//===-- SILowerControlFlow.cpp - Use predicates for control flow ----------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // /// \file /// \brief This pass lowers the pseudo control flow instructions to real /// machine instructions. /// /// All control flow is handled using predicated instructions and /// a predicate stack. Each Scalar ALU controls the operations of 64 Vector /// ALUs. The Scalar ALU can update the predicate for any of the Vector ALUs /// by writting to the 64-bit EXEC register (each bit corresponds to a /// single vector ALU). Typically, for predicates, a vector ALU will write /// to its bit of the VCC register (like EXEC VCC is 64-bits, one for each /// Vector ALU) and then the ScalarALU will AND the VCC register with the /// EXEC to update the predicates. /// /// For example: /// %VCC = V_CMP_GT_F32 %VGPR1, %VGPR2 /// %SGPR0 = SI_IF %VCC /// %VGPR0 = V_ADD_F32 %VGPR0, %VGPR0 /// %SGPR0 = SI_ELSE %SGPR0 /// %VGPR0 = V_SUB_F32 %VGPR0, %VGPR0 /// SI_END_CF %SGPR0 /// /// becomes: /// /// %SGPR0 = S_AND_SAVEEXEC_B64 %VCC // Save and update the exec mask /// %SGPR0 = S_XOR_B64 %SGPR0, %EXEC // Clear live bits from saved exec mask /// S_CBRANCH_EXECZ label0 // This instruction is an optional /// // optimization which allows us to /// // branch if all the bits of /// // EXEC are zero. /// %VGPR0 = V_ADD_F32 %VGPR0, %VGPR0 // Do the IF block of the branch /// /// label0: /// %SGPR0 = S_OR_SAVEEXEC_B64 %EXEC // Restore the exec mask for the Then block /// %EXEC = S_XOR_B64 %SGPR0, %EXEC // Clear live bits from saved exec mask /// S_BRANCH_EXECZ label1 // Use our branch optimization /// // instruction again. /// %VGPR0 = V_SUB_F32 %VGPR0, %VGPR // Do the THEN block /// label1: /// %EXEC = S_OR_B64 %EXEC, %SGPR0 // Re-enable saved exec mask bits //===----------------------------------------------------------------------===// #include "AMDGPU.h" #include "AMDGPUSubtarget.h" #include "SIInstrInfo.h" #include "SIMachineFunctionInfo.h" #include "llvm/CodeGen/MachineFrameInfo.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/MachineFunctionPass.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/IR/Constants.h" using namespace llvm; #define DEBUG_TYPE "si-lower-control-flow" namespace { class SILowerControlFlow : public MachineFunctionPass { private: static const unsigned SkipThreshold = 12; const SIRegisterInfo *TRI; const SIInstrInfo *TII; bool shouldSkip(MachineBasicBlock *From, MachineBasicBlock *To); void Skip(MachineInstr &From, MachineOperand &To); void SkipIfDead(MachineInstr &MI); void If(MachineInstr &MI); void Else(MachineInstr &MI, bool ExecModified); void Break(MachineInstr &MI); void IfBreak(MachineInstr &MI); void ElseBreak(MachineInstr &MI); void Loop(MachineInstr &MI); void EndCf(MachineInstr &MI); void Kill(MachineInstr &MI); void Branch(MachineInstr &MI); void LoadM0(MachineInstr &MI, MachineInstr *MovRel, int Offset = 0); void computeIndirectRegAndOffset(unsigned VecReg, unsigned &Reg, int &Offset); void IndirectSrc(MachineInstr &MI); void IndirectDst(MachineInstr &MI); public: static char ID; SILowerControlFlow() : MachineFunctionPass(ID), TRI(nullptr), TII(nullptr) { } bool runOnMachineFunction(MachineFunction &MF) override; const char *getPassName() const override { return "SI Lower control flow pseudo instructions"; } void getAnalysisUsage(AnalysisUsage &AU) const override { AU.setPreservesCFG(); MachineFunctionPass::getAnalysisUsage(AU); } }; } // End anonymous namespace char SILowerControlFlow::ID = 0; INITIALIZE_PASS(SILowerControlFlow, DEBUG_TYPE, "SI lower control flow", false, false) char &llvm::SILowerControlFlowPassID = SILowerControlFlow::ID; FunctionPass *llvm::createSILowerControlFlowPass() { return new SILowerControlFlow(); } bool SILowerControlFlow::shouldSkip(MachineBasicBlock *From, MachineBasicBlock *To) { unsigned NumInstr = 0; for (MachineFunction::iterator MBBI = MachineFunction::iterator(From), ToI = MachineFunction::iterator(To); MBBI != ToI; ++MBBI) { MachineBasicBlock &MBB = *MBBI; for (MachineBasicBlock::iterator I = MBB.begin(), E = MBB.end(); NumInstr < SkipThreshold && I != E; ++I) { if (I->isBundle() || !I->isBundled()) { // When a uniform loop is inside non-uniform control flow, the branch // leaving the loop might be an S_CBRANCH_VCCNZ, which is never taken // when EXEC = 0. We should skip the loop lest it becomes infinite. if (I->getOpcode() == AMDGPU::S_CBRANCH_VCCNZ) return true; if (++NumInstr >= SkipThreshold) return true; } } } return false; } void SILowerControlFlow::Skip(MachineInstr &From, MachineOperand &To) { if (!shouldSkip(*From.getParent()->succ_begin(), To.getMBB())) return; DebugLoc DL = From.getDebugLoc(); BuildMI(*From.getParent(), &From, DL, TII->get(AMDGPU::S_CBRANCH_EXECZ)) .addOperand(To); } void SILowerControlFlow::SkipIfDead(MachineInstr &MI) { MachineBasicBlock &MBB = *MI.getParent(); DebugLoc DL = MI.getDebugLoc(); if (MBB.getParent()->getInfo()->getShaderType() != ShaderType::PIXEL || !shouldSkip(&MBB, &MBB.getParent()->back())) return; MachineBasicBlock::iterator Insert = &MI; ++Insert; // If the exec mask is non-zero, skip the next two instructions BuildMI(MBB, Insert, DL, TII->get(AMDGPU::S_CBRANCH_EXECNZ)) .addImm(3); // Exec mask is zero: Export to NULL target... BuildMI(MBB, Insert, DL, TII->get(AMDGPU::EXP)) .addImm(0) .addImm(0x09) // V_008DFC_SQ_EXP_NULL .addImm(0) .addImm(1) .addImm(1) .addReg(AMDGPU::VGPR0) .addReg(AMDGPU::VGPR0) .addReg(AMDGPU::VGPR0) .addReg(AMDGPU::VGPR0); // ... and terminate wavefront BuildMI(MBB, Insert, DL, TII->get(AMDGPU::S_ENDPGM)); } void SILowerControlFlow::If(MachineInstr &MI) { MachineBasicBlock &MBB = *MI.getParent(); DebugLoc DL = MI.getDebugLoc(); unsigned Reg = MI.getOperand(0).getReg(); unsigned Vcc = MI.getOperand(1).getReg(); BuildMI(MBB, &MI, DL, TII->get(AMDGPU::S_AND_SAVEEXEC_B64), Reg) .addReg(Vcc); BuildMI(MBB, &MI, DL, TII->get(AMDGPU::S_XOR_B64), Reg) .addReg(AMDGPU::EXEC) .addReg(Reg); Skip(MI, MI.getOperand(2)); MI.eraseFromParent(); } void SILowerControlFlow::Else(MachineInstr &MI, bool ExecModified) { MachineBasicBlock &MBB = *MI.getParent(); DebugLoc DL = MI.getDebugLoc(); unsigned Dst = MI.getOperand(0).getReg(); unsigned Src = MI.getOperand(1).getReg(); BuildMI(MBB, MBB.getFirstNonPHI(), DL, TII->get(AMDGPU::S_OR_SAVEEXEC_B64), Dst) .addReg(Src); // Saved EXEC if (ExecModified) { // Adjust the saved exec to account for the modifications during the flow // block that contains the ELSE. This can happen when WQM mode is switched // off. BuildMI(MBB, &MI, DL, TII->get(AMDGPU::S_AND_B64), Dst) .addReg(AMDGPU::EXEC) .addReg(Dst); } BuildMI(MBB, &MI, DL, TII->get(AMDGPU::S_XOR_B64), AMDGPU::EXEC) .addReg(AMDGPU::EXEC) .addReg(Dst); Skip(MI, MI.getOperand(2)); MI.eraseFromParent(); } void SILowerControlFlow::Break(MachineInstr &MI) { MachineBasicBlock &MBB = *MI.getParent(); DebugLoc DL = MI.getDebugLoc(); unsigned Dst = MI.getOperand(0).getReg(); unsigned Src = MI.getOperand(1).getReg(); BuildMI(MBB, &MI, DL, TII->get(AMDGPU::S_OR_B64), Dst) .addReg(AMDGPU::EXEC) .addReg(Src); MI.eraseFromParent(); } void SILowerControlFlow::IfBreak(MachineInstr &MI) { MachineBasicBlock &MBB = *MI.getParent(); DebugLoc DL = MI.getDebugLoc(); unsigned Dst = MI.getOperand(0).getReg(); unsigned Vcc = MI.getOperand(1).getReg(); unsigned Src = MI.getOperand(2).getReg(); BuildMI(MBB, &MI, DL, TII->get(AMDGPU::S_OR_B64), Dst) .addReg(Vcc) .addReg(Src); MI.eraseFromParent(); } void SILowerControlFlow::ElseBreak(MachineInstr &MI) { MachineBasicBlock &MBB = *MI.getParent(); DebugLoc DL = MI.getDebugLoc(); unsigned Dst = MI.getOperand(0).getReg(); unsigned Saved = MI.getOperand(1).getReg(); unsigned Src = MI.getOperand(2).getReg(); BuildMI(MBB, &MI, DL, TII->get(AMDGPU::S_OR_B64), Dst) .addReg(Saved) .addReg(Src); MI.eraseFromParent(); } void SILowerControlFlow::Loop(MachineInstr &MI) { MachineBasicBlock &MBB = *MI.getParent(); DebugLoc DL = MI.getDebugLoc(); unsigned Src = MI.getOperand(0).getReg(); BuildMI(MBB, &MI, DL, TII->get(AMDGPU::S_ANDN2_B64), AMDGPU::EXEC) .addReg(AMDGPU::EXEC) .addReg(Src); BuildMI(MBB, &MI, DL, TII->get(AMDGPU::S_CBRANCH_EXECNZ)) .addOperand(MI.getOperand(1)); MI.eraseFromParent(); } void SILowerControlFlow::EndCf(MachineInstr &MI) { MachineBasicBlock &MBB = *MI.getParent(); DebugLoc DL = MI.getDebugLoc(); unsigned Reg = MI.getOperand(0).getReg(); BuildMI(MBB, MBB.getFirstNonPHI(), DL, TII->get(AMDGPU::S_OR_B64), AMDGPU::EXEC) .addReg(AMDGPU::EXEC) .addReg(Reg); MI.eraseFromParent(); } void SILowerControlFlow::Branch(MachineInstr &MI) { if (MI.getOperand(0).getMBB() == MI.getParent()->getNextNode()) MI.eraseFromParent(); // If these aren't equal, this is probably an infinite loop. } void SILowerControlFlow::Kill(MachineInstr &MI) { MachineBasicBlock &MBB = *MI.getParent(); DebugLoc DL = MI.getDebugLoc(); const MachineOperand &Op = MI.getOperand(0); #ifndef NDEBUG const SIMachineFunctionInfo *MFI = MBB.getParent()->getInfo(); // Kill is only allowed in pixel / geometry shaders. assert(MFI->getShaderType() == ShaderType::PIXEL || MFI->getShaderType() == ShaderType::GEOMETRY); #endif // Clear this thread from the exec mask if the operand is negative if ((Op.isImm())) { // Constant operand: Set exec mask to 0 or do nothing if (Op.getImm() & 0x80000000) { BuildMI(MBB, &MI, DL, TII->get(AMDGPU::S_MOV_B64), AMDGPU::EXEC) .addImm(0); } } else { BuildMI(MBB, &MI, DL, TII->get(AMDGPU::V_CMPX_LE_F32_e32)) .addImm(0) .addOperand(Op); } MI.eraseFromParent(); } void SILowerControlFlow::LoadM0(MachineInstr &MI, MachineInstr *MovRel, int Offset) { MachineBasicBlock &MBB = *MI.getParent(); DebugLoc DL = MI.getDebugLoc(); MachineBasicBlock::iterator I = MI; unsigned Save = MI.getOperand(1).getReg(); unsigned Idx = MI.getOperand(3).getReg(); if (AMDGPU::SReg_32RegClass.contains(Idx)) { if (Offset) { BuildMI(MBB, &MI, DL, TII->get(AMDGPU::S_ADD_I32), AMDGPU::M0) .addReg(Idx) .addImm(Offset); } else { BuildMI(MBB, &MI, DL, TII->get(AMDGPU::S_MOV_B32), AMDGPU::M0) .addReg(Idx); } MBB.insert(I, MovRel); } else { assert(AMDGPU::SReg_64RegClass.contains(Save)); assert(AMDGPU::VGPR_32RegClass.contains(Idx)); // Save the EXEC mask BuildMI(MBB, &MI, DL, TII->get(AMDGPU::S_MOV_B64), Save) .addReg(AMDGPU::EXEC); // Read the next variant into VCC (lower 32 bits) <- also loop target BuildMI(MBB, &MI, DL, TII->get(AMDGPU::V_READFIRSTLANE_B32), AMDGPU::VCC_LO) .addReg(Idx); // Move index from VCC into M0 BuildMI(MBB, &MI, DL, TII->get(AMDGPU::S_MOV_B32), AMDGPU::M0) .addReg(AMDGPU::VCC_LO); // Compare the just read M0 value to all possible Idx values BuildMI(MBB, &MI, DL, TII->get(AMDGPU::V_CMP_EQ_U32_e32)) .addReg(AMDGPU::M0) .addReg(Idx); // Update EXEC, save the original EXEC value to VCC BuildMI(MBB, &MI, DL, TII->get(AMDGPU::S_AND_SAVEEXEC_B64), AMDGPU::VCC) .addReg(AMDGPU::VCC); if (Offset) { BuildMI(MBB, &MI, DL, TII->get(AMDGPU::S_ADD_I32), AMDGPU::M0) .addReg(AMDGPU::M0) .addImm(Offset); } // Do the actual move MBB.insert(I, MovRel); // Update EXEC, switch all done bits to 0 and all todo bits to 1 BuildMI(MBB, &MI, DL, TII->get(AMDGPU::S_XOR_B64), AMDGPU::EXEC) .addReg(AMDGPU::EXEC) .addReg(AMDGPU::VCC); // Loop back to V_READFIRSTLANE_B32 if there are still variants to cover BuildMI(MBB, &MI, DL, TII->get(AMDGPU::S_CBRANCH_EXECNZ)) .addImm(-7); // Restore EXEC BuildMI(MBB, &MI, DL, TII->get(AMDGPU::S_MOV_B64), AMDGPU::EXEC) .addReg(Save); } MI.eraseFromParent(); } /// \param @VecReg The register which holds element zero of the vector /// being addressed into. /// \param[out] @Reg The base register to use in the indirect addressing instruction. /// \param[in,out] @Offset As an input, this is the constant offset part of the // indirect Index. e.g. v0 = v[VecReg + Offset] // As an output, this is a constant value that needs // to be added to the value stored in M0. void SILowerControlFlow::computeIndirectRegAndOffset(unsigned VecReg, unsigned &Reg, int &Offset) { unsigned SubReg = TRI->getSubReg(VecReg, AMDGPU::sub0); if (!SubReg) SubReg = VecReg; const TargetRegisterClass *RC = TRI->getPhysRegClass(SubReg); int RegIdx = TRI->getHWRegIndex(SubReg) + Offset; if (RegIdx < 0) { Offset = RegIdx; RegIdx = 0; } else { Offset = 0; } Reg = RC->getRegister(RegIdx); } void SILowerControlFlow::IndirectSrc(MachineInstr &MI) { MachineBasicBlock &MBB = *MI.getParent(); DebugLoc DL = MI.getDebugLoc(); unsigned Dst = MI.getOperand(0).getReg(); unsigned Vec = MI.getOperand(2).getReg(); int Off = MI.getOperand(4).getImm(); unsigned Reg; computeIndirectRegAndOffset(Vec, Reg, Off); MachineInstr *MovRel = BuildMI(*MBB.getParent(), DL, TII->get(AMDGPU::V_MOVRELS_B32_e32), Dst) .addReg(Reg) .addReg(Vec, RegState::Implicit); LoadM0(MI, MovRel, Off); } void SILowerControlFlow::IndirectDst(MachineInstr &MI) { MachineBasicBlock &MBB = *MI.getParent(); DebugLoc DL = MI.getDebugLoc(); unsigned Dst = MI.getOperand(0).getReg(); int Off = MI.getOperand(4).getImm(); unsigned Val = MI.getOperand(5).getReg(); unsigned Reg; computeIndirectRegAndOffset(Dst, Reg, Off); MachineInstr *MovRel = BuildMI(*MBB.getParent(), DL, TII->get(AMDGPU::V_MOVRELD_B32_e32)) .addReg(Reg, RegState::Define) .addReg(Val) .addReg(Dst, RegState::Implicit); LoadM0(MI, MovRel, Off); } bool SILowerControlFlow::runOnMachineFunction(MachineFunction &MF) { TII = static_cast(MF.getSubtarget().getInstrInfo()); TRI = static_cast(MF.getSubtarget().getRegisterInfo()); SIMachineFunctionInfo *MFI = MF.getInfo(); bool HaveKill = false; bool NeedFlat = false; unsigned Depth = 0; for (MachineFunction::iterator BI = MF.begin(), BE = MF.end(); BI != BE; ++BI) { MachineBasicBlock *EmptyMBBAtEnd = NULL; MachineBasicBlock &MBB = *BI; MachineBasicBlock::iterator I, Next; bool ExecModified = false; for (I = MBB.begin(); I != MBB.end(); I = Next) { Next = std::next(I); MachineInstr &MI = *I; // Flat uses m0 in case it needs to access LDS. if (TII->isFLAT(MI)) NeedFlat = true; for (const auto &Def : I->defs()) { if (Def.isReg() && Def.isDef() && Def.getReg() == AMDGPU::EXEC) { ExecModified = true; break; } } switch (MI.getOpcode()) { default: break; case AMDGPU::SI_IF: ++Depth; If(MI); break; case AMDGPU::SI_ELSE: Else(MI, ExecModified); break; case AMDGPU::SI_BREAK: Break(MI); break; case AMDGPU::SI_IF_BREAK: IfBreak(MI); break; case AMDGPU::SI_ELSE_BREAK: ElseBreak(MI); break; case AMDGPU::SI_LOOP: ++Depth; Loop(MI); break; case AMDGPU::SI_END_CF: if (--Depth == 0 && HaveKill) { SkipIfDead(MI); HaveKill = false; } EndCf(MI); break; case AMDGPU::SI_KILL: if (Depth == 0) SkipIfDead(MI); else HaveKill = true; Kill(MI); break; case AMDGPU::S_BRANCH: Branch(MI); break; case AMDGPU::SI_INDIRECT_SRC_V1: case AMDGPU::SI_INDIRECT_SRC_V2: case AMDGPU::SI_INDIRECT_SRC_V4: case AMDGPU::SI_INDIRECT_SRC_V8: case AMDGPU::SI_INDIRECT_SRC_V16: IndirectSrc(MI); break; case AMDGPU::SI_INDIRECT_DST_V1: case AMDGPU::SI_INDIRECT_DST_V2: case AMDGPU::SI_INDIRECT_DST_V4: case AMDGPU::SI_INDIRECT_DST_V8: case AMDGPU::SI_INDIRECT_DST_V16: IndirectDst(MI); break; case AMDGPU::S_ENDPGM: { if (MF.getInfo()->returnsVoid()) break; // Graphics shaders returning non-void shouldn't contain S_ENDPGM, // because external bytecode will be appended at the end. if (BI != --MF.end() || I != MBB.getFirstTerminator()) { // S_ENDPGM is not the last instruction. Add an empty block at // the end and jump there. if (!EmptyMBBAtEnd) { EmptyMBBAtEnd = MF.CreateMachineBasicBlock(); MF.insert(MF.end(), EmptyMBBAtEnd); } MBB.addSuccessor(EmptyMBBAtEnd); BuildMI(*BI, I, MI.getDebugLoc(), TII->get(AMDGPU::S_BRANCH)) .addMBB(EmptyMBBAtEnd); } I->eraseFromParent(); break; } } } } if (NeedFlat && MFI->IsKernel) { // TODO: What to use with function calls? // We will need to Initialize the flat scratch register pair. if (NeedFlat) MFI->setHasFlatInstructions(true); } return true; }