//===-- AMDGPULowerModuleLDSPass.cpp ------------------------------*- C++ -*-=// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This pass eliminates LDS uses from non-kernel functions. // // The strategy is to create a new struct with a field for each LDS variable // and allocate that struct at the same address for every kernel. Uses of the // original LDS variables are then replaced with compile time offsets from that // known address. AMDGPUMachineFunction allocates the LDS global. // // Local variables with constant annotation or non-undef initializer are passed // through unchanged for simplication or error diagnostics in later passes. // // To reduce the memory overhead variables that are only used by kernels are // excluded from this transform. The analysis to determine whether a variable // is only used by a kernel is cheap and conservative so this may allocate // a variable in every kernel when it was not strictly necessary to do so. // // A possible future refinement is to specialise the structure per-kernel, so // that fields can be elided based on more expensive analysis. // //===----------------------------------------------------------------------===// #include "AMDGPU.h" #include "Utils/AMDGPUBaseInfo.h" #include "llvm/ADT/STLExtras.h" #include "llvm/IR/Constants.h" #include "llvm/IR/DerivedTypes.h" #include "llvm/IR/IRBuilder.h" #include "llvm/IR/InlineAsm.h" #include "llvm/IR/Instructions.h" #include "llvm/InitializePasses.h" #include "llvm/Pass.h" #include "llvm/Support/Debug.h" #include "llvm/Transforms/Utils/ModuleUtils.h" #include #include #define DEBUG_TYPE "amdgpu-lower-module-lds" using namespace llvm; namespace { class AMDGPULowerModuleLDS : public ModulePass { static bool isKernelCC(Function *Func) { return AMDGPU::isModuleEntryFunctionCC(Func->getCallingConv()); } static Align getAlign(DataLayout const &DL, const GlobalVariable *GV) { return DL.getValueOrABITypeAlignment(GV->getPointerAlignment(DL), GV->getValueType()); } static bool userRequiresLowering(const SmallPtrSetImpl &UsedList, User *InitialUser) { // Any LDS variable can be lowered by moving into the created struct // Each variable so lowered is allocated in every kernel, so variables // whose users are all known to be safe to lower without the transform // are left unchanged. SmallPtrSet Visited; SmallVector Stack; Stack.push_back(InitialUser); while (!Stack.empty()) { User *V = Stack.pop_back_val(); Visited.insert(V); if (auto *G = dyn_cast(V->stripPointerCasts())) { if (UsedList.contains(G)) { continue; } } if (auto *I = dyn_cast(V)) { if (isKernelCC(I->getFunction())) { continue; } } if (auto *E = dyn_cast(V)) { for (Value::user_iterator EU = E->user_begin(); EU != E->user_end(); ++EU) { if (Visited.insert(*EU).second) { Stack.push_back(*EU); } } continue; } // Unknown user, conservatively lower the variable return true; } return false; } static std::vector findVariablesToLower(Module &M, const SmallPtrSetImpl &UsedList) { std::vector LocalVars; for (auto &GV : M.globals()) { if (GV.getType()->getPointerAddressSpace() != AMDGPUAS::LOCAL_ADDRESS) { continue; } if (!GV.hasInitializer()) { // addrspace(3) without initializer implies cuda/hip extern __shared__ // the semantics for such a variable appears to be that all extern // __shared__ variables alias one another, in which case this transform // is not required continue; } if (!isa(GV.getInitializer())) { // Initializers are unimplemented for local address space. // Leave such variables in place for consistent error reporting. continue; } if (GV.isConstant()) { // A constant undef variable can't be written to, and any load is // undef, so it should be eliminated by the optimizer. It could be // dropped by the back end if not. This pass skips over it. continue; } if (std::none_of(GV.user_begin(), GV.user_end(), [&](User *U) { return userRequiresLowering(UsedList, U); })) { continue; } LocalVars.push_back(&GV); } return LocalVars; } static void removeFromUsedList(Module &M, StringRef Name, SmallPtrSetImpl &ToRemove) { GlobalVariable *GV = M.getGlobalVariable(Name); if (!GV || ToRemove.empty()) { return; } SmallVector Init; auto *CA = cast(GV->getInitializer()); for (auto &Op : CA->operands()) { // ModuleUtils::appendToUsed only inserts Constants Constant *C = cast(Op); if (!ToRemove.contains(C->stripPointerCasts())) { Init.push_back(C); } } if (Init.size() == CA->getNumOperands()) { return; // none to remove } GV->eraseFromParent(); if (!Init.empty()) { ArrayType *ATy = ArrayType::get(Type::getInt8PtrTy(M.getContext()), Init.size()); GV = new llvm::GlobalVariable(M, ATy, false, GlobalValue::AppendingLinkage, ConstantArray::get(ATy, Init), Name); GV->setSection("llvm.metadata"); } } static void removeFromUsedLists(Module &M, const std::vector &LocalVars) { SmallPtrSet LocalVarsSet; for (size_t I = 0; I < LocalVars.size(); I++) { if (Constant *C = dyn_cast(LocalVars[I]->stripPointerCasts())) { LocalVarsSet.insert(C); } } removeFromUsedList(M, "llvm.used", LocalVarsSet); removeFromUsedList(M, "llvm.compiler.used", LocalVarsSet); } static void markUsedByKernel(IRBuilder<> &Builder, Function *Func, GlobalVariable *SGV) { // The llvm.amdgcn.module.lds instance is implicitly used by all kernels // that might call a function which accesses a field within it. This is // presently approximated to 'all kernels' if there are any such functions // in the module. This implicit use is reified as an explicit use here so // that later passes, specifically PromoteAlloca, account for the required // memory without any knowledge of this transform. // An operand bundle on llvm.donothing works because the call instruction // survives until after the last pass that needs to account for LDS. It is // better than inline asm as the latter survives until the end of codegen. A // totally robust solution would be a function with the same semantics as // llvm.donothing that takes a pointer to the instance and is lowered to a // no-op after LDS is allocated, but that is not presently necessary. LLVMContext &Ctx = Func->getContext(); Builder.SetInsertPoint(Func->getEntryBlock().getFirstNonPHI()); FunctionType *FTy = FunctionType::get(Type::getVoidTy(Ctx), {}); Function *Decl = Intrinsic::getDeclaration(Func->getParent(), Intrinsic::donothing, {}); Value *UseInstance[1] = {Builder.CreateInBoundsGEP( SGV->getValueType(), SGV, ConstantInt::get(Type::getInt32Ty(Ctx), 0))}; Builder.CreateCall(FTy, Decl, {}, {OperandBundleDefT("ExplicitUse", UseInstance)}, ""); } static SmallPtrSet getUsedList(Module &M) { SmallPtrSet UsedList; SmallVector TmpVec; collectUsedGlobalVariables(M, TmpVec, true); UsedList.insert(TmpVec.begin(), TmpVec.end()); TmpVec.clear(); collectUsedGlobalVariables(M, TmpVec, false); UsedList.insert(TmpVec.begin(), TmpVec.end()); return UsedList; } public: static char ID; AMDGPULowerModuleLDS() : ModulePass(ID) { initializeAMDGPULowerModuleLDSPass(*PassRegistry::getPassRegistry()); } bool runOnModule(Module &M) override { LLVMContext &Ctx = M.getContext(); const DataLayout &DL = M.getDataLayout(); SmallPtrSet UsedList = getUsedList(M); // Find variables to move into new struct instance std::vector FoundLocalVars = findVariablesToLower(M, UsedList); if (FoundLocalVars.empty()) { // No variables to rewrite, no changes made. return false; } // Sort by alignment, descending, to minimise padding. // On ties, sort by size, descending, then by name, lexicographical. llvm::stable_sort( FoundLocalVars, [&](const GlobalVariable *LHS, const GlobalVariable *RHS) -> bool { Align ALHS = getAlign(DL, LHS); Align ARHS = getAlign(DL, RHS); if (ALHS != ARHS) { return ALHS > ARHS; } TypeSize SLHS = DL.getTypeAllocSize(LHS->getValueType()); TypeSize SRHS = DL.getTypeAllocSize(RHS->getValueType()); if (SLHS != SRHS) { return SLHS > SRHS; } // By variable name on tie for predictable order in test cases. return LHS->getName() < RHS->getName(); }); std::vector LocalVars; LocalVars.reserve(FoundLocalVars.size()); // will be at least this large { // This usually won't need to insert any padding, perhaps avoid the alloc uint64_t CurrentOffset = 0; for (size_t I = 0; I < FoundLocalVars.size(); I++) { GlobalVariable *FGV = FoundLocalVars[I]; Align DataAlign = getAlign(DL, FGV); uint64_t DataAlignV = DataAlign.value(); if (uint64_t Rem = CurrentOffset % DataAlignV) { uint64_t Padding = DataAlignV - Rem; // Append an array of padding bytes to meet alignment requested // Note (o + (a - (o % a)) ) % a == 0 // (offset + Padding ) % align == 0 Type *ATy = ArrayType::get(Type::getInt8Ty(Ctx), Padding); LocalVars.push_back(new GlobalVariable( M, ATy, false, GlobalValue::InternalLinkage, UndefValue::get(ATy), "", nullptr, GlobalValue::NotThreadLocal, AMDGPUAS::LOCAL_ADDRESS, false)); CurrentOffset += Padding; } LocalVars.push_back(FGV); CurrentOffset += DL.getTypeAllocSize(FGV->getValueType()); } } std::vector LocalVarTypes; LocalVarTypes.reserve(LocalVars.size()); std::transform( LocalVars.cbegin(), LocalVars.cend(), std::back_inserter(LocalVarTypes), [](const GlobalVariable *V) -> Type * { return V->getValueType(); }); StructType *LDSTy = StructType::create( Ctx, LocalVarTypes, llvm::StringRef("llvm.amdgcn.module.lds.t")); Align MaxAlign = getAlign(DL, LocalVars[0]); // was sorted on alignment Constant *InstanceAddress = Constant::getIntegerValue( PointerType::get(LDSTy, AMDGPUAS::LOCAL_ADDRESS), APInt(32, 0)); GlobalVariable *SGV = new GlobalVariable( M, LDSTy, false, GlobalValue::InternalLinkage, UndefValue::get(LDSTy), "llvm.amdgcn.module.lds", nullptr, GlobalValue::NotThreadLocal, AMDGPUAS::LOCAL_ADDRESS, false); SGV->setAlignment(MaxAlign); appendToCompilerUsed( M, {static_cast( ConstantExpr::getPointerBitCastOrAddrSpaceCast( cast(SGV), Type::getInt8PtrTy(Ctx)))}); // The verifier rejects used lists containing an inttoptr of a constant // so remove the variables from these lists before replaceAllUsesWith removeFromUsedLists(M, LocalVars); // Replace uses of ith variable with a constantexpr to the ith field of the // instance that will be allocated by AMDGPUMachineFunction Type *I32 = Type::getInt32Ty(Ctx); for (size_t I = 0; I < LocalVars.size(); I++) { GlobalVariable *GV = LocalVars[I]; Constant *GEPIdx[] = {ConstantInt::get(I32, 0), ConstantInt::get(I32, I)}; GV->replaceAllUsesWith( ConstantExpr::getGetElementPtr(LDSTy, InstanceAddress, GEPIdx)); GV->eraseFromParent(); } // Mark kernels with asm that reads the address of the allocated structure // This is not necessary for lowering. This lets other passes, specifically // PromoteAlloca, accurately calculate how much LDS will be used by the // kernel after lowering. { IRBuilder<> Builder(Ctx); SmallPtrSet Kernels; for (auto &I : M.functions()) { Function *Func = &I; if (isKernelCC(Func) && !Kernels.contains(Func)) { markUsedByKernel(Builder, Func, SGV); Kernels.insert(Func); } } } return true; } }; } // namespace char AMDGPULowerModuleLDS::ID = 0; char &llvm::AMDGPULowerModuleLDSID = AMDGPULowerModuleLDS::ID; INITIALIZE_PASS(AMDGPULowerModuleLDS, DEBUG_TYPE, "Lower uses of LDS variables from non-kernel functions", false, false) ModulePass *llvm::createAMDGPULowerModuleLDSPass() { return new AMDGPULowerModuleLDS(); } PreservedAnalyses AMDGPULowerModuleLDSPass::run(Module &M, ModuleAnalysisManager &) { return AMDGPULowerModuleLDS().runOnModule(M) ? PreservedAnalyses::none() : PreservedAnalyses::all(); }