//===-- SILowerControlFlow.cpp - Use predicates for control flow ----------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // /// \file /// \brief This pass lowers the pseudo control flow instructions to real /// machine instructions. /// /// All control flow is handled using predicated instructions and /// a predicate stack. Each Scalar ALU controls the operations of 64 Vector /// ALUs. The Scalar ALU can update the predicate for any of the Vector ALUs /// by writting to the 64-bit EXEC register (each bit corresponds to a /// single vector ALU). Typically, for predicates, a vector ALU will write /// to its bit of the VCC register (like EXEC VCC is 64-bits, one for each /// Vector ALU) and then the ScalarALU will AND the VCC register with the /// EXEC to update the predicates. /// /// For example: /// %VCC = V_CMP_GT_F32 %VGPR1, %VGPR2 /// %SGPR0 = SI_IF %VCC /// %VGPR0 = V_ADD_F32 %VGPR0, %VGPR0 /// %SGPR0 = SI_ELSE %SGPR0 /// %VGPR0 = V_SUB_F32 %VGPR0, %VGPR0 /// SI_END_CF %SGPR0 /// /// becomes: /// /// %SGPR0 = S_AND_SAVEEXEC_B64 %VCC // Save and update the exec mask /// %SGPR0 = S_XOR_B64 %SGPR0, %EXEC // Clear live bits from saved exec mask /// S_CBRANCH_EXECZ label0 // This instruction is an optional /// // optimization which allows us to /// // branch if all the bits of /// // EXEC are zero. /// %VGPR0 = V_ADD_F32 %VGPR0, %VGPR0 // Do the IF block of the branch /// /// label0: /// %SGPR0 = S_OR_SAVEEXEC_B64 %EXEC // Restore the exec mask for the Then block /// %EXEC = S_XOR_B64 %SGPR0, %EXEC // Clear live bits from saved exec mask /// S_BRANCH_EXECZ label1 // Use our branch optimization /// // instruction again. /// %VGPR0 = V_SUB_F32 %VGPR0, %VGPR // Do the THEN block /// label1: /// %EXEC = S_OR_B64 %EXEC, %SGPR0 // Re-enable saved exec mask bits //===----------------------------------------------------------------------===// #include "AMDGPU.h" #include "AMDGPUSubtarget.h" #include "SIInstrInfo.h" #include "SIMachineFunctionInfo.h" #include "llvm/CodeGen/LivePhysRegs.h" #include "llvm/CodeGen/MachineFrameInfo.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/MachineFunctionPass.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/IR/Constants.h" #include "llvm/MC/MCAsmInfo.h" using namespace llvm; #define DEBUG_TYPE "si-lower-control-flow" namespace { static cl::opt SkipThresholdFlag( "amdgpu-skip-threshold", cl::desc("Number of instructions before jumping over divergent control flow"), cl::init(12), cl::Hidden); class SILowerControlFlow : public MachineFunctionPass { private: const SIRegisterInfo *TRI; const SIInstrInfo *TII; unsigned SkipThreshold; bool shouldSkip(MachineBasicBlock *From, MachineBasicBlock *To); MachineInstr *Skip(MachineInstr &From, MachineOperand &To); bool skipIfDead(MachineInstr &MI, MachineBasicBlock &NextBB); void If(MachineInstr &MI); void Else(MachineInstr &MI); void Break(MachineInstr &MI); void IfBreak(MachineInstr &MI); void ElseBreak(MachineInstr &MI); void Loop(MachineInstr &MI); void EndCf(MachineInstr &MI); void Kill(MachineInstr &MI); void Branch(MachineInstr &MI); MachineBasicBlock *insertSkipBlock(MachineBasicBlock &MBB, MachineBasicBlock::iterator I) const; public: static char ID; SILowerControlFlow() : MachineFunctionPass(ID), TRI(nullptr), TII(nullptr), SkipThreshold(0) { } bool runOnMachineFunction(MachineFunction &MF) override; const char *getPassName() const override { return "SI Lower control flow pseudo instructions"; } }; } // End anonymous namespace char SILowerControlFlow::ID = 0; INITIALIZE_PASS(SILowerControlFlow, DEBUG_TYPE, "SI lower control flow", false, false) char &llvm::SILowerControlFlowPassID = SILowerControlFlow::ID; FunctionPass *llvm::createSILowerControlFlowPass() { return new SILowerControlFlow(); } static bool opcodeEmitsNoInsts(unsigned Opc) { switch (Opc) { case TargetOpcode::IMPLICIT_DEF: case TargetOpcode::KILL: case TargetOpcode::BUNDLE: case TargetOpcode::CFI_INSTRUCTION: case TargetOpcode::EH_LABEL: case TargetOpcode::GC_LABEL: case TargetOpcode::DBG_VALUE: return true; default: return false; } } bool SILowerControlFlow::shouldSkip(MachineBasicBlock *From, MachineBasicBlock *To) { if (From->succ_empty()) return false; unsigned NumInstr = 0; MachineFunction *MF = From->getParent(); for (MachineFunction::iterator MBBI(From), ToI(To), End = MF->end(); MBBI != End && MBBI != ToI; ++MBBI) { MachineBasicBlock &MBB = *MBBI; for (MachineBasicBlock::iterator I = MBB.begin(), E = MBB.end(); NumInstr < SkipThreshold && I != E; ++I) { if (opcodeEmitsNoInsts(I->getOpcode())) continue; // When a uniform loop is inside non-uniform control flow, the branch // leaving the loop might be an S_CBRANCH_VCCNZ, which is never taken // when EXEC = 0. We should skip the loop lest it becomes infinite. if (I->getOpcode() == AMDGPU::S_CBRANCH_VCCNZ || I->getOpcode() == AMDGPU::S_CBRANCH_VCCZ) return true; if (I->isInlineAsm()) { const MCAsmInfo *MAI = MF->getTarget().getMCAsmInfo(); const char *AsmStr = I->getOperand(0).getSymbolName(); // inlineasm length estimate is number of bytes assuming the longest // instruction. uint64_t MaxAsmSize = TII->getInlineAsmLength(AsmStr, *MAI); NumInstr += MaxAsmSize / MAI->getMaxInstLength(); } else { ++NumInstr; } if (NumInstr >= SkipThreshold) return true; } } return false; } MachineInstr *SILowerControlFlow::Skip(MachineInstr &From, MachineOperand &To) { if (!shouldSkip(*From.getParent()->succ_begin(), To.getMBB())) return nullptr; const DebugLoc &DL = From.getDebugLoc(); MachineInstr *Skip = BuildMI(*From.getParent(), &From, DL, TII->get(AMDGPU::S_CBRANCH_EXECZ)) .addOperand(To); return Skip; } bool SILowerControlFlow::skipIfDead(MachineInstr &MI, MachineBasicBlock &NextBB) { MachineBasicBlock &MBB = *MI.getParent(); MachineFunction *MF = MBB.getParent(); if (MF->getFunction()->getCallingConv() != CallingConv::AMDGPU_PS || !shouldSkip(&MBB, &MBB.getParent()->back())) return false; MachineBasicBlock *SkipBB = insertSkipBlock(MBB, MI.getIterator()); MBB.addSuccessor(SkipBB); const DebugLoc &DL = MI.getDebugLoc(); // If the exec mask is non-zero, skip the next two instructions BuildMI(&MBB, DL, TII->get(AMDGPU::S_CBRANCH_EXECNZ)) .addMBB(&NextBB); MachineBasicBlock::iterator Insert = SkipBB->begin(); // Exec mask is zero: Export to NULL target... BuildMI(*SkipBB, Insert, DL, TII->get(AMDGPU::EXP)) .addImm(0) .addImm(0x09) // V_008DFC_SQ_EXP_NULL .addImm(0) .addImm(1) .addImm(1) .addReg(AMDGPU::VGPR0, RegState::Undef) .addReg(AMDGPU::VGPR0, RegState::Undef) .addReg(AMDGPU::VGPR0, RegState::Undef) .addReg(AMDGPU::VGPR0, RegState::Undef); // ... and terminate wavefront. BuildMI(*SkipBB, Insert, DL, TII->get(AMDGPU::S_ENDPGM)); return true; } void SILowerControlFlow::If(MachineInstr &MI) { MachineBasicBlock &MBB = *MI.getParent(); DebugLoc DL = MI.getDebugLoc(); unsigned Reg = MI.getOperand(0).getReg(); unsigned Vcc = MI.getOperand(1).getReg(); BuildMI(MBB, &MI, DL, TII->get(AMDGPU::S_AND_SAVEEXEC_B64), Reg) .addReg(Vcc); BuildMI(MBB, &MI, DL, TII->get(AMDGPU::S_XOR_B64), Reg) .addReg(AMDGPU::EXEC) .addReg(Reg); MachineInstr *SkipInst = Skip(MI, MI.getOperand(2)); // Insert before the new branch instruction. MachineInstr *InsPt = SkipInst ? SkipInst : &MI; // Insert a pseudo terminator to help keep the verifier happy. BuildMI(MBB, InsPt, DL, TII->get(AMDGPU::SI_MASK_BRANCH)) .addOperand(MI.getOperand(2)) .addReg(Reg); MI.eraseFromParent(); } void SILowerControlFlow::Else(MachineInstr &MI) { MachineBasicBlock &MBB = *MI.getParent(); DebugLoc DL = MI.getDebugLoc(); unsigned Dst = MI.getOperand(0).getReg(); unsigned Src = MI.getOperand(1).getReg(); BuildMI(MBB, MBB.getFirstNonPHI(), DL, TII->get(AMDGPU::S_OR_SAVEEXEC_B64), Dst) .addReg(Src); // Saved EXEC if (MI.getOperand(3).getImm() != 0) { // Adjust the saved exec to account for the modifications during the flow // block that contains the ELSE. This can happen when WQM mode is switched // off. BuildMI(MBB, &MI, DL, TII->get(AMDGPU::S_AND_B64), Dst) .addReg(AMDGPU::EXEC) .addReg(Dst); } BuildMI(MBB, &MI, DL, TII->get(AMDGPU::S_XOR_B64), AMDGPU::EXEC) .addReg(AMDGPU::EXEC) .addReg(Dst); MachineInstr *SkipInst = Skip(MI, MI.getOperand(2)); // Insert before the new branch instruction. MachineInstr *InsPt = SkipInst ? SkipInst : &MI; // Insert a pseudo terminator to help keep the verifier happy. BuildMI(MBB, InsPt, DL, TII->get(AMDGPU::SI_MASK_BRANCH)) .addOperand(MI.getOperand(2)) .addReg(Dst); MI.eraseFromParent(); } void SILowerControlFlow::Break(MachineInstr &MI) { MachineBasicBlock &MBB = *MI.getParent(); DebugLoc DL = MI.getDebugLoc(); unsigned Dst = MI.getOperand(0).getReg(); unsigned Src = MI.getOperand(1).getReg(); BuildMI(MBB, &MI, DL, TII->get(AMDGPU::S_OR_B64), Dst) .addReg(AMDGPU::EXEC) .addReg(Src); MI.eraseFromParent(); } void SILowerControlFlow::IfBreak(MachineInstr &MI) { MachineBasicBlock &MBB = *MI.getParent(); DebugLoc DL = MI.getDebugLoc(); unsigned Dst = MI.getOperand(0).getReg(); unsigned Vcc = MI.getOperand(1).getReg(); unsigned Src = MI.getOperand(2).getReg(); BuildMI(MBB, &MI, DL, TII->get(AMDGPU::S_OR_B64), Dst) .addReg(Vcc) .addReg(Src); MI.eraseFromParent(); } void SILowerControlFlow::ElseBreak(MachineInstr &MI) { MachineBasicBlock &MBB = *MI.getParent(); DebugLoc DL = MI.getDebugLoc(); unsigned Dst = MI.getOperand(0).getReg(); unsigned Saved = MI.getOperand(1).getReg(); unsigned Src = MI.getOperand(2).getReg(); BuildMI(MBB, &MI, DL, TII->get(AMDGPU::S_OR_B64), Dst) .addReg(Saved) .addReg(Src); MI.eraseFromParent(); } void SILowerControlFlow::Loop(MachineInstr &MI) { MachineBasicBlock &MBB = *MI.getParent(); DebugLoc DL = MI.getDebugLoc(); unsigned Src = MI.getOperand(0).getReg(); BuildMI(MBB, &MI, DL, TII->get(AMDGPU::S_ANDN2_B64), AMDGPU::EXEC) .addReg(AMDGPU::EXEC) .addReg(Src); BuildMI(MBB, &MI, DL, TII->get(AMDGPU::S_CBRANCH_EXECNZ)) .addOperand(MI.getOperand(1)); MI.eraseFromParent(); } void SILowerControlFlow::EndCf(MachineInstr &MI) { MachineBasicBlock &MBB = *MI.getParent(); DebugLoc DL = MI.getDebugLoc(); unsigned Reg = MI.getOperand(0).getReg(); BuildMI(MBB, MBB.getFirstNonPHI(), DL, TII->get(AMDGPU::S_OR_B64), AMDGPU::EXEC) .addReg(AMDGPU::EXEC) .addReg(Reg); MI.eraseFromParent(); } void SILowerControlFlow::Branch(MachineInstr &MI) { MachineBasicBlock *MBB = MI.getOperand(0).getMBB(); if (MBB == MI.getParent()->getNextNode()) MI.eraseFromParent(); // If these aren't equal, this is probably an infinite loop. } void SILowerControlFlow::Kill(MachineInstr &MI) { MachineBasicBlock &MBB = *MI.getParent(); DebugLoc DL = MI.getDebugLoc(); const MachineOperand &Op = MI.getOperand(0); #ifndef NDEBUG CallingConv::ID CallConv = MBB.getParent()->getFunction()->getCallingConv(); // Kill is only allowed in pixel / geometry shaders. assert(CallConv == CallingConv::AMDGPU_PS || CallConv == CallingConv::AMDGPU_GS); #endif // Clear this thread from the exec mask if the operand is negative if ((Op.isImm())) { // Constant operand: Set exec mask to 0 or do nothing if (Op.getImm() & 0x80000000) { BuildMI(MBB, &MI, DL, TII->get(AMDGPU::S_MOV_B64), AMDGPU::EXEC) .addImm(0); } } else { BuildMI(MBB, &MI, DL, TII->get(AMDGPU::V_CMPX_LE_F32_e32)) .addImm(0) .addOperand(Op); } MI.eraseFromParent(); } MachineBasicBlock *SILowerControlFlow::insertSkipBlock( MachineBasicBlock &MBB, MachineBasicBlock::iterator I) const { MachineFunction *MF = MBB.getParent(); MachineBasicBlock *SkipBB = MF->CreateMachineBasicBlock(); MachineFunction::iterator MBBI(MBB); ++MBBI; MF->insert(MBBI, SkipBB); return SkipBB; } bool SILowerControlFlow::runOnMachineFunction(MachineFunction &MF) { const SISubtarget &ST = MF.getSubtarget(); TII = ST.getInstrInfo(); TRI = &TII->getRegisterInfo(); SkipThreshold = SkipThresholdFlag; SIMachineFunctionInfo *MFI = MF.getInfo(); bool HaveKill = false; bool NeedFlat = false; unsigned Depth = 0; MachineFunction::iterator NextBB; for (MachineFunction::iterator BI = MF.begin(), BE = MF.end(); BI != BE; BI = NextBB) { NextBB = std::next(BI); MachineBasicBlock &MBB = *BI; MachineBasicBlock *EmptyMBBAtEnd = nullptr; MachineBasicBlock::iterator I, Next; for (I = MBB.begin(); I != MBB.end(); I = Next) { Next = std::next(I); MachineInstr &MI = *I; // Flat uses m0 in case it needs to access LDS. if (TII->isFLAT(MI)) NeedFlat = true; switch (MI.getOpcode()) { default: break; case AMDGPU::SI_IF: ++Depth; If(MI); break; case AMDGPU::SI_ELSE: Else(MI); break; case AMDGPU::SI_BREAK: Break(MI); break; case AMDGPU::SI_IF_BREAK: IfBreak(MI); break; case AMDGPU::SI_ELSE_BREAK: ElseBreak(MI); break; case AMDGPU::SI_LOOP: ++Depth; Loop(MI); break; case AMDGPU::SI_END_CF: if (--Depth == 0 && HaveKill) { HaveKill = false; // TODO: Insert skip if exec is 0? } EndCf(MI); break; case AMDGPU::SI_KILL_TERMINATOR: if (Depth == 0) { if (skipIfDead(MI, *NextBB)) { NextBB = std::next(BI); BE = MF.end(); } } else HaveKill = true; Kill(MI); break; case AMDGPU::S_BRANCH: Branch(MI); break; case AMDGPU::SI_RETURN: { assert(!MF.getInfo()->returnsVoid()); // Graphics shaders returning non-void shouldn't contain S_ENDPGM, // because external bytecode will be appended at the end. if (BI != --MF.end() || I != MBB.getFirstTerminator()) { // SI_RETURN is not the last instruction. Add an empty block at // the end and jump there. if (!EmptyMBBAtEnd) { EmptyMBBAtEnd = MF.CreateMachineBasicBlock(); MF.insert(MF.end(), EmptyMBBAtEnd); } MBB.addSuccessor(EmptyMBBAtEnd); BuildMI(*BI, I, MI.getDebugLoc(), TII->get(AMDGPU::S_BRANCH)) .addMBB(EmptyMBBAtEnd); I->eraseFromParent(); } break; } } } } if (NeedFlat && MFI->isKernel()) { // TODO: What to use with function calls? // We will need to Initialize the flat scratch register pair. if (NeedFlat) MFI->setHasFlatInstructions(true); } return true; }