .addMBB(I.getOperand(0).getMBB()) .constrainAllUses(TII, TRI, RBI); } bool SPIRVInstructionSelector::selectBranchCond(MachineInstr &I) const { // InstructionSelector walks backwards through the instructions. For an // explicit conditional branch with no fallthrough, we use both a G_BR and a // G_BRCOND to create an OpBranchConditional. We should hit G_BR first, and // generate the OpBranchConditional in selectBranch above. // // If an OpBranchConditional has been generated, we simply return, as the work // is alread done. If there is no OpBranchConditional, LLVM must be relying on // implicit fallthrough to the next basic block, so we need to create an // OpBranchConditional with an explicit "false" argument pointing to the next // basic block that LLVM would fall through to. const MachineInstr *NextI = I.getNextNode(); // Check if this has already been successfully selected. if (NextI != nullptr && NextI->getOpcode() == SPIRV::OpBranchConditional) return true; // Must be relying on implicit block fallthrough, so generate an // OpBranchConditional with the "next" basic block as the "false" target. MachineBasicBlock &MBB = *I.getParent(); unsigned NextMBBNum = MBB.getNextNode()->getNumber(); MachineBasicBlock *NextMBB = I.getMF()->getBlockNumbered(NextMBBNum); return BuildMI(MBB, I, I.getDebugLoc(), TII.get(SPIRV::OpBranchConditional)) .addUse(I.getOperand(0).getReg()) .addMBB(I.getOperand(1).getMBB()) .addMBB(NextMBB) .constrainAllUses(TII, TRI, RBI); } bool SPIRVInstructionSelector::selectPhi(Register ResVReg, const SPIRVType *ResType, MachineInstr &I) const { auto MIB = BuildMI(*I.getParent(), I, I.getDebugLoc(), TII.get(SPIRV::OpPhi)) .addDef(ResVReg) .addUse(GR.getSPIRVTypeID(ResType)); const unsigned NumOps = I.getNumOperands(); for (unsigned i = 1; i < NumOps; i += 2) { MIB.addUse(I.getOperand(i + 0).getReg()); MIB.addMBB(I.getOperand(i + 1).getMBB()); } bool Res = MIB.constrainAllUses(TII, TRI, RBI); MIB->setDesc(TII.get(TargetOpcode::PHI)); MIB->removeOperand(1); return Res; } bool SPIRVInstructionSelector::selectGlobalValue( Register ResVReg, MachineInstr &I, const MachineInstr *Init) const { // FIXME: don't use MachineIRBuilder here, replace it with BuildMI. MachineIRBuilder MIRBuilder(I); const GlobalValue *GV = I.getOperand(1).getGlobal(); Type *GVType = toTypedPointer(GR.getDeducedGlobalValueType(GV)); SPIRVType *PointerBaseType; if (GVType->isArrayTy()) { SPIRVType *ArrayElementType = GR.getOrCreateSPIRVType(GVType->getArrayElementType(), MIRBuilder, SPIRV::AccessQualifier::ReadWrite, false); PointerBaseType = GR.getOrCreateSPIRVArrayType( ArrayElementType, GVType->getArrayNumElements(), I, TII); } else { PointerBaseType = GR.getOrCreateSPIRVType( GVType, MIRBuilder, SPIRV::AccessQualifier::ReadWrite, false); } std::string GlobalIdent; if (!GV->hasName()) { unsigned &ID = UnnamedGlobalIDs[GV]; if (ID == 0) ID = UnnamedGlobalIDs.size(); GlobalIdent = "__unnamed_" + Twine(ID).str(); } else { GlobalIdent = GV->getName(); } // Behaviour of functions as operands depends on availability of the // corresponding extension (SPV_INTEL_function_pointers): // - If there is an extension to operate with functions as operands: // We create a proper constant operand and evaluate a correct type for a // function pointer. // - Without the required extension: // We have functions as operands in tests with blocks of instruction e.g. in // transcoding/global_block.ll. These operands are not used and should be // substituted by zero constants. Their type is expected to be always // OpTypePointer Function %uchar. if (isa(GV)) { const Constant *ConstVal = GV; MachineBasicBlock &BB = *I.getParent(); Register NewReg = GR.find(ConstVal, GR.CurMF); if (!NewReg.isValid()) { Register NewReg = ResVReg; GR.add(ConstVal, GR.CurMF, NewReg); const Function *GVFun = STI.canUseExtension(SPIRV::Extension::SPV_INTEL_function_pointers) ? dyn_cast(GV) : nullptr; SPIRVType *ResType = GR.getOrCreateSPIRVPointerType( PointerBaseType, I, TII, GVFun ? SPIRV::StorageClass::CodeSectionINTEL : addressSpaceToStorageClass(GV->getAddressSpace(), STI)); if (GVFun) { // References to a function via function pointers generate virtual // registers without a definition. We will resolve it later, during // module analysis stage. Register ResTypeReg = GR.getSPIRVTypeID(ResType); MachineRegisterInfo *MRI = MIRBuilder.getMRI(); Register FuncVReg = MRI->createGenericVirtualRegister(GR.getRegType(ResType)); MRI->setRegClass(FuncVReg, &SPIRV::pIDRegClass); MachineInstrBuilder MIB1 = BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpUndef)) .addDef(FuncVReg) .addUse(ResTypeReg); MachineInstrBuilder MIB2 = BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpConstantFunctionPointerINTEL)) .addDef(NewReg) .addUse(ResTypeReg) .addUse(FuncVReg); // mapping the function pointer to the used Function GR.recordFunctionPointer(&MIB2.getInstr()->getOperand(2), GVFun); return MIB1.constrainAllUses(TII, TRI, RBI) && MIB2.constrainAllUses(TII, TRI, RBI); } return BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpConstantNull)) .addDef(NewReg) .addUse(GR.getSPIRVTypeID(ResType)) .constrainAllUses(TII, TRI, RBI); } assert(NewReg != ResVReg); return BuildCOPY(ResVReg, NewReg, I); } auto GlobalVar = cast(GV); assert(GlobalVar->getName() != "llvm.global.annotations"); // Skip empty declaration for GVs with initializers till we get the decl with // passed initializer. if (hasInitializer(GlobalVar) && !Init) return true; bool HasLnkTy = !GV->hasInternalLinkage() && !GV->hasPrivateLinkage(); SPIRV::LinkageType::LinkageType LnkType = GV->isDeclarationForLinker() ? SPIRV::LinkageType::Import : (GV->hasLinkOnceODRLinkage() && STI.canUseExtension(SPIRV::Extension::SPV_KHR_linkonce_odr) ? SPIRV::LinkageType::LinkOnceODR : SPIRV::LinkageType::Export); const unsigned AddrSpace = GV->getAddressSpace(); SPIRV::StorageClass::StorageClass StorageClass = addressSpaceToStorageClass(AddrSpace, STI); SPIRVType *ResType = GR.getOrCreateSPIRVPointerType(PointerBaseType, I, TII, StorageClass); Register Reg = GR.buildGlobalVariable( ResVReg, ResType, GlobalIdent, GV, StorageClass, Init, GlobalVar->isConstant(), HasLnkTy, LnkType, MIRBuilder, true); return Reg.isValid(); } bool SPIRVInstructionSelector::selectLog10(Register ResVReg, const SPIRVType *ResType, MachineInstr &I) const { if (STI.canUseExtInstSet(SPIRV::InstructionSet::OpenCL_std)) { return selectExtInst(ResVReg, ResType, I, CL::log10); } // There is no log10 instruction in the GLSL Extended Instruction set, so it // is implemented as: // log10(x) = log2(x) * (1 / log2(10)) // = log2(x) * 0.30103 MachineIRBuilder MIRBuilder(I); MachineBasicBlock &BB = *I.getParent(); // Build log2(x). Register VarReg = MRI->createVirtualRegister(GR.getRegClass(ResType)); bool Result = BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpExtInst)) .addDef(VarReg) .addUse(GR.getSPIRVTypeID(ResType)) .addImm(static_cast(SPIRV::InstructionSet::GLSL_std_450)) .addImm(GL::Log2) .add(I.getOperand(1)) .constrainAllUses(TII, TRI, RBI); // Build 0.30103. assert(ResType->getOpcode() == SPIRV::OpTypeVector || ResType->getOpcode() == SPIRV::OpTypeFloat); // TODO: Add matrix implementation once supported by the HLSL frontend. const SPIRVType *SpirvScalarType = ResType->getOpcode() == SPIRV::OpTypeVector ? GR.getSPIRVTypeForVReg(ResType->getOperand(1).getReg()) : ResType; Register ScaleReg = GR.buildConstantFP(APFloat(0.30103f), MIRBuilder, SpirvScalarType); // Multiply log2(x) by 0.30103 to get log10(x) result. auto Opcode = ResType->getOpcode() == SPIRV::OpTypeVector ? SPIRV::OpVectorTimesScalar : SPIRV::OpFMulS; return Result && BuildMI(BB, I, I.getDebugLoc(), TII.get(Opcode)) .addDef(ResVReg) .addUse(GR.getSPIRVTypeID(ResType)) .addUse(VarReg) .addUse(ScaleReg) .constrainAllUses(TII, TRI, RBI); } // Generate the instructions to load 3-element vector builtin input // IDs/Indices. // Like: GlobalInvocationId, LocalInvocationId, etc.... bool SPIRVInstructionSelector::loadVec3BuiltinInputID( SPIRV::BuiltIn::BuiltIn BuiltInValue, Register ResVReg, const SPIRVType *ResType, MachineInstr &I) const { MachineIRBuilder MIRBuilder(I); const SPIRVType *U32Type = GR.getOrCreateSPIRVIntegerType(32, MIRBuilder); const SPIRVType *Vec3Ty = GR.getOrCreateSPIRVVectorType(U32Type, 3, MIRBuilder); const SPIRVType *PtrType = GR.getOrCreateSPIRVPointerType( Vec3Ty, MIRBuilder, SPIRV::StorageClass::Input); // Create new register for the input ID builtin variable. Register NewRegister = MIRBuilder.getMRI()->createVirtualRegister(&SPIRV::iIDRegClass); MIRBuilder.getMRI()->setType(NewRegister, LLT::pointer(0, 64)); GR.assignSPIRVTypeToVReg(PtrType, NewRegister, MIRBuilder.getMF()); // Build global variable with the necessary decorations for the input ID // builtin variable. Register Variable = GR.buildGlobalVariable( NewRegister, PtrType, getLinkStringForBuiltIn(BuiltInValue), nullptr, SPIRV::StorageClass::Input, nullptr, true, true, SPIRV::LinkageType::Import, MIRBuilder, false); // Create new register for loading value. MachineRegisterInfo *MRI = MIRBuilder.getMRI(); Register LoadedRegister = MRI->createVirtualRegister(&SPIRV::iIDRegClass); MIRBuilder.getMRI()->setType(LoadedRegister, LLT::pointer(0, 64)); GR.assignSPIRVTypeToVReg(Vec3Ty, LoadedRegister, MIRBuilder.getMF()); // Load v3uint value from the global variable. bool Result = BuildMI(*I.getParent(), I, I.getDebugLoc(), TII.get(SPIRV::OpLoad)) .addDef(LoadedRegister) .addUse(GR.getSPIRVTypeID(Vec3Ty)) .addUse(Variable); // Get the input ID index. Expecting operand is a constant immediate value, // wrapped in a type assignment. assert(I.getOperand(2).isReg()); const uint32_t ThreadId = foldImm(I.getOperand(2), MRI); // Extract the input ID from the loaded vector value. MachineBasicBlock &BB = *I.getParent(); auto MIB = BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpCompositeExtract)) .addDef(ResVReg) .addUse(GR.getSPIRVTypeID(ResType)) .addUse(LoadedRegister) .addImm(ThreadId); return Result && MIB.constrainAllUses(TII, TRI, RBI); } SPIRVType *SPIRVInstructionSelector::widenTypeToVec4(const SPIRVType *Type, MachineInstr &I) const { MachineIRBuilder MIRBuilder(I); if (Type->getOpcode() != SPIRV::OpTypeVector) return GR.getOrCreateSPIRVVectorType(Type, 4, MIRBuilder); uint64_t VectorSize = Type->getOperand(2).getImm(); if (VectorSize == 4) return Type; Register ScalarTypeReg = Type->getOperand(1).getReg(); const SPIRVType *ScalarType = GR.getSPIRVTypeForVReg(ScalarTypeReg); return GR.getOrCreateSPIRVVectorType(ScalarType, 4, MIRBuilder); } bool SPIRVInstructionSelector::loadHandleBeforePosition( Register &HandleReg, const SPIRVType *ResType, GIntrinsic &HandleDef, MachineInstr &Pos) const { assert(HandleDef.getIntrinsicID() == Intrinsic::spv_resource_handlefrombinding); uint32_t Set = foldImm(HandleDef.getOperand(2), MRI); uint32_t Binding = foldImm(HandleDef.getOperand(3), MRI); uint32_t ArraySize = foldImm(HandleDef.getOperand(4), MRI); Register IndexReg = HandleDef.getOperand(5).getReg(); bool IsNonUniform = ArraySize > 1 && foldImm(HandleDef.getOperand(6), MRI); MachineIRBuilder MIRBuilder(HandleDef); Register VarReg = buildPointerToResource(ResType, Set, Binding, ArraySize, IndexReg, IsNonUniform, MIRBuilder); if (IsNonUniform) buildOpDecorate(HandleReg, HandleDef, TII, SPIRV::Decoration::NonUniformEXT, {}); // TODO: For now we assume the resource is an image, which needs to be // loaded to get the handle. That will not be true for storage buffers. return BuildMI(*Pos.getParent(), Pos, HandleDef.getDebugLoc(), TII.get(SPIRV::OpLoad)) .addDef(HandleReg) .addUse(GR.getSPIRVTypeID(ResType)) .addUse(VarReg) .constrainAllUses(TII, TRI, RBI); } namespace llvm { InstructionSelector * createSPIRVInstructionSelector(const SPIRVTargetMachine &TM, const SPIRVSubtarget &Subtarget, const RegisterBankInfo &RBI) { return new SPIRVInstructionSelector(TM, Subtarget, RBI); } } // namespace llvm