//===-- AArch64TargetTransformInfo.cpp - AArch64 specific TTI -------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #include "AArch64TargetTransformInfo.h" #include "AArch64ExpandImm.h" #include "AArch64PerfectShuffle.h" #include "MCTargetDesc/AArch64AddressingModes.h" #include "Utils/AArch64SMEAttributes.h" #include "llvm/ADT/DenseMap.h" #include "llvm/Analysis/IVDescriptors.h" #include "llvm/Analysis/LoopInfo.h" #include "llvm/Analysis/TargetTransformInfo.h" #include "llvm/CodeGen/BasicTTIImpl.h" #include "llvm/CodeGen/CostTable.h" #include "llvm/CodeGen/TargetLowering.h" #include "llvm/IR/IntrinsicInst.h" #include "llvm/IR/Intrinsics.h" #include "llvm/IR/IntrinsicsAArch64.h" #include "llvm/IR/PatternMatch.h" #include "llvm/Support/Debug.h" #include "llvm/TargetParser/AArch64TargetParser.h" #include "llvm/Transforms/InstCombine/InstCombiner.h" #include "llvm/Transforms/Vectorize/LoopVectorizationLegality.h" #include #include using namespace llvm; using namespace llvm::PatternMatch; #define DEBUG_TYPE "aarch64tti" static cl::opt EnableFalkorHWPFUnrollFix("enable-falkor-hwpf-unroll-fix", cl::init(true), cl::Hidden); static cl::opt SVEPreferFixedOverScalableIfEqualCost( "sve-prefer-fixed-over-scalable-if-equal", cl::Hidden); static cl::opt SVEGatherOverhead("sve-gather-overhead", cl::init(10), cl::Hidden); static cl::opt SVEScatterOverhead("sve-scatter-overhead", cl::init(10), cl::Hidden); static cl::opt SVETailFoldInsnThreshold("sve-tail-folding-insn-threshold", cl::init(15), cl::Hidden); static cl::opt NeonNonConstStrideOverhead("neon-nonconst-stride-overhead", cl::init(10), cl::Hidden); static cl::opt CallPenaltyChangeSM( "call-penalty-sm-change", cl::init(5), cl::Hidden, cl::desc( "Penalty of calling a function that requires a change to PSTATE.SM")); static cl::opt InlineCallPenaltyChangeSM( "inline-call-penalty-sm-change", cl::init(10), cl::Hidden, cl::desc("Penalty of inlining a call that requires a change to PSTATE.SM")); static cl::opt EnableOrLikeSelectOpt("enable-aarch64-or-like-select", cl::init(true), cl::Hidden); static cl::opt EnableLSRCostOpt("enable-aarch64-lsr-cost-opt", cl::init(true), cl::Hidden); // A complete guess as to a reasonable cost. static cl::opt BaseHistCntCost("aarch64-base-histcnt-cost", cl::init(8), cl::Hidden, cl::desc("The cost of a histcnt instruction")); static cl::opt DMBLookaheadThreshold( "dmb-lookahead-threshold", cl::init(10), cl::Hidden, cl::desc("The number of instructions to search for a redundant dmb")); namespace { class TailFoldingOption { // These bitfields will only ever be set to something non-zero in operator=, // when setting the -sve-tail-folding option. This option should always be of // the form (default|simple|all|disable)[+(Flag1|Flag2|etc)], where here // InitialBits is one of (disabled|all|simple). EnableBits represents // additional flags we're enabling, and DisableBits for those flags we're // disabling. The default flag is tracked in the variable NeedsDefault, since // at the time of setting the option we may not know what the default value // for the CPU is. TailFoldingOpts InitialBits = TailFoldingOpts::Disabled; TailFoldingOpts EnableBits = TailFoldingOpts::Disabled; TailFoldingOpts DisableBits = TailFoldingOpts::Disabled; // This value needs to be initialised to true in case the user does not // explicitly set the -sve-tail-folding option. bool NeedsDefault = true; void setInitialBits(TailFoldingOpts Bits) { InitialBits = Bits; } void setNeedsDefault(bool V) { NeedsDefault = V; } void setEnableBit(TailFoldingOpts Bit) { EnableBits |= Bit; DisableBits &= ~Bit; } void setDisableBit(TailFoldingOpts Bit) { EnableBits &= ~Bit; DisableBits |= Bit; } TailFoldingOpts getBits(TailFoldingOpts DefaultBits) const { TailFoldingOpts Bits = TailFoldingOpts::Disabled; assert((InitialBits == TailFoldingOpts::Disabled || !NeedsDefault) && "Initial bits should only include one of " "(disabled|all|simple|default)"); Bits = NeedsDefault ? DefaultBits : InitialBits; Bits |= EnableBits; Bits &= ~DisableBits; return Bits; } void reportError(std::string Opt) { errs() << "invalid argument '" << Opt << "' to -sve-tail-folding=; the option should be of the form\n" " (disabled|all|default|simple)[+(reductions|recurrences" "|reverse|noreductions|norecurrences|noreverse)]\n"; report_fatal_error("Unrecognised tail-folding option"); } public: void operator=(const std::string &Val) { // If the user explicitly sets -sve-tail-folding= then treat as an error. if (Val.empty()) { reportError(""); return; } // Since the user is explicitly setting the option we don't automatically // need the default unless they require it. setNeedsDefault(false); SmallVector TailFoldTypes; StringRef(Val).split(TailFoldTypes, '+', -1, false); unsigned StartIdx = 1; if (TailFoldTypes[0] == "disabled") setInitialBits(TailFoldingOpts::Disabled); else if (TailFoldTypes[0] == "all") setInitialBits(TailFoldingOpts::All); else if (TailFoldTypes[0] == "default") setNeedsDefault(true); else if (TailFoldTypes[0] == "simple") setInitialBits(TailFoldingOpts::Simple); else { StartIdx = 0; setInitialBits(TailFoldingOpts::Disabled); } for (unsigned I = StartIdx; I < TailFoldTypes.size(); I++) { if (TailFoldTypes[I] == "reductions") setEnableBit(TailFoldingOpts::Reductions); else if (TailFoldTypes[I] == "recurrences") setEnableBit(TailFoldingOpts::Recurrences); else if (TailFoldTypes[I] == "reverse") setEnableBit(TailFoldingOpts::Reverse); else if (TailFoldTypes[I] == "noreductions") setDisableBit(TailFoldingOpts::Reductions); else if (TailFoldTypes[I] == "norecurrences") setDisableBit(TailFoldingOpts::Recurrences); else if (TailFoldTypes[I] == "noreverse") setDisableBit(TailFoldingOpts::Reverse); else reportError(Val); } } bool satisfies(TailFoldingOpts DefaultBits, TailFoldingOpts Required) const { return (getBits(DefaultBits) & Required) == Required; } }; } // namespace TailFoldingOption TailFoldingOptionLoc; cl::opt> SVETailFolding( "sve-tail-folding", cl::desc( "Control the use of vectorisation using tail-folding for SVE where the" " option is specified in the form (Initial)[+(Flag1|Flag2|...)]:" "\ndisabled (Initial) No loop types will vectorize using " "tail-folding" "\ndefault (Initial) Uses the default tail-folding settings for " "the target CPU" "\nall (Initial) All legal loop types will vectorize using " "tail-folding" "\nsimple (Initial) Use tail-folding for simple loops (not " "reductions or recurrences)" "\nreductions Use tail-folding for loops containing reductions" "\nnoreductions Inverse of above" "\nrecurrences Use tail-folding for loops containing fixed order " "recurrences" "\nnorecurrences Inverse of above" "\nreverse Use tail-folding for loops requiring reversed " "predicates" "\nnoreverse Inverse of above"), cl::location(TailFoldingOptionLoc)); // Experimental option that will only be fully functional when the // code-generator is changed to use SVE instead of NEON for all fixed-width // operations. static cl::opt EnableFixedwidthAutovecInStreamingMode( "enable-fixedwidth-autovec-in-streaming-mode", cl::init(false), cl::Hidden); // Experimental option that will only be fully functional when the cost-model // and code-generator have been changed to avoid using scalable vector // instructions that are not legal in streaming SVE mode. static cl::opt EnableScalableAutovecInStreamingMode( "enable-scalable-autovec-in-streaming-mode", cl::init(false), cl::Hidden); static bool isSMEABIRoutineCall(const CallInst &CI) { const auto *F = CI.getCalledFunction(); return F && StringSwitch(F->getName()) .Case("__arm_sme_state", true) .Case("__arm_tpidr2_save", true) .Case("__arm_tpidr2_restore", true) .Case("__arm_za_disable", true) .Default(false); } /// Returns true if the function has explicit operations that can only be /// lowered using incompatible instructions for the selected mode. This also /// returns true if the function F may use or modify ZA state. static bool hasPossibleIncompatibleOps(const Function *F) { for (const BasicBlock &BB : *F) { for (const Instruction &I : BB) { // Be conservative for now and assume that any call to inline asm or to // intrinsics could could result in non-streaming ops (e.g. calls to // @llvm.aarch64.* or @llvm.gather/scatter intrinsics). We can assume that // all native LLVM instructions can be lowered to compatible instructions. if (isa(I) && !I.isDebugOrPseudoInst() && (cast(I).isInlineAsm() || isa(I) || isSMEABIRoutineCall(cast(I)))) return true; } } return false; } uint64_t AArch64TTIImpl::getFeatureMask(const Function &F) const { StringRef AttributeStr = isMultiversionedFunction(F) ? "fmv-features" : "target-features"; StringRef FeatureStr = F.getFnAttribute(AttributeStr).getValueAsString(); SmallVector Features; FeatureStr.split(Features, ","); return AArch64::getFMVPriority(Features); } bool AArch64TTIImpl::isMultiversionedFunction(const Function &F) const { return F.hasFnAttribute("fmv-features"); } bool AArch64TTIImpl::areInlineCompatible(const Function *Caller, const Function *Callee) const { SMEAttrs CallerAttrs(*Caller), CalleeAttrs(*Callee); // When inlining, we should consider the body of the function, not the // interface. if (CalleeAttrs.hasStreamingBody()) { CalleeAttrs.set(SMEAttrs::SM_Compatible, false); CalleeAttrs.set(SMEAttrs::SM_Enabled, true); } if (CalleeAttrs.isNewZA() || CalleeAttrs.isNewZT0()) return false; if (CallerAttrs.requiresLazySave(CalleeAttrs) || CallerAttrs.requiresSMChange(CalleeAttrs) || CallerAttrs.requiresPreservingZT0(CalleeAttrs) || CallerAttrs.requiresPreservingAllZAState(CalleeAttrs)) { if (hasPossibleIncompatibleOps(Callee)) return false; } return BaseT::areInlineCompatible(Caller, Callee); } bool AArch64TTIImpl::areTypesABICompatible( const Function *Caller, const Function *Callee, const ArrayRef &Types) const { if (!BaseT::areTypesABICompatible(Caller, Callee, Types)) return false; // We need to ensure that argument promotion does not attempt to promote // pointers to fixed-length vector types larger than 128 bits like // <8 x float> (and pointers to aggregate types which have such fixed-length // vector type members) into the values of the pointees. Such vector types // are used for SVE VLS but there is no ABI for SVE VLS arguments and the // backend cannot lower such value arguments. The 128-bit fixed-length SVE // types can be safely treated as 128-bit NEON types and they cannot be // distinguished in IR. if (ST->useSVEForFixedLengthVectors() && llvm::any_of(Types, [](Type *Ty) { auto FVTy = dyn_cast(Ty); return FVTy && FVTy->getScalarSizeInBits() * FVTy->getNumElements() > 128; })) return false; return true; } unsigned AArch64TTIImpl::getInlineCallPenalty(const Function *F, const CallBase &Call, unsigned DefaultCallPenalty) const { // This function calculates a penalty for executing Call in F. // // There are two ways this function can be called: // (1) F: // call from F -> G (the call here is Call) // // For (1), Call.getCaller() == F, so it will always return a high cost if // a streaming-mode change is required (thus promoting the need to inline the // function) // // (2) F: // call from F -> G (the call here is not Call) // G: // call from G -> H (the call here is Call) // // For (2), if after inlining the body of G into F the call to H requires a // streaming-mode change, and the call to G from F would also require a // streaming-mode change, then there is benefit to do the streaming-mode // change only once and avoid inlining of G into F. SMEAttrs FAttrs(*F); SMEAttrs CalleeAttrs(Call); if (FAttrs.requiresSMChange(CalleeAttrs)) { if (F == Call.getCaller()) // (1) return CallPenaltyChangeSM * DefaultCallPenalty; if (FAttrs.requiresSMChange(SMEAttrs(*Call.getCaller()))) // (2) return InlineCallPenaltyChangeSM * DefaultCallPenalty; } return DefaultCallPenalty; } bool AArch64TTIImpl::shouldMaximizeVectorBandwidth( TargetTransformInfo::RegisterKind K) const { assert(K != TargetTransformInfo::RGK_Scalar); return (K == TargetTransformInfo::RGK_FixedWidthVector && ST->isNeonAvailable()); } /// Calculate the cost of materializing a 64-bit value. This helper /// method might only calculate a fraction of a larger immediate. Therefore it /// is valid to return a cost of ZERO. InstructionCost AArch64TTIImpl::getIntImmCost(int64_t Val) { // Check if the immediate can be encoded within an instruction. if (Val == 0 || AArch64_AM::isLogicalImmediate(Val, 64)) return 0; if (Val < 0) Val = ~Val; // Calculate how many moves we will need to materialize this constant. SmallVector Insn; AArch64_IMM::expandMOVImm(Val, 64, Insn); return Insn.size(); } /// Calculate the cost of materializing the given constant. InstructionCost AArch64TTIImpl::getIntImmCost(const APInt &Imm, Type *Ty, TTI::TargetCostKind CostKind) { assert(Ty->isIntegerTy()); unsigned BitSize = Ty->getPrimitiveSizeInBits(); if (BitSize == 0) return ~0U; // Sign-extend all constants to a multiple of 64-bit. APInt ImmVal = Imm; if (BitSize & 0x3f) ImmVal = Imm.sext((BitSize + 63) & ~0x3fU); // Split the constant into 64-bit chunks and calculate the cost for each // chunk. InstructionCost Cost = 0; for (unsigned ShiftVal = 0; ShiftVal < BitSize; ShiftVal += 64) { APInt Tmp = ImmVal.ashr(ShiftVal).sextOrTrunc(64); int64_t Val = Tmp.getSExtValue(); Cost += getIntImmCost(Val); } // We need at least one instruction to materialze the constant. return std::max(1, Cost); } InstructionCost AArch64TTIImpl::getIntImmCostInst(unsigned Opcode, unsigned Idx, const APInt &Imm, Type *Ty, TTI::TargetCostKind CostKind, Instruction *Inst) { assert(Ty->isIntegerTy()); unsigned BitSize = Ty->getPrimitiveSizeInBits(); // There is no cost model for constants with a bit size of 0. Return TCC_Free // here, so that constant hoisting will ignore this constant. if (BitSize == 0) return TTI::TCC_Free; unsigned ImmIdx = ~0U; switch (Opcode) { default: return TTI::TCC_Free; case Instruction::GetElementPtr: // Always hoist the base address of a GetElementPtr. if (Idx == 0) return 2 * TTI::TCC_Basic; return TTI::TCC_Free; case Instruction::Store: ImmIdx = 0; break; case Instruction::Add: case Instruction::Sub: case Instruction::Mul: case Instruction::UDiv: case Instruction::SDiv: case Instruction::URem: case Instruction::SRem: case Instruction::And: case Instruction::Or: case Instruction::Xor: case Instruction::ICmp: ImmIdx = 1; break; // Always return TCC_Free for the shift value of a shift instruction. case Instruction::Shl: case Instruction::LShr: case Instruction::AShr: if (Idx == 1) return TTI::TCC_Free; break; case Instruction::Trunc: case Instruction::ZExt: case Instruction::SExt: case Instruction::IntToPtr: case Instruction::PtrToInt: case Instruction::BitCast: case Instruction::PHI: case Instruction::Call: case Instruction::Select: case Instruction::Ret: case Instruction::Load: break; } if (Idx == ImmIdx) { int NumConstants = (BitSize + 63) / 64; InstructionCost Cost = AArch64TTIImpl::getIntImmCost(Imm, Ty, CostKind); return (Cost <= NumConstants * TTI::TCC_Basic) ? static_cast(TTI::TCC_Free) : Cost; } return AArch64TTIImpl::getIntImmCost(Imm, Ty, CostKind); } InstructionCost AArch64TTIImpl::getIntImmCostIntrin(Intrinsic::ID IID, unsigned Idx, const APInt &Imm, Type *Ty, TTI::TargetCostKind CostKind) { assert(Ty->isIntegerTy()); unsigned BitSize = Ty->getPrimitiveSizeInBits(); // There is no cost model for constants with a bit size of 0. Return TCC_Free // here, so that constant hoisting will ignore this constant. if (BitSize == 0) return TTI::TCC_Free; // Most (all?) AArch64 intrinsics do not support folding immediates into the // selected instruction, so we compute the materialization cost for the // immediate directly. if (IID >= Intrinsic::aarch64_addg && IID <= Intrinsic::aarch64_udiv) return AArch64TTIImpl::getIntImmCost(Imm, Ty, CostKind); switch (IID) { default: return TTI::TCC_Free; case Intrinsic::sadd_with_overflow: case Intrinsic::uadd_with_overflow: case Intrinsic::ssub_with_overflow: case Intrinsic::usub_with_overflow: case Intrinsic::smul_with_overflow: case Intrinsic::umul_with_overflow: if (Idx == 1) { int NumConstants = (BitSize + 63) / 64; InstructionCost Cost = AArch64TTIImpl::getIntImmCost(Imm, Ty, CostKind); return (Cost <= NumConstants * TTI::TCC_Basic) ? static_cast(TTI::TCC_Free) : Cost; } break; case Intrinsic::experimental_stackmap: if ((Idx < 2) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue()))) return TTI::TCC_Free; break; case Intrinsic::experimental_patchpoint_void: case Intrinsic::experimental_patchpoint: if ((Idx < 4) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue()))) return TTI::TCC_Free; break; case Intrinsic::experimental_gc_statepoint: if ((Idx < 5) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue()))) return TTI::TCC_Free; break; } return AArch64TTIImpl::getIntImmCost(Imm, Ty, CostKind); } TargetTransformInfo::PopcntSupportKind AArch64TTIImpl::getPopcntSupport(unsigned TyWidth) { assert(isPowerOf2_32(TyWidth) && "Ty width must be power of 2"); if (TyWidth == 32 || TyWidth == 64) return TTI::PSK_FastHardware; // TODO: AArch64TargetLowering::LowerCTPOP() supports 128bit popcount. return TTI::PSK_Software; } static bool isUnpackedVectorVT(EVT VecVT) { return VecVT.isScalableVector() && VecVT.getSizeInBits().getKnownMinValue() < AArch64::SVEBitsPerBlock; } static InstructionCost getHistogramCost(const IntrinsicCostAttributes &ICA) { Type *BucketPtrsTy = ICA.getArgTypes()[0]; // Type of vector of pointers Type *EltTy = ICA.getArgTypes()[1]; // Type of bucket elements unsigned TotalHistCnts = 1; unsigned EltSize = EltTy->getScalarSizeInBits(); // Only allow (up to 64b) integers or pointers if ((!EltTy->isIntegerTy() && !EltTy->isPointerTy()) || EltSize > 64) return InstructionCost::getInvalid(); // FIXME: We should be able to generate histcnt for fixed-length vectors // using ptrue with a specific VL. if (VectorType *VTy = dyn_cast(BucketPtrsTy)) { unsigned EC = VTy->getElementCount().getKnownMinValue(); if (!isPowerOf2_64(EC) || !VTy->isScalableTy()) return InstructionCost::getInvalid(); // HistCnt only supports 32b and 64b element types unsigned LegalEltSize = EltSize <= 32 ? 32 : 64; if (EC == 2 || (LegalEltSize == 32 && EC == 4)) return InstructionCost(BaseHistCntCost); unsigned NaturalVectorWidth = AArch64::SVEBitsPerBlock / LegalEltSize; TotalHistCnts = EC / NaturalVectorWidth; } return InstructionCost(BaseHistCntCost * TotalHistCnts); } InstructionCost AArch64TTIImpl::getIntrinsicInstrCost(const IntrinsicCostAttributes &ICA, TTI::TargetCostKind CostKind) { // The code-generator is currently not able to handle scalable vectors // of yet, so return an invalid cost to avoid selecting // it. This change will be removed when code-generation for these types is // sufficiently reliable. auto *RetTy = ICA.getReturnType(); if (auto *VTy = dyn_cast(RetTy)) if (VTy->getElementCount() == ElementCount::getScalable(1)) return InstructionCost::getInvalid(); switch (ICA.getID()) { case Intrinsic::experimental_vector_histogram_add: if (!ST->hasSVE2()) return InstructionCost::getInvalid(); return getHistogramCost(ICA); case Intrinsic::umin: case Intrinsic::umax: case Intrinsic::smin: case Intrinsic::smax: { static const auto ValidMinMaxTys = {MVT::v8i8, MVT::v16i8, MVT::v4i16, MVT::v8i16, MVT::v2i32, MVT::v4i32, MVT::nxv16i8, MVT::nxv8i16, MVT::nxv4i32, MVT::nxv2i64}; auto LT = getTypeLegalizationCost(RetTy); // v2i64 types get converted to cmp+bif hence the cost of 2 if (LT.second == MVT::v2i64) return LT.first * 2; if (any_of(ValidMinMaxTys, [<](MVT M) { return M == LT.second; })) return LT.first; break; } case Intrinsic::sadd_sat: case Intrinsic::ssub_sat: case Intrinsic::uadd_sat: case Intrinsic::usub_sat: { static const auto ValidSatTys = {MVT::v8i8, MVT::v16i8, MVT::v4i16, MVT::v8i16, MVT::v2i32, MVT::v4i32, MVT::v2i64}; auto LT = getTypeLegalizationCost(RetTy); // This is a base cost of 1 for the vadd, plus 3 extract shifts if we // need to extend the type, as it uses shr(qadd(shl, shl)). unsigned Instrs = LT.second.getScalarSizeInBits() == RetTy->getScalarSizeInBits() ? 1 : 4; if (any_of(ValidSatTys, [<](MVT M) { return M == LT.second; })) return LT.first * Instrs; break; } case Intrinsic::abs: { static const auto ValidAbsTys = {MVT::v8i8, MVT::v16i8, MVT::v4i16, MVT::v8i16, MVT::v2i32, MVT::v4i32, MVT::v2i64}; auto LT = getTypeLegalizationCost(RetTy); if (any_of(ValidAbsTys, [<](MVT M) { return M == LT.second; })) return LT.first; break; } case Intrinsic::bswap: { static const auto ValidAbsTys = {MVT::v4i16, MVT::v8i16, MVT::v2i32, MVT::v4i32, MVT::v2i64}; auto LT = getTypeLegalizationCost(RetTy); if (any_of(ValidAbsTys, [<](MVT M) { return M == LT.second; }) && LT.second.getScalarSizeInBits() == RetTy->getScalarSizeInBits()) return LT.first; break; } case Intrinsic::stepvector: { InstructionCost Cost = 1; // Cost of the `index' instruction auto LT = getTypeLegalizationCost(RetTy); // Legalisation of illegal vectors involves an `index' instruction plus // (LT.first - 1) vector adds. if (LT.first > 1) { Type *LegalVTy = EVT(LT.second).getTypeForEVT(RetTy->getContext()); InstructionCost AddCost = getArithmeticInstrCost(Instruction::Add, LegalVTy, CostKind); Cost += AddCost * (LT.first - 1); } return Cost; } case Intrinsic::vector_extract: case Intrinsic::vector_insert: { // If both the vector and subvector types are legal types and the index // is 0, then this should be a no-op or simple operation; return a // relatively low cost. // If arguments aren't actually supplied, then we cannot determine the // value of the index. We also want to skip predicate types. if (ICA.getArgs().size() != ICA.getArgTypes().size() || ICA.getReturnType()->getScalarType()->isIntegerTy(1)) break; LLVMContext &C = RetTy->getContext(); EVT VecVT = getTLI()->getValueType(DL, ICA.getArgTypes()[0]); bool IsExtract = ICA.getID() == Intrinsic::vector_extract; EVT SubVecVT = IsExtract ? getTLI()->getValueType(DL, RetTy) : getTLI()->getValueType(DL, ICA.getArgTypes()[1]); // Skip this if either the vector or subvector types are unpacked // SVE types; they may get lowered to stack stores and loads. if (isUnpackedVectorVT(VecVT) || isUnpackedVectorVT(SubVecVT)) break; TargetLoweringBase::LegalizeKind SubVecLK = getTLI()->getTypeConversion(C, SubVecVT); TargetLoweringBase::LegalizeKind VecLK = getTLI()->getTypeConversion(C, VecVT); const Value *Idx = IsExtract ? ICA.getArgs()[1] : ICA.getArgs()[2]; const ConstantInt *CIdx = cast(Idx); if (SubVecLK.first == TargetLoweringBase::TypeLegal && VecLK.first == TargetLoweringBase::TypeLegal && CIdx->isZero()) return TTI::TCC_Free; break; } case Intrinsic::bitreverse: { static const CostTblEntry BitreverseTbl[] = { {Intrinsic::bitreverse, MVT::i32, 1}, {Intrinsic::bitreverse, MVT::i64, 1}, {Intrinsic::bitreverse, MVT::v8i8, 1}, {Intrinsic::bitreverse, MVT::v16i8, 1}, {Intrinsic::bitreverse, MVT::v4i16, 2}, {Intrinsic::bitreverse, MVT::v8i16, 2}, {Intrinsic::bitreverse, MVT::v2i32, 2}, {Intrinsic::bitreverse, MVT::v4i32, 2}, {Intrinsic::bitreverse, MVT::v1i64, 2}, {Intrinsic::bitreverse, MVT::v2i64, 2}, }; const auto LegalisationCost = getTypeLegalizationCost(RetTy); const auto *Entry = CostTableLookup(BitreverseTbl, ICA.getID(), LegalisationCost.second); if (Entry) { // Cost Model is using the legal type(i32) that i8 and i16 will be // converted to +1 so that we match the actual lowering cost if (TLI->getValueType(DL, RetTy, true) == MVT::i8 || TLI->getValueType(DL, RetTy, true) == MVT::i16) return LegalisationCost.first * Entry->Cost + 1; return LegalisationCost.first * Entry->Cost; } break; } case Intrinsic::ctpop: { if (!ST->hasNEON()) { // 32-bit or 64-bit ctpop without NEON is 12 instructions. return getTypeLegalizationCost(RetTy).first * 12; } static const CostTblEntry CtpopCostTbl[] = { {ISD::CTPOP, MVT::v2i64, 4}, {ISD::CTPOP, MVT::v4i32, 3}, {ISD::CTPOP, MVT::v8i16, 2}, {ISD::CTPOP, MVT::v16i8, 1}, {ISD::CTPOP, MVT::i64, 4}, {ISD::CTPOP, MVT::v2i32, 3}, {ISD::CTPOP, MVT::v4i16, 2}, {ISD::CTPOP, MVT::v8i8, 1}, {ISD::CTPOP, MVT::i32, 5}, }; auto LT = getTypeLegalizationCost(RetTy); MVT MTy = LT.second; if (const auto *Entry = CostTableLookup(CtpopCostTbl, ISD::CTPOP, MTy)) { // Extra cost of +1 when illegal vector types are legalized by promoting // the integer type. int ExtraCost = MTy.isVector() && MTy.getScalarSizeInBits() != RetTy->getScalarSizeInBits() ? 1 : 0; return LT.first * Entry->Cost + ExtraCost; } break; } case Intrinsic::sadd_with_overflow: case Intrinsic::uadd_with_overflow: case Intrinsic::ssub_with_overflow: case Intrinsic::usub_with_overflow: case Intrinsic::smul_with_overflow: case Intrinsic::umul_with_overflow: { static const CostTblEntry WithOverflowCostTbl[] = { {Intrinsic::sadd_with_overflow, MVT::i8, 3}, {Intrinsic::uadd_with_overflow, MVT::i8, 3}, {Intrinsic::sadd_with_overflow, MVT::i16, 3}, {Intrinsic::uadd_with_overflow, MVT::i16, 3}, {Intrinsic::sadd_with_overflow, MVT::i32, 1}, {Intrinsic::uadd_with_overflow, MVT::i32, 1}, {Intrinsic::sadd_with_overflow, MVT::i64, 1}, {Intrinsic::uadd_with_overflow, MVT::i64, 1}, {Intrinsic::ssub_with_overflow, MVT::i8, 3}, {Intrinsic::usub_with_overflow, MVT::i8, 3}, {Intrinsic::ssub_with_overflow, MVT::i16, 3}, {Intrinsic::usub_with_overflow, MVT::i16, 3}, {Intrinsic::ssub_with_overflow, MVT::i32, 1}, {Intrinsic::usub_with_overflow, MVT::i32, 1}, {Intrinsic::ssub_with_overflow, MVT::i64, 1}, {Intrinsic::usub_with_overflow, MVT::i64, 1}, {Intrinsic::smul_with_overflow, MVT::i8, 5}, {Intrinsic::umul_with_overflow, MVT::i8, 4}, {Intrinsic::smul_with_overflow, MVT::i16, 5}, {Intrinsic::umul_with_overflow, MVT::i16, 4}, {Intrinsic::smul_with_overflow, MVT::i32, 2}, // eg umull;tst {Intrinsic::umul_with_overflow, MVT::i32, 2}, // eg umull;cmp sxtw {Intrinsic::smul_with_overflow, MVT::i64, 3}, // eg mul;smulh;cmp {Intrinsic::umul_with_overflow, MVT::i64, 3}, // eg mul;umulh;cmp asr }; EVT MTy = TLI->getValueType(DL, RetTy->getContainedType(0), true); if (MTy.isSimple()) if (const auto *Entry = CostTableLookup(WithOverflowCostTbl, ICA.getID(), MTy.getSimpleVT())) return Entry->Cost; break; } case Intrinsic::fptosi_sat: case Intrinsic::fptoui_sat: { if (ICA.getArgTypes().empty()) break; bool IsSigned = ICA.getID() == Intrinsic::fptosi_sat; auto LT = getTypeLegalizationCost(ICA.getArgTypes()[0]); EVT MTy = TLI->getValueType(DL, RetTy); // Check for the legal types, which are where the size of the input and the // output are the same, or we are using cvt f64->i32 or f32->i64. if ((LT.second == MVT::f32 || LT.second == MVT::f64 || LT.second == MVT::v2f32 || LT.second == MVT::v4f32 || LT.second == MVT::v2f64)) { if ((LT.second.getScalarSizeInBits() == MTy.getScalarSizeInBits() || (LT.second == MVT::f64 && MTy == MVT::i32) || (LT.second == MVT::f32 && MTy == MVT::i64))) return LT.first; // Extending vector types v2f32->v2i64, fcvtl*2 + fcvt*2 if (LT.second.getScalarType() == MVT::f32 && MTy.isFixedLengthVector() && MTy.getScalarSizeInBits() == 64) return LT.first * (MTy.getVectorNumElements() > 2 ? 4 : 2); } // Similarly for fp16 sizes. Without FullFP16 we generally need to fcvt to // f32. if (LT.second.getScalarType() == MVT::f16 && !ST->hasFullFP16()) return LT.first + getIntrinsicInstrCost( {ICA.getID(), RetTy, {ICA.getArgTypes()[0]->getWithNewType( Type::getFloatTy(RetTy->getContext()))}}, CostKind); if ((LT.second == MVT::f16 && MTy == MVT::i32) || (LT.second == MVT::f16 && MTy == MVT::i64) || ((LT.second == MVT::v4f16 || LT.second == MVT::v8f16) && (LT.second.getScalarSizeInBits() == MTy.getScalarSizeInBits()))) return LT.first; // Extending vector types v8f16->v8i32, fcvtl*2 + fcvt*2 if (LT.second.getScalarType() == MVT::f16 && MTy.isFixedLengthVector() && MTy.getScalarSizeInBits() == 32) return LT.first * (MTy.getVectorNumElements() > 4 ? 4 : 2); // Extending vector types v8f16->v8i32. These current scalarize but the // codegen could be better. if (LT.second.getScalarType() == MVT::f16 && MTy.isFixedLengthVector() && MTy.getScalarSizeInBits() == 64) return MTy.getVectorNumElements() * 3; // If we can we use a legal convert followed by a min+max if ((LT.second.getScalarType() == MVT::f32 || LT.second.getScalarType() == MVT::f64 || LT.second.getScalarType() == MVT::f16) && LT.second.getScalarSizeInBits() >= MTy.getScalarSizeInBits()) { Type *LegalTy = Type::getIntNTy(RetTy->getContext(), LT.second.getScalarSizeInBits()); if (LT.second.isVector()) LegalTy = VectorType::get(LegalTy, LT.second.getVectorElementCount()); InstructionCost Cost = 1; IntrinsicCostAttributes Attrs1(IsSigned ? Intrinsic::smin : Intrinsic::umin, LegalTy, {LegalTy, LegalTy}); Cost += getIntrinsicInstrCost(Attrs1, CostKind); IntrinsicCostAttributes Attrs2(IsSigned ? Intrinsic::smax : Intrinsic::umax, LegalTy, {LegalTy, LegalTy}); Cost += getIntrinsicInstrCost(Attrs2, CostKind); return LT.first * Cost + ((LT.second.getScalarType() != MVT::f16 || ST->hasFullFP16()) ? 0 : 1); } // Otherwise we need to follow the default expansion that clamps the value // using a float min/max with a fcmp+sel for nan handling when signed. Type *FPTy = ICA.getArgTypes()[0]->getScalarType(); RetTy = RetTy->getScalarType(); if (LT.second.isVector()) { FPTy = VectorType::get(FPTy, LT.second.getVectorElementCount()); RetTy = VectorType::get(RetTy, LT.second.getVectorElementCount()); } IntrinsicCostAttributes Attrs1(Intrinsic::minnum, FPTy, {FPTy, FPTy}); InstructionCost Cost = getIntrinsicInstrCost(Attrs1, CostKind); IntrinsicCostAttributes Attrs2(Intrinsic::maxnum, FPTy, {FPTy, FPTy}); Cost += getIntrinsicInstrCost(Attrs2, CostKind); Cost += getCastInstrCost(IsSigned ? Instruction::FPToSI : Instruction::FPToUI, RetTy, FPTy, TTI::CastContextHint::None, CostKind); if (IsSigned) { Type *CondTy = RetTy->getWithNewBitWidth(1); Cost += getCmpSelInstrCost(BinaryOperator::FCmp, FPTy, CondTy, CmpInst::FCMP_UNO, CostKind); Cost += getCmpSelInstrCost(BinaryOperator::Select, RetTy, CondTy, CmpInst::FCMP_UNO, CostKind); } return LT.first * Cost; } case Intrinsic::fshl: case Intrinsic::fshr: { if (ICA.getArgs().empty()) break; // TODO: Add handling for fshl where third argument is not a constant. const TTI::OperandValueInfo OpInfoZ = TTI::getOperandInfo(ICA.getArgs()[2]); if (!OpInfoZ.isConstant()) break; const auto LegalisationCost = getTypeLegalizationCost(RetTy); if (OpInfoZ.isUniform()) { // FIXME: The costs could be lower if the codegen is better. static const CostTblEntry FshlTbl[] = { {Intrinsic::fshl, MVT::v4i32, 3}, // ushr + shl + orr {Intrinsic::fshl, MVT::v2i64, 3}, {Intrinsic::fshl, MVT::v16i8, 4}, {Intrinsic::fshl, MVT::v8i16, 4}, {Intrinsic::fshl, MVT::v2i32, 3}, {Intrinsic::fshl, MVT::v8i8, 4}, {Intrinsic::fshl, MVT::v4i16, 4}}; // Costs for both fshl & fshr are the same, so just pass Intrinsic::fshl // to avoid having to duplicate the costs. const auto *Entry = CostTableLookup(FshlTbl, Intrinsic::fshl, LegalisationCost.second); if (Entry) return LegalisationCost.first * Entry->Cost; } auto TyL = getTypeLegalizationCost(RetTy); if (!RetTy->isIntegerTy()) break; // Estimate cost manually, as types like i8 and i16 will get promoted to // i32 and CostTableLookup will ignore the extra conversion cost. bool HigherCost = (RetTy->getScalarSizeInBits() != 32 && RetTy->getScalarSizeInBits() < 64) || (RetTy->getScalarSizeInBits() % 64 != 0); unsigned ExtraCost = HigherCost ? 1 : 0; if (RetTy->getScalarSizeInBits() == 32 || RetTy->getScalarSizeInBits() == 64) ExtraCost = 0; // fhsl/fshr for i32 and i64 can be lowered to a single // extr instruction. else if (HigherCost) ExtraCost = 1; else break; return TyL.first + ExtraCost; } case Intrinsic::get_active_lane_mask: { auto *RetTy = dyn_cast(ICA.getReturnType()); if (RetTy) { EVT RetVT = getTLI()->getValueType(DL, RetTy); EVT OpVT = getTLI()->getValueType(DL, ICA.getArgTypes()[0]); if (!getTLI()->shouldExpandGetActiveLaneMask(RetVT, OpVT) && !getTLI()->isTypeLegal(RetVT)) { // We don't have enough context at this point to determine if the mask // is going to be kept live after the block, which will force the vXi1 // type to be expanded to legal vectors of integers, e.g. v4i1->v4i32. // For now, we just assume the vectorizer created this intrinsic and // the result will be the input for a PHI. In this case the cost will // be extremely high for fixed-width vectors. // NOTE: getScalarizationOverhead returns a cost that's far too // pessimistic for the actual generated codegen. In reality there are // two instructions generated per lane. return RetTy->getNumElements() * 2; } } break; } case Intrinsic::experimental_vector_match: { auto *NeedleTy = cast(ICA.getArgTypes()[1]); EVT SearchVT = getTLI()->getValueType(DL, ICA.getArgTypes()[0]); unsigned SearchSize = NeedleTy->getNumElements(); if (!getTLI()->shouldExpandVectorMatch(SearchVT, SearchSize)) { // Base cost for MATCH instructions. At least on the Neoverse V2 and // Neoverse V3, these are cheap operations with the same latency as a // vector ADD. In most cases, however, we also need to do an extra DUP. // For fixed-length vectors we currently need an extra five--six // instructions besides the MATCH. InstructionCost Cost = 4; if (isa(RetTy)) Cost += 10; return Cost; } break; } default: break; } return BaseT::getIntrinsicInstrCost(ICA, CostKind); } /// The function will remove redundant reinterprets casting in the presence /// of the control flow static std::optional processPhiNode(InstCombiner &IC, IntrinsicInst &II) { SmallVector Worklist; auto RequiredType = II.getType(); auto *PN = dyn_cast(II.getArgOperand(0)); assert(PN && "Expected Phi Node!"); // Don't create a new Phi unless we can remove the old one. if (!PN->hasOneUse()) return std::nullopt; for (Value *IncValPhi : PN->incoming_values()) { auto *Reinterpret = dyn_cast(IncValPhi); if (!Reinterpret || Reinterpret->getIntrinsicID() != Intrinsic::aarch64_sve_convert_to_svbool || RequiredType != Reinterpret->getArgOperand(0)->getType()) return std::nullopt; } // Create the new Phi IC.Builder.SetInsertPoint(PN); PHINode *NPN = IC.Builder.CreatePHI(RequiredType, PN->getNumIncomingValues()); Worklist.push_back(PN); for (unsigned I = 0; I < PN->getNumIncomingValues(); I++) { auto *Reinterpret = cast(PN->getIncomingValue(I)); NPN->addIncoming(Reinterpret->getOperand(0), PN->getIncomingBlock(I)); Worklist.push_back(Reinterpret); } // Cleanup Phi Node and reinterprets return IC.replaceInstUsesWith(II, NPN); } // (from_svbool (binop (to_svbool pred) (svbool_t _) (svbool_t _)))) // => (binop (pred) (from_svbool _) (from_svbool _)) // // The above transformation eliminates a `to_svbool` in the predicate // operand of bitwise operation `binop` by narrowing the vector width of // the operation. For example, it would convert a ` // and` into a ` and`. This is profitable because // to_svbool must zero the new lanes during widening, whereas // from_svbool is free. static std::optional tryCombineFromSVBoolBinOp(InstCombiner &IC, IntrinsicInst &II) { auto BinOp = dyn_cast(II.getOperand(0)); if (!BinOp) return std::nullopt; auto IntrinsicID = BinOp->getIntrinsicID(); switch (IntrinsicID) { case Intrinsic::aarch64_sve_and_z: case Intrinsic::aarch64_sve_bic_z: case Intrinsic::aarch64_sve_eor_z: case Intrinsic::aarch64_sve_nand_z: case Intrinsic::aarch64_sve_nor_z: case Intrinsic::aarch64_sve_orn_z: case Intrinsic::aarch64_sve_orr_z: break; default: return std::nullopt; } auto BinOpPred = BinOp->getOperand(0); auto BinOpOp1 = BinOp->getOperand(1); auto BinOpOp2 = BinOp->getOperand(2); auto PredIntr = dyn_cast(BinOpPred); if (!PredIntr || PredIntr->getIntrinsicID() != Intrinsic::aarch64_sve_convert_to_svbool) return std::nullopt; auto PredOp = PredIntr->getOperand(0); auto PredOpTy = cast(PredOp->getType()); if (PredOpTy != II.getType()) return std::nullopt; SmallVector NarrowedBinOpArgs = {PredOp}; auto NarrowBinOpOp1 = IC.Builder.CreateIntrinsic( Intrinsic::aarch64_sve_convert_from_svbool, {PredOpTy}, {BinOpOp1}); NarrowedBinOpArgs.push_back(NarrowBinOpOp1); if (BinOpOp1 == BinOpOp2) NarrowedBinOpArgs.push_back(NarrowBinOpOp1); else NarrowedBinOpArgs.push_back(IC.Builder.CreateIntrinsic( Intrinsic::aarch64_sve_convert_from_svbool, {PredOpTy}, {BinOpOp2})); auto NarrowedBinOp = IC.Builder.CreateIntrinsic(IntrinsicID, {PredOpTy}, NarrowedBinOpArgs); return IC.replaceInstUsesWith(II, NarrowedBinOp); } static std::optional instCombineConvertFromSVBool(InstCombiner &IC, IntrinsicInst &II) { // If the reinterpret instruction operand is a PHI Node if (isa(II.getArgOperand(0))) return processPhiNode(IC, II); if (auto BinOpCombine = tryCombineFromSVBoolBinOp(IC, II)) return BinOpCombine; // Ignore converts to/from svcount_t. if (isa(II.getArgOperand(0)->getType()) || isa(II.getType())) return std::nullopt; SmallVector CandidatesForRemoval; Value *Cursor = II.getOperand(0), *EarliestReplacement = nullptr; const auto *IVTy = cast(II.getType()); // Walk the chain of conversions. while (Cursor) { // If the type of the cursor has fewer lanes than the final result, zeroing // must take place, which breaks the equivalence chain. const auto *CursorVTy = cast(Cursor->getType()); if (CursorVTy->getElementCount().getKnownMinValue() < IVTy->getElementCount().getKnownMinValue()) break; // If the cursor has the same type as I, it is a viable replacement. if (Cursor->getType() == IVTy) EarliestReplacement = Cursor; auto *IntrinsicCursor = dyn_cast(Cursor); // If this is not an SVE conversion intrinsic, this is the end of the chain. if (!IntrinsicCursor || !(IntrinsicCursor->getIntrinsicID() == Intrinsic::aarch64_sve_convert_to_svbool || IntrinsicCursor->getIntrinsicID() == Intrinsic::aarch64_sve_convert_from_svbool)) break; CandidatesForRemoval.insert(CandidatesForRemoval.begin(), IntrinsicCursor); Cursor = IntrinsicCursor->getOperand(0); } // If no viable replacement in the conversion chain was found, there is // nothing to do. if (!EarliestReplacement) return std::nullopt; return IC.replaceInstUsesWith(II, EarliestReplacement); } static bool isAllActivePredicate(Value *Pred) { // Look through convert.from.svbool(convert.to.svbool(...) chain. Value *UncastedPred; if (match(Pred, m_Intrinsic( m_Intrinsic( m_Value(UncastedPred))))) // If the predicate has the same or less lanes than the uncasted // predicate then we know the casting has no effect. if (cast(Pred->getType())->getMinNumElements() <= cast(UncastedPred->getType())->getMinNumElements()) Pred = UncastedPred; return match(Pred, m_Intrinsic( m_ConstantInt())); } // Simplify unary operation where predicate has all inactive lanes by replacing // instruction with its operand static std::optional instCombineSVENoActiveReplace(InstCombiner &IC, IntrinsicInst &II, bool hasInactiveVector) { int PredOperand = hasInactiveVector ? 1 : 0; int ReplaceOperand = hasInactiveVector ? 0 : 1; if (match(II.getOperand(PredOperand), m_ZeroInt())) { IC.replaceInstUsesWith(II, II.getOperand(ReplaceOperand)); return IC.eraseInstFromFunction(II); } return std::nullopt; } // Simplify unary operation where predicate has all inactive lanes or // replace unused first operand with undef when all lanes are active static std::optional instCombineSVEAllOrNoActiveUnary(InstCombiner &IC, IntrinsicInst &II) { if (isAllActivePredicate(II.getOperand(1)) && !isa(II.getOperand(0)) && !isa(II.getOperand(0))) { Value *Undef = llvm::UndefValue::get(II.getType()); return IC.replaceOperand(II, 0, Undef); } return instCombineSVENoActiveReplace(IC, II, true); } // Erase unary operation where predicate has all inactive lanes static std::optional instCombineSVENoActiveUnaryErase(InstCombiner &IC, IntrinsicInst &II, int PredPos) { if (match(II.getOperand(PredPos), m_ZeroInt())) { return IC.eraseInstFromFunction(II); } return std::nullopt; } // Simplify operation where predicate has all inactive lanes by replacing // instruction with zeroed object static std::optional instCombineSVENoActiveZero(InstCombiner &IC, IntrinsicInst &II) { if (match(II.getOperand(0), m_ZeroInt())) { Constant *Node; Type *RetTy = II.getType(); if (RetTy->isStructTy()) { auto StructT = cast(RetTy); auto VecT = StructT->getElementType(0); SmallVector ZerVec; for (unsigned i = 0; i < StructT->getNumElements(); i++) { ZerVec.push_back(VecT->isFPOrFPVectorTy() ? ConstantFP::get(VecT, 0.0) : ConstantInt::get(VecT, 0)); } Node = ConstantStruct::get(StructT, ZerVec); } else Node = RetTy->isFPOrFPVectorTy() ? ConstantFP::get(RetTy, 0.0) : ConstantInt::get(II.getType(), 0); IC.replaceInstUsesWith(II, Node); return IC.eraseInstFromFunction(II); } return std::nullopt; } static std::optional instCombineSVESel(InstCombiner &IC, IntrinsicInst &II) { // svsel(ptrue, x, y) => x auto *OpPredicate = II.getOperand(0); if (isAllActivePredicate(OpPredicate)) return IC.replaceInstUsesWith(II, II.getOperand(1)); auto Select = IC.Builder.CreateSelect(OpPredicate, II.getOperand(1), II.getOperand(2)); return IC.replaceInstUsesWith(II, Select); } static std::optional instCombineSVEDup(InstCombiner &IC, IntrinsicInst &II) { IntrinsicInst *Pg = dyn_cast(II.getArgOperand(1)); if (!Pg) return std::nullopt; if (Pg->getIntrinsicID() != Intrinsic::aarch64_sve_ptrue) return std::nullopt; const auto PTruePattern = cast(Pg->getOperand(0))->getZExtValue(); if (PTruePattern != AArch64SVEPredPattern::vl1) return std::nullopt; // The intrinsic is inserting into lane zero so use an insert instead. auto *IdxTy = Type::getInt64Ty(II.getContext()); auto *Insert = InsertElementInst::Create( II.getArgOperand(0), II.getArgOperand(2), ConstantInt::get(IdxTy, 0)); Insert->insertBefore(II.getIterator()); Insert->takeName(&II); return IC.replaceInstUsesWith(II, Insert); } static std::optional instCombineSVEDupX(InstCombiner &IC, IntrinsicInst &II) { // Replace DupX with a regular IR splat. auto *RetTy = cast(II.getType()); Value *Splat = IC.Builder.CreateVectorSplat(RetTy->getElementCount(), II.getArgOperand(0)); Splat->takeName(&II); return IC.replaceInstUsesWith(II, Splat); } static std::optional instCombineSVECmpNE(InstCombiner &IC, IntrinsicInst &II) { LLVMContext &Ctx = II.getContext(); // Replace by zero constant when all lanes are inactive if (auto II_NA = instCombineSVENoActiveZero(IC, II)) return II_NA; // Check that the predicate is all active auto *Pg = dyn_cast(II.getArgOperand(0)); if (!Pg || Pg->getIntrinsicID() != Intrinsic::aarch64_sve_ptrue) return std::nullopt; const auto PTruePattern = cast(Pg->getOperand(0))->getZExtValue(); if (PTruePattern != AArch64SVEPredPattern::all) return std::nullopt; // Check that we have a compare of zero.. auto *SplatValue = dyn_cast_or_null(getSplatValue(II.getArgOperand(2))); if (!SplatValue || !SplatValue->isZero()) return std::nullopt; // ..against a dupq auto *DupQLane = dyn_cast(II.getArgOperand(1)); if (!DupQLane || DupQLane->getIntrinsicID() != Intrinsic::aarch64_sve_dupq_lane) return std::nullopt; // Where the dupq is a lane 0 replicate of a vector insert auto *DupQLaneIdx = dyn_cast(DupQLane->getArgOperand(1)); if (!DupQLaneIdx || !DupQLaneIdx->isZero()) return std::nullopt; auto *VecIns = dyn_cast(DupQLane->getArgOperand(0)); if (!VecIns || VecIns->getIntrinsicID() != Intrinsic::vector_insert) return std::nullopt; // Where the vector insert is a fixed constant vector insert into undef at // index zero if (!isa(VecIns->getArgOperand(0))) return std::nullopt; if (!cast(VecIns->getArgOperand(2))->isZero()) return std::nullopt; auto *ConstVec = dyn_cast(VecIns->getArgOperand(1)); if (!ConstVec) return std::nullopt; auto *VecTy = dyn_cast(ConstVec->getType()); auto *OutTy = dyn_cast(II.getType()); if (!VecTy || !OutTy || VecTy->getNumElements() != OutTy->getMinNumElements()) return std::nullopt; unsigned NumElts = VecTy->getNumElements(); unsigned PredicateBits = 0; // Expand intrinsic operands to a 16-bit byte level predicate for (unsigned I = 0; I < NumElts; ++I) { auto *Arg = dyn_cast(ConstVec->getAggregateElement(I)); if (!Arg) return std::nullopt; if (!Arg->isZero()) PredicateBits |= 1 << (I * (16 / NumElts)); } // If all bits are zero bail early with an empty predicate if (PredicateBits == 0) { auto *PFalse = Constant::getNullValue(II.getType()); PFalse->takeName(&II); return IC.replaceInstUsesWith(II, PFalse); } // Calculate largest predicate type used (where byte predicate is largest) unsigned Mask = 8; for (unsigned I = 0; I < 16; ++I) if ((PredicateBits & (1 << I)) != 0) Mask |= (I % 8); unsigned PredSize = Mask & -Mask; auto *PredType = ScalableVectorType::get( Type::getInt1Ty(Ctx), AArch64::SVEBitsPerBlock / (PredSize * 8)); // Ensure all relevant bits are set for (unsigned I = 0; I < 16; I += PredSize) if ((PredicateBits & (1 << I)) == 0) return std::nullopt; auto *PTruePat = ConstantInt::get(Type::getInt32Ty(Ctx), AArch64SVEPredPattern::all); auto *PTrue = IC.Builder.CreateIntrinsic(Intrinsic::aarch64_sve_ptrue, {PredType}, {PTruePat}); auto *ConvertToSVBool = IC.Builder.CreateIntrinsic( Intrinsic::aarch64_sve_convert_to_svbool, {PredType}, {PTrue}); auto *ConvertFromSVBool = IC.Builder.CreateIntrinsic(Intrinsic::aarch64_sve_convert_from_svbool, {II.getType()}, {ConvertToSVBool}); ConvertFromSVBool->takeName(&II); return IC.replaceInstUsesWith(II, ConvertFromSVBool); } static std::optional instCombineSVELast(InstCombiner &IC, IntrinsicInst &II) { Value *Pg = II.getArgOperand(0); Value *Vec = II.getArgOperand(1); auto IntrinsicID = II.getIntrinsicID(); bool IsAfter = IntrinsicID == Intrinsic::aarch64_sve_lasta; // lastX(splat(X)) --> X if (auto *SplatVal = getSplatValue(Vec)) return IC.replaceInstUsesWith(II, SplatVal); // If x and/or y is a splat value then: // lastX (binop (x, y)) --> binop(lastX(x), lastX(y)) Value *LHS, *RHS; if (match(Vec, m_OneUse(m_BinOp(m_Value(LHS), m_Value(RHS))))) { if (isSplatValue(LHS) || isSplatValue(RHS)) { auto *OldBinOp = cast(Vec); auto OpC = OldBinOp->getOpcode(); auto *NewLHS = IC.Builder.CreateIntrinsic(IntrinsicID, {Vec->getType()}, {Pg, LHS}); auto *NewRHS = IC.Builder.CreateIntrinsic(IntrinsicID, {Vec->getType()}, {Pg, RHS}); auto *NewBinOp = BinaryOperator::CreateWithCopiedFlags( OpC, NewLHS, NewRHS, OldBinOp, OldBinOp->getName(), II.getIterator()); return IC.replaceInstUsesWith(II, NewBinOp); } } auto *C = dyn_cast(Pg); if (IsAfter && C && C->isNullValue()) { // The intrinsic is extracting lane 0 so use an extract instead. auto *IdxTy = Type::getInt64Ty(II.getContext()); auto *Extract = ExtractElementInst::Create(Vec, ConstantInt::get(IdxTy, 0)); Extract->insertBefore(II.getIterator()); Extract->takeName(&II); return IC.replaceInstUsesWith(II, Extract); } auto *IntrPG = dyn_cast(Pg); if (!IntrPG) return std::nullopt; if (IntrPG->getIntrinsicID() != Intrinsic::aarch64_sve_ptrue) return std::nullopt; const auto PTruePattern = cast(IntrPG->getOperand(0))->getZExtValue(); // Can the intrinsic's predicate be converted to a known constant index? unsigned MinNumElts = getNumElementsFromSVEPredPattern(PTruePattern); if (!MinNumElts) return std::nullopt; unsigned Idx = MinNumElts - 1; // Increment the index if extracting the element after the last active // predicate element. if (IsAfter) ++Idx; // Ignore extracts whose index is larger than the known minimum vector // length. NOTE: This is an artificial constraint where we prefer to // maintain what the user asked for until an alternative is proven faster. auto *PgVTy = cast(Pg->getType()); if (Idx >= PgVTy->getMinNumElements()) return std::nullopt; // The intrinsic is extracting a fixed lane so use an extract instead. auto *IdxTy = Type::getInt64Ty(II.getContext()); auto *Extract = ExtractElementInst::Create(Vec, ConstantInt::get(IdxTy, Idx)); Extract->insertBefore(II.getIterator()); Extract->takeName(&II); return IC.replaceInstUsesWith(II, Extract); } static std::optional instCombineSVECondLast(InstCombiner &IC, IntrinsicInst &II) { // The SIMD&FP variant of CLAST[AB] is significantly faster than the scalar // integer variant across a variety of micro-architectures. Replace scalar // integer CLAST[AB] intrinsic with optimal SIMD&FP variant. A simple // bitcast-to-fp + clast[ab] + bitcast-to-int will cost a cycle or two more // depending on the micro-architecture, but has been observed as generally // being faster, particularly when the CLAST[AB] op is a loop-carried // dependency. Value *Pg = II.getArgOperand(0); Value *Fallback = II.getArgOperand(1); Value *Vec = II.getArgOperand(2); Type *Ty = II.getType(); if (!Ty->isIntegerTy()) return std::nullopt; Type *FPTy; switch (cast(Ty)->getBitWidth()) { default: return std::nullopt; case 16: FPTy = IC.Builder.getHalfTy(); break; case 32: FPTy = IC.Builder.getFloatTy(); break; case 64: FPTy = IC.Builder.getDoubleTy(); break; } Value *FPFallBack = IC.Builder.CreateBitCast(Fallback, FPTy); auto *FPVTy = VectorType::get( FPTy, cast(Vec->getType())->getElementCount()); Value *FPVec = IC.Builder.CreateBitCast(Vec, FPVTy); auto *FPII = IC.Builder.CreateIntrinsic( II.getIntrinsicID(), {FPVec->getType()}, {Pg, FPFallBack, FPVec}); Value *FPIItoInt = IC.Builder.CreateBitCast(FPII, II.getType()); return IC.replaceInstUsesWith(II, FPIItoInt); } static std::optional instCombineRDFFR(InstCombiner &IC, IntrinsicInst &II) { LLVMContext &Ctx = II.getContext(); // Replace rdffr with predicated rdffr.z intrinsic, so that optimizePTestInstr // can work with RDFFR_PP for ptest elimination. auto *AllPat = ConstantInt::get(Type::getInt32Ty(Ctx), AArch64SVEPredPattern::all); auto *PTrue = IC.Builder.CreateIntrinsic(Intrinsic::aarch64_sve_ptrue, {II.getType()}, {AllPat}); auto *RDFFR = IC.Builder.CreateIntrinsic(Intrinsic::aarch64_sve_rdffr_z, {}, {PTrue}); RDFFR->takeName(&II); return IC.replaceInstUsesWith(II, RDFFR); } static std::optional instCombineSVECntElts(InstCombiner &IC, IntrinsicInst &II, unsigned NumElts) { const auto Pattern = cast(II.getArgOperand(0))->getZExtValue(); if (Pattern == AArch64SVEPredPattern::all) { Constant *StepVal = ConstantInt::get(II.getType(), NumElts); auto *VScale = IC.Builder.CreateVScale(StepVal); VScale->takeName(&II); return IC.replaceInstUsesWith(II, VScale); } unsigned MinNumElts = getNumElementsFromSVEPredPattern(Pattern); return MinNumElts && NumElts >= MinNumElts ? std::optional(IC.replaceInstUsesWith( II, ConstantInt::get(II.getType(), MinNumElts))) : std::nullopt; } static std::optional instCombineSVEPTest(InstCombiner &IC, IntrinsicInst &II) { Value *PgVal = II.getArgOperand(0); Value *OpVal = II.getArgOperand(1); // PTEST_(X, X) is equivalent to PTEST_ANY(X, X). // Later optimizations prefer this form. if (PgVal == OpVal && (II.getIntrinsicID() == Intrinsic::aarch64_sve_ptest_first || II.getIntrinsicID() == Intrinsic::aarch64_sve_ptest_last)) { Value *Ops[] = {PgVal, OpVal}; Type *Tys[] = {PgVal->getType()}; auto *PTest = IC.Builder.CreateIntrinsic(Intrinsic::aarch64_sve_ptest_any, Tys, Ops); PTest->takeName(&II); return IC.replaceInstUsesWith(II, PTest); } IntrinsicInst *Pg = dyn_cast(PgVal); IntrinsicInst *Op = dyn_cast(OpVal); if (!Pg || !Op) return std::nullopt; Intrinsic::ID OpIID = Op->getIntrinsicID(); if (Pg->getIntrinsicID() == Intrinsic::aarch64_sve_convert_to_svbool && OpIID == Intrinsic::aarch64_sve_convert_to_svbool && Pg->getArgOperand(0)->getType() == Op->getArgOperand(0)->getType()) { Value *Ops[] = {Pg->getArgOperand(0), Op->getArgOperand(0)}; Type *Tys[] = {Pg->getArgOperand(0)->getType()}; auto *PTest = IC.Builder.CreateIntrinsic(II.getIntrinsicID(), Tys, Ops); PTest->takeName(&II); return IC.replaceInstUsesWith(II, PTest); } // Transform PTEST_ANY(X=OP(PG,...), X) -> PTEST_ANY(PG, X)). // Later optimizations may rewrite sequence to use the flag-setting variant // of instruction X to remove PTEST. if ((Pg == Op) && (II.getIntrinsicID() == Intrinsic::aarch64_sve_ptest_any) && ((OpIID == Intrinsic::aarch64_sve_brka_z) || (OpIID == Intrinsic::aarch64_sve_brkb_z) || (OpIID == Intrinsic::aarch64_sve_brkpa_z) || (OpIID == Intrinsic::aarch64_sve_brkpb_z) || (OpIID == Intrinsic::aarch64_sve_rdffr_z) || (OpIID == Intrinsic::aarch64_sve_and_z) || (OpIID == Intrinsic::aarch64_sve_bic_z) || (OpIID == Intrinsic::aarch64_sve_eor_z) || (OpIID == Intrinsic::aarch64_sve_nand_z) || (OpIID == Intrinsic::aarch64_sve_nor_z) || (OpIID == Intrinsic::aarch64_sve_orn_z) || (OpIID == Intrinsic::aarch64_sve_orr_z))) { Value *Ops[] = {Pg->getArgOperand(0), Pg}; Type *Tys[] = {Pg->getType()}; auto *PTest = IC.Builder.CreateIntrinsic(II.getIntrinsicID(), Tys, Ops); PTest->takeName(&II); return IC.replaceInstUsesWith(II, PTest); } return std::nullopt; } template static std::optional instCombineSVEVectorFuseMulAddSub(InstCombiner &IC, IntrinsicInst &II, bool MergeIntoAddendOp) { Value *P = II.getOperand(0); Value *MulOp0, *MulOp1, *AddendOp, *Mul; if (MergeIntoAddendOp) { AddendOp = II.getOperand(1); Mul = II.getOperand(2); } else { AddendOp = II.getOperand(2); Mul = II.getOperand(1); } if (!match(Mul, m_Intrinsic(m_Specific(P), m_Value(MulOp0), m_Value(MulOp1)))) return std::nullopt; if (!Mul->hasOneUse()) return std::nullopt; Instruction *FMFSource = nullptr; if (II.getType()->isFPOrFPVectorTy()) { llvm::FastMathFlags FAddFlags = II.getFastMathFlags(); // Stop the combine when the flags on the inputs differ in case dropping // flags would lead to us missing out on more beneficial optimizations. if (FAddFlags != cast(Mul)->getFastMathFlags()) return std::nullopt; if (!FAddFlags.allowContract()) return std::nullopt; FMFSource = &II; } CallInst *Res; if (MergeIntoAddendOp) Res = IC.Builder.CreateIntrinsic(FuseOpc, {II.getType()}, {P, AddendOp, MulOp0, MulOp1}, FMFSource); else Res = IC.Builder.CreateIntrinsic(FuseOpc, {II.getType()}, {P, MulOp0, MulOp1, AddendOp}, FMFSource); return IC.replaceInstUsesWith(II, Res); } static std::optional instCombineSVELD1(InstCombiner &IC, IntrinsicInst &II, const DataLayout &DL) { Value *Pred = II.getOperand(0); Value *PtrOp = II.getOperand(1); Type *VecTy = II.getType(); // Replace by zero constant when all lanes are inactive if (auto II_NA = instCombineSVENoActiveZero(IC, II)) return II_NA; if (isAllActivePredicate(Pred)) { LoadInst *Load = IC.Builder.CreateLoad(VecTy, PtrOp); Load->copyMetadata(II); return IC.replaceInstUsesWith(II, Load); } CallInst *MaskedLoad = IC.Builder.CreateMaskedLoad(VecTy, PtrOp, PtrOp->getPointerAlignment(DL), Pred, ConstantAggregateZero::get(VecTy)); MaskedLoad->copyMetadata(II); return IC.replaceInstUsesWith(II, MaskedLoad); } static std::optional instCombineSVEST1(InstCombiner &IC, IntrinsicInst &II, const DataLayout &DL) { Value *VecOp = II.getOperand(0); Value *Pred = II.getOperand(1); Value *PtrOp = II.getOperand(2); if (isAllActivePredicate(Pred)) { StoreInst *Store = IC.Builder.CreateStore(VecOp, PtrOp); Store->copyMetadata(II); return IC.eraseInstFromFunction(II); } CallInst *MaskedStore = IC.Builder.CreateMaskedStore( VecOp, PtrOp, PtrOp->getPointerAlignment(DL), Pred); MaskedStore->copyMetadata(II); return IC.eraseInstFromFunction(II); } static Instruction::BinaryOps intrinsicIDToBinOpCode(unsigned Intrinsic) { switch (Intrinsic) { case Intrinsic::aarch64_sve_fmul_u: return Instruction::BinaryOps::FMul; case Intrinsic::aarch64_sve_fadd_u: return Instruction::BinaryOps::FAdd; case Intrinsic::aarch64_sve_fsub_u: return Instruction::BinaryOps::FSub; default: return Instruction::BinaryOpsEnd; } } static std::optional instCombineSVEVectorBinOp(InstCombiner &IC, IntrinsicInst &II) { // Bail due to missing support for ISD::STRICT_ scalable vector operations. if (II.isStrictFP()) return std::nullopt; auto *OpPredicate = II.getOperand(0); auto BinOpCode = intrinsicIDToBinOpCode(II.getIntrinsicID()); if (BinOpCode == Instruction::BinaryOpsEnd || !match(OpPredicate, m_Intrinsic( m_ConstantInt()))) return std::nullopt; auto BinOp = IC.Builder.CreateBinOpFMF( BinOpCode, II.getOperand(1), II.getOperand(2), II.getFastMathFlags()); return IC.replaceInstUsesWith(II, BinOp); } // Canonicalise operations that take an all active predicate (e.g. sve.add -> // sve.add_u). static std::optional instCombineSVEAllActive(IntrinsicInst &II, Intrinsic::ID IID) { auto *OpPredicate = II.getOperand(0); if (!match(OpPredicate, m_Intrinsic( m_ConstantInt()))) return std::nullopt; auto *Mod = II.getModule(); auto *NewDecl = Intrinsic::getOrInsertDeclaration(Mod, IID, {II.getType()}); II.setCalledFunction(NewDecl); return &II; } // Simplify operations where predicate has all inactive lanes or try to replace // with _u form when all lanes are active static std::optional instCombineSVEAllOrNoActive(InstCombiner &IC, IntrinsicInst &II, Intrinsic::ID IID) { if (match(II.getOperand(0), m_ZeroInt())) { // llvm_ir, pred(0), op1, op2 - Spec says to return op1 when all lanes are // inactive for sv[func]_m return IC.replaceInstUsesWith(II, II.getOperand(1)); } return instCombineSVEAllActive(II, IID); } static std::optional instCombineSVEVectorAdd(InstCombiner &IC, IntrinsicInst &II) { if (auto II_U = instCombineSVEAllOrNoActive(IC, II, Intrinsic::aarch64_sve_add_u)) return II_U; if (auto MLA = instCombineSVEVectorFuseMulAddSub( IC, II, true)) return MLA; if (auto MAD = instCombineSVEVectorFuseMulAddSub( IC, II, false)) return MAD; return std::nullopt; } static std::optional instCombineSVEVectorFAdd(InstCombiner &IC, IntrinsicInst &II) { if (auto II_U = instCombineSVEAllOrNoActive(IC, II, Intrinsic::aarch64_sve_fadd_u)) return II_U; if (auto FMLA = instCombineSVEVectorFuseMulAddSub(IC, II, true)) return FMLA; if (auto FMAD = instCombineSVEVectorFuseMulAddSub(IC, II, false)) return FMAD; if (auto FMLA = instCombineSVEVectorFuseMulAddSub(IC, II, true)) return FMLA; return std::nullopt; } static std::optional instCombineSVEVectorFAddU(InstCombiner &IC, IntrinsicInst &II) { if (auto FMLA = instCombineSVEVectorFuseMulAddSub(IC, II, true)) return FMLA; if (auto FMAD = instCombineSVEVectorFuseMulAddSub(IC, II, false)) return FMAD; if (auto FMLA_U = instCombineSVEVectorFuseMulAddSub( IC, II, true)) return FMLA_U; return instCombineSVEVectorBinOp(IC, II); } static std::optional instCombineSVEVectorFSub(InstCombiner &IC, IntrinsicInst &II) { if (auto II_U = instCombineSVEAllOrNoActive(IC, II, Intrinsic::aarch64_sve_fsub_u)) return II_U; if (auto FMLS = instCombineSVEVectorFuseMulAddSub(IC, II, true)) return FMLS; if (auto FMSB = instCombineSVEVectorFuseMulAddSub( IC, II, false)) return FMSB; if (auto FMLS = instCombineSVEVectorFuseMulAddSub(IC, II, true)) return FMLS; return std::nullopt; } static std::optional instCombineSVEVectorFSubU(InstCombiner &IC, IntrinsicInst &II) { if (auto FMLS = instCombineSVEVectorFuseMulAddSub(IC, II, true)) return FMLS; if (auto FMSB = instCombineSVEVectorFuseMulAddSub( IC, II, false)) return FMSB; if (auto FMLS_U = instCombineSVEVectorFuseMulAddSub( IC, II, true)) return FMLS_U; return instCombineSVEVectorBinOp(IC, II); } static std::optional instCombineSVEVectorSub(InstCombiner &IC, IntrinsicInst &II) { if (auto II_U = instCombineSVEAllOrNoActive(IC, II, Intrinsic::aarch64_sve_sub_u)) return II_U; if (auto MLS = instCombineSVEVectorFuseMulAddSub( IC, II, true)) return MLS; return std::nullopt; } static std::optional instCombineSVEVectorMul(InstCombiner &IC, IntrinsicInst &II, Intrinsic::ID IID) { auto *OpPredicate = II.getOperand(0); auto *OpMultiplicand = II.getOperand(1); auto *OpMultiplier = II.getOperand(2); // Return true if a given instruction is a unit splat value, false otherwise. auto IsUnitSplat = [](auto *I) { auto *SplatValue = getSplatValue(I); if (!SplatValue) return false; return match(SplatValue, m_FPOne()) || match(SplatValue, m_One()); }; // Return true if a given instruction is an aarch64_sve_dup intrinsic call // with a unit splat value, false otherwise. auto IsUnitDup = [](auto *I) { auto *IntrI = dyn_cast(I); if (!IntrI || IntrI->getIntrinsicID() != Intrinsic::aarch64_sve_dup) return false; auto *SplatValue = IntrI->getOperand(2); return match(SplatValue, m_FPOne()) || match(SplatValue, m_One()); }; if (IsUnitSplat(OpMultiplier)) { // [f]mul pg %n, (dupx 1) => %n OpMultiplicand->takeName(&II); return IC.replaceInstUsesWith(II, OpMultiplicand); } else if (IsUnitDup(OpMultiplier)) { // [f]mul pg %n, (dup pg 1) => %n auto *DupInst = cast(OpMultiplier); auto *DupPg = DupInst->getOperand(1); // TODO: this is naive. The optimization is still valid if DupPg // 'encompasses' OpPredicate, not only if they're the same predicate. if (OpPredicate == DupPg) { OpMultiplicand->takeName(&II); return IC.replaceInstUsesWith(II, OpMultiplicand); } } return instCombineSVEVectorBinOp(IC, II); } static std::optional instCombineSVEUnpack(InstCombiner &IC, IntrinsicInst &II) { Value *UnpackArg = II.getArgOperand(0); auto *RetTy = cast(II.getType()); bool IsSigned = II.getIntrinsicID() == Intrinsic::aarch64_sve_sunpkhi || II.getIntrinsicID() == Intrinsic::aarch64_sve_sunpklo; // Hi = uunpkhi(splat(X)) --> Hi = splat(extend(X)) // Lo = uunpklo(splat(X)) --> Lo = splat(extend(X)) if (auto *ScalarArg = getSplatValue(UnpackArg)) { ScalarArg = IC.Builder.CreateIntCast(ScalarArg, RetTy->getScalarType(), IsSigned); Value *NewVal = IC.Builder.CreateVectorSplat(RetTy->getElementCount(), ScalarArg); NewVal->takeName(&II); return IC.replaceInstUsesWith(II, NewVal); } return std::nullopt; } static std::optional instCombineSVETBL(InstCombiner &IC, IntrinsicInst &II) { auto *OpVal = II.getOperand(0); auto *OpIndices = II.getOperand(1); VectorType *VTy = cast(II.getType()); // Check whether OpIndices is a constant splat value < minimal element count // of result. auto *SplatValue = dyn_cast_or_null(getSplatValue(OpIndices)); if (!SplatValue || SplatValue->getValue().uge(VTy->getElementCount().getKnownMinValue())) return std::nullopt; // Convert sve_tbl(OpVal sve_dup_x(SplatValue)) to // splat_vector(extractelement(OpVal, SplatValue)) for further optimization. auto *Extract = IC.Builder.CreateExtractElement(OpVal, SplatValue); auto *VectorSplat = IC.Builder.CreateVectorSplat(VTy->getElementCount(), Extract); VectorSplat->takeName(&II); return IC.replaceInstUsesWith(II, VectorSplat); } static std::optional instCombineSVEUzp1(InstCombiner &IC, IntrinsicInst &II) { Value *A, *B; Type *RetTy = II.getType(); constexpr Intrinsic::ID FromSVB = Intrinsic::aarch64_sve_convert_from_svbool; constexpr Intrinsic::ID ToSVB = Intrinsic::aarch64_sve_convert_to_svbool; // uzp1(to_svbool(A), to_svbool(B)) --> // uzp1(from_svbool(to_svbool(A)), from_svbool(to_svbool(B))) --> if ((match(II.getArgOperand(0), m_Intrinsic(m_Intrinsic(m_Value(A)))) && match(II.getArgOperand(1), m_Intrinsic(m_Intrinsic(m_Value(B))))) || (match(II.getArgOperand(0), m_Intrinsic(m_Value(A))) && match(II.getArgOperand(1), m_Intrinsic(m_Value(B))))) { auto *TyA = cast(A->getType()); if (TyA == B->getType() && RetTy == ScalableVectorType::getDoubleElementsVectorType(TyA)) { auto *SubVec = IC.Builder.CreateInsertVector( RetTy, PoisonValue::get(RetTy), A, IC.Builder.getInt64(0)); auto *ConcatVec = IC.Builder.CreateInsertVector( RetTy, SubVec, B, IC.Builder.getInt64(TyA->getMinNumElements())); ConcatVec->takeName(&II); return IC.replaceInstUsesWith(II, ConcatVec); } } return std::nullopt; } static std::optional instCombineSVEZip(InstCombiner &IC, IntrinsicInst &II) { // zip1(uzp1(A, B), uzp2(A, B)) --> A // zip2(uzp1(A, B), uzp2(A, B)) --> B Value *A, *B; if (match(II.getArgOperand(0), m_Intrinsic(m_Value(A), m_Value(B))) && match(II.getArgOperand(1), m_Intrinsic( m_Specific(A), m_Specific(B)))) return IC.replaceInstUsesWith( II, (II.getIntrinsicID() == Intrinsic::aarch64_sve_zip1 ? A : B)); return std::nullopt; } static std::optional instCombineLD1GatherIndex(InstCombiner &IC, IntrinsicInst &II) { Value *Mask = II.getOperand(0); Value *BasePtr = II.getOperand(1); Value *Index = II.getOperand(2); Type *Ty = II.getType(); Value *PassThru = ConstantAggregateZero::get(Ty); // Replace by zero constant when all lanes are inactive if (auto II_NA = instCombineSVENoActiveZero(IC, II)) return II_NA; // Contiguous gather => masked load. // (sve.ld1.gather.index Mask BasePtr (sve.index IndexBase 1)) // => (masked.load (gep BasePtr IndexBase) Align Mask zeroinitializer) Value *IndexBase; if (match(Index, m_Intrinsic( m_Value(IndexBase), m_SpecificInt(1)))) { Align Alignment = BasePtr->getPointerAlignment(II.getDataLayout()); Value *Ptr = IC.Builder.CreateGEP(cast(Ty)->getElementType(), BasePtr, IndexBase); CallInst *MaskedLoad = IC.Builder.CreateMaskedLoad(Ty, Ptr, Alignment, Mask, PassThru); MaskedLoad->takeName(&II); return IC.replaceInstUsesWith(II, MaskedLoad); } return std::nullopt; } static std::optional instCombineST1ScatterIndex(InstCombiner &IC, IntrinsicInst &II) { Value *Val = II.getOperand(0); Value *Mask = II.getOperand(1); Value *BasePtr = II.getOperand(2); Value *Index = II.getOperand(3); Type *Ty = Val->getType(); // Contiguous scatter => masked store. // (sve.st1.scatter.index Value Mask BasePtr (sve.index IndexBase 1)) // => (masked.store Value (gep BasePtr IndexBase) Align Mask) Value *IndexBase; if (match(Index, m_Intrinsic( m_Value(IndexBase), m_SpecificInt(1)))) { Align Alignment = BasePtr->getPointerAlignment(II.getDataLayout()); Value *Ptr = IC.Builder.CreateGEP(cast(Ty)->getElementType(), BasePtr, IndexBase); (void)IC.Builder.CreateMaskedStore(Val, Ptr, Alignment, Mask); return IC.eraseInstFromFunction(II); } return std::nullopt; } static std::optional instCombineSVESDIV(InstCombiner &IC, IntrinsicInst &II) { Type *Int32Ty = IC.Builder.getInt32Ty(); Value *Pred = II.getOperand(0); Value *Vec = II.getOperand(1); Value *DivVec = II.getOperand(2); Value *SplatValue = getSplatValue(DivVec); ConstantInt *SplatConstantInt = dyn_cast_or_null(SplatValue); if (!SplatConstantInt) return std::nullopt; APInt Divisor = SplatConstantInt->getValue(); const int64_t DivisorValue = Divisor.getSExtValue(); if (DivisorValue == -1) return std::nullopt; if (DivisorValue == 1) IC.replaceInstUsesWith(II, Vec); if (Divisor.isPowerOf2()) { Constant *DivisorLog2 = ConstantInt::get(Int32Ty, Divisor.logBase2()); auto ASRD = IC.Builder.CreateIntrinsic( Intrinsic::aarch64_sve_asrd, {II.getType()}, {Pred, Vec, DivisorLog2}); return IC.replaceInstUsesWith(II, ASRD); } if (Divisor.isNegatedPowerOf2()) { Divisor.negate(); Constant *DivisorLog2 = ConstantInt::get(Int32Ty, Divisor.logBase2()); auto ASRD = IC.Builder.CreateIntrinsic( Intrinsic::aarch64_sve_asrd, {II.getType()}, {Pred, Vec, DivisorLog2}); auto NEG = IC.Builder.CreateIntrinsic( Intrinsic::aarch64_sve_neg, {ASRD->getType()}, {ASRD, Pred, ASRD}); return IC.replaceInstUsesWith(II, NEG); } return std::nullopt; } bool SimplifyValuePattern(SmallVector &Vec, bool AllowPoison) { size_t VecSize = Vec.size(); if (VecSize == 1) return true; if (!isPowerOf2_64(VecSize)) return false; size_t HalfVecSize = VecSize / 2; for (auto LHS = Vec.begin(), RHS = Vec.begin() + HalfVecSize; RHS != Vec.end(); LHS++, RHS++) { if (*LHS != nullptr && *RHS != nullptr) { if (*LHS == *RHS) continue; else return false; } if (!AllowPoison) return false; if (*LHS == nullptr && *RHS != nullptr) *LHS = *RHS; } Vec.resize(HalfVecSize); SimplifyValuePattern(Vec, AllowPoison); return true; } // Try to simplify dupqlane patterns like dupqlane(f32 A, f32 B, f32 A, f32 B) // to dupqlane(f64(C)) where C is A concatenated with B static std::optional instCombineSVEDupqLane(InstCombiner &IC, IntrinsicInst &II) { Value *CurrentInsertElt = nullptr, *Default = nullptr; if (!match(II.getOperand(0), m_Intrinsic( m_Value(Default), m_Value(CurrentInsertElt), m_Value())) || !isa(CurrentInsertElt->getType())) return std::nullopt; auto IIScalableTy = cast(II.getType()); // Insert the scalars into a container ordered by InsertElement index SmallVector Elts(IIScalableTy->getMinNumElements(), nullptr); while (auto InsertElt = dyn_cast(CurrentInsertElt)) { auto Idx = cast(InsertElt->getOperand(2)); Elts[Idx->getValue().getZExtValue()] = InsertElt->getOperand(1); CurrentInsertElt = InsertElt->getOperand(0); } bool AllowPoison = isa(CurrentInsertElt) && isa(Default); if (!SimplifyValuePattern(Elts, AllowPoison)) return std::nullopt; // Rebuild the simplified chain of InsertElements. e.g. (a, b, a, b) as (a, b) Value *InsertEltChain = PoisonValue::get(CurrentInsertElt->getType()); for (size_t I = 0; I < Elts.size(); I++) { if (Elts[I] == nullptr) continue; InsertEltChain = IC.Builder.CreateInsertElement(InsertEltChain, Elts[I], IC.Builder.getInt64(I)); } if (InsertEltChain == nullptr) return std::nullopt; // Splat the simplified sequence, e.g. (f16 a, f16 b, f16 c, f16 d) as one i64 // value or (f16 a, f16 b) as one i32 value. This requires an InsertSubvector // be bitcast to a type wide enough to fit the sequence, be splatted, and then // be narrowed back to the original type. unsigned PatternWidth = IIScalableTy->getScalarSizeInBits() * Elts.size(); unsigned PatternElementCount = IIScalableTy->getScalarSizeInBits() * IIScalableTy->getMinNumElements() / PatternWidth; IntegerType *WideTy = IC.Builder.getIntNTy(PatternWidth); auto *WideScalableTy = ScalableVectorType::get(WideTy, PatternElementCount); auto *WideShuffleMaskTy = ScalableVectorType::get(IC.Builder.getInt32Ty(), PatternElementCount); auto ZeroIdx = ConstantInt::get(IC.Builder.getInt64Ty(), APInt(64, 0)); auto InsertSubvector = IC.Builder.CreateInsertVector( II.getType(), PoisonValue::get(II.getType()), InsertEltChain, ZeroIdx); auto WideBitcast = IC.Builder.CreateBitOrPointerCast(InsertSubvector, WideScalableTy); auto WideShuffleMask = ConstantAggregateZero::get(WideShuffleMaskTy); auto WideShuffle = IC.Builder.CreateShuffleVector( WideBitcast, PoisonValue::get(WideScalableTy), WideShuffleMask); auto NarrowBitcast = IC.Builder.CreateBitOrPointerCast(WideShuffle, II.getType()); return IC.replaceInstUsesWith(II, NarrowBitcast); } static std::optional instCombineMaxMinNM(InstCombiner &IC, IntrinsicInst &II) { Value *A = II.getArgOperand(0); Value *B = II.getArgOperand(1); if (A == B) return IC.replaceInstUsesWith(II, A); return std::nullopt; } static std::optional instCombineSVESrshl(InstCombiner &IC, IntrinsicInst &II) { Value *Pred = II.getOperand(0); Value *Vec = II.getOperand(1); Value *Shift = II.getOperand(2); // Convert SRSHL into the simpler LSL intrinsic when fed by an ABS intrinsic. Value *AbsPred, *MergedValue; if (!match(Vec, m_Intrinsic( m_Value(MergedValue), m_Value(AbsPred), m_Value())) && !match(Vec, m_Intrinsic( m_Value(MergedValue), m_Value(AbsPred), m_Value()))) return std::nullopt; // Transform is valid if any of the following are true: // * The ABS merge value is an undef or non-negative // * The ABS predicate is all active // * The ABS predicate and the SRSHL predicates are the same if (!isa(MergedValue) && !match(MergedValue, m_NonNegative()) && AbsPred != Pred && !isAllActivePredicate(AbsPred)) return std::nullopt; // Only valid when the shift amount is non-negative, otherwise the rounding // behaviour of SRSHL cannot be ignored. if (!match(Shift, m_NonNegative())) return std::nullopt; auto LSL = IC.Builder.CreateIntrinsic(Intrinsic::aarch64_sve_lsl, {II.getType()}, {Pred, Vec, Shift}); return IC.replaceInstUsesWith(II, LSL); } static std::optional instCombineSVEInsr(InstCombiner &IC, IntrinsicInst &II) { Value *Vec = II.getOperand(0); if (getSplatValue(Vec) == II.getOperand(1)) return IC.replaceInstUsesWith(II, Vec); return std::nullopt; } static std::optional instCombineDMB(InstCombiner &IC, IntrinsicInst &II) { // If this barrier is post-dominated by identical one we can remove it auto *NI = II.getNextNonDebugInstruction(); unsigned LookaheadThreshold = DMBLookaheadThreshold; auto CanSkipOver = [](Instruction *I) { return !I->mayReadOrWriteMemory() && !I->mayHaveSideEffects(); }; while (LookaheadThreshold-- && CanSkipOver(NI)) { auto *NIBB = NI->getParent(); NI = NI->getNextNonDebugInstruction(); if (!NI) { if (auto *SuccBB = NIBB->getUniqueSuccessor()) NI = &*SuccBB->getFirstNonPHIOrDbgOrLifetime(); else break; } } auto *NextII = dyn_cast_or_null(NI); if (NextII && II.isIdenticalTo(NextII)) return IC.eraseInstFromFunction(II); return std::nullopt; } std::optional AArch64TTIImpl::instCombineIntrinsic(InstCombiner &IC, IntrinsicInst &II) const { Intrinsic::ID IID = II.getIntrinsicID(); switch (IID) { default: break; case Intrinsic::aarch64_dmb: return instCombineDMB(IC, II); case Intrinsic::aarch64_sve_fcvt_bf16f32_v2: case Intrinsic::aarch64_sve_fcvt_f16f32: case Intrinsic::aarch64_sve_fcvt_f16f64: case Intrinsic::aarch64_sve_fcvt_f32f16: case Intrinsic::aarch64_sve_fcvt_f32f64: case Intrinsic::aarch64_sve_fcvt_f64f16: case Intrinsic::aarch64_sve_fcvt_f64f32: case Intrinsic::aarch64_sve_fcvtlt_f32f16: case Intrinsic::aarch64_sve_fcvtlt_f64f32: case Intrinsic::aarch64_sve_fcvtx_f32f64: case Intrinsic::aarch64_sve_fcvtzs: case Intrinsic::aarch64_sve_fcvtzs_i32f16: case Intrinsic::aarch64_sve_fcvtzs_i32f64: case Intrinsic::aarch64_sve_fcvtzs_i64f16: case Intrinsic::aarch64_sve_fcvtzs_i64f32: case Intrinsic::aarch64_sve_fcvtzu: case Intrinsic::aarch64_sve_fcvtzu_i32f16: case Intrinsic::aarch64_sve_fcvtzu_i32f64: case Intrinsic::aarch64_sve_fcvtzu_i64f16: case Intrinsic::aarch64_sve_fcvtzu_i64f32: case Intrinsic::aarch64_sve_scvtf: case Intrinsic::aarch64_sve_scvtf_f16i32: case Intrinsic::aarch64_sve_scvtf_f16i64: case Intrinsic::aarch64_sve_scvtf_f32i64: case Intrinsic::aarch64_sve_scvtf_f64i32: case Intrinsic::aarch64_sve_ucvtf: case Intrinsic::aarch64_sve_ucvtf_f16i32: case Intrinsic::aarch64_sve_ucvtf_f16i64: case Intrinsic::aarch64_sve_ucvtf_f32i64: case Intrinsic::aarch64_sve_ucvtf_f64i32: return instCombineSVEAllOrNoActiveUnary(IC, II); case Intrinsic::aarch64_sve_fcvtnt_bf16f32_v2: case Intrinsic::aarch64_sve_fcvtnt_f16f32: case Intrinsic::aarch64_sve_fcvtnt_f32f64: case Intrinsic::aarch64_sve_fcvtxnt_f32f64: return instCombineSVENoActiveReplace(IC, II, true); case Intrinsic::aarch64_sve_st1_scatter: case Intrinsic::aarch64_sve_st1_scatter_scalar_offset: case Intrinsic::aarch64_sve_st1_scatter_sxtw: case Intrinsic::aarch64_sve_st1_scatter_sxtw_index: case Intrinsic::aarch64_sve_st1_scatter_uxtw: case Intrinsic::aarch64_sve_st1_scatter_uxtw_index: case Intrinsic::aarch64_sve_st1dq: case Intrinsic::aarch64_sve_st1q_scatter_index: case Intrinsic::aarch64_sve_st1q_scatter_scalar_offset: case Intrinsic::aarch64_sve_st1q_scatter_vector_offset: case Intrinsic::aarch64_sve_st1wq: case Intrinsic::aarch64_sve_stnt1: case Intrinsic::aarch64_sve_stnt1_scatter: case Intrinsic::aarch64_sve_stnt1_scatter_index: case Intrinsic::aarch64_sve_stnt1_scatter_scalar_offset: case Intrinsic::aarch64_sve_stnt1_scatter_uxtw: return instCombineSVENoActiveUnaryErase(IC, II, 1); case Intrinsic::aarch64_sve_st2: case Intrinsic::aarch64_sve_st2q: return instCombineSVENoActiveUnaryErase(IC, II, 2); case Intrinsic::aarch64_sve_st3: case Intrinsic::aarch64_sve_st3q: return instCombineSVENoActiveUnaryErase(IC, II, 3); case Intrinsic::aarch64_sve_st4: case Intrinsic::aarch64_sve_st4q: return instCombineSVENoActiveUnaryErase(IC, II, 4); case Intrinsic::aarch64_sve_addqv: case Intrinsic::aarch64_sve_and_z: case Intrinsic::aarch64_sve_bic_z: case Intrinsic::aarch64_sve_brka_z: case Intrinsic::aarch64_sve_brkb_z: case Intrinsic::aarch64_sve_brkn_z: case Intrinsic::aarch64_sve_brkpa_z: case Intrinsic::aarch64_sve_brkpb_z: case Intrinsic::aarch64_sve_cntp: case Intrinsic::aarch64_sve_compact: case Intrinsic::aarch64_sve_eor_z: case Intrinsic::aarch64_sve_eorv: case Intrinsic::aarch64_sve_eorqv: case Intrinsic::aarch64_sve_nand_z: case Intrinsic::aarch64_sve_nor_z: case Intrinsic::aarch64_sve_orn_z: case Intrinsic::aarch64_sve_orr_z: case Intrinsic::aarch64_sve_orv: case Intrinsic::aarch64_sve_orqv: case Intrinsic::aarch64_sve_pnext: case Intrinsic::aarch64_sve_rdffr_z: case Intrinsic::aarch64_sve_saddv: case Intrinsic::aarch64_sve_uaddv: case Intrinsic::aarch64_sve_umaxv: case Intrinsic::aarch64_sve_umaxqv: case Intrinsic::aarch64_sve_cmpeq: case Intrinsic::aarch64_sve_cmpeq_wide: case Intrinsic::aarch64_sve_cmpge: case Intrinsic::aarch64_sve_cmpge_wide: case Intrinsic::aarch64_sve_cmpgt: case Intrinsic::aarch64_sve_cmpgt_wide: case Intrinsic::aarch64_sve_cmphi: case Intrinsic::aarch64_sve_cmphi_wide: case Intrinsic::aarch64_sve_cmphs: case Intrinsic::aarch64_sve_cmphs_wide: case Intrinsic::aarch64_sve_cmple_wide: case Intrinsic::aarch64_sve_cmplo_wide: case Intrinsic::aarch64_sve_cmpls_wide: case Intrinsic::aarch64_sve_cmplt_wide: case Intrinsic::aarch64_sve_facge: case Intrinsic::aarch64_sve_facgt: case Intrinsic::aarch64_sve_fcmpeq: case Intrinsic::aarch64_sve_fcmpge: case Intrinsic::aarch64_sve_fcmpgt: case Intrinsic::aarch64_sve_fcmpne: case Intrinsic::aarch64_sve_fcmpuo: case Intrinsic::aarch64_sve_ld1_gather: case Intrinsic::aarch64_sve_ld1_gather_scalar_offset: case Intrinsic::aarch64_sve_ld1_gather_sxtw: case Intrinsic::aarch64_sve_ld1_gather_sxtw_index: case Intrinsic::aarch64_sve_ld1_gather_uxtw: case Intrinsic::aarch64_sve_ld1_gather_uxtw_index: case Intrinsic::aarch64_sve_ld1q_gather_index: case Intrinsic::aarch64_sve_ld1q_gather_scalar_offset: case Intrinsic::aarch64_sve_ld1q_gather_vector_offset: case Intrinsic::aarch64_sve_ld1ro: case Intrinsic::aarch64_sve_ld1rq: case Intrinsic::aarch64_sve_ld1udq: case Intrinsic::aarch64_sve_ld1uwq: case Intrinsic::aarch64_sve_ld2_sret: case Intrinsic::aarch64_sve_ld2q_sret: case Intrinsic::aarch64_sve_ld3_sret: case Intrinsic::aarch64_sve_ld3q_sret: case Intrinsic::aarch64_sve_ld4_sret: case Intrinsic::aarch64_sve_ld4q_sret: case Intrinsic::aarch64_sve_ldff1: case Intrinsic::aarch64_sve_ldff1_gather: case Intrinsic::aarch64_sve_ldff1_gather_index: case Intrinsic::aarch64_sve_ldff1_gather_scalar_offset: case Intrinsic::aarch64_sve_ldff1_gather_sxtw: case Intrinsic::aarch64_sve_ldff1_gather_sxtw_index: case Intrinsic::aarch64_sve_ldff1_gather_uxtw: case Intrinsic::aarch64_sve_ldff1_gather_uxtw_index: case Intrinsic::aarch64_sve_ldnf1: case Intrinsic::aarch64_sve_ldnt1: case Intrinsic::aarch64_sve_ldnt1_gather: case Intrinsic::aarch64_sve_ldnt1_gather_index: case Intrinsic::aarch64_sve_ldnt1_gather_scalar_offset: case Intrinsic::aarch64_sve_ldnt1_gather_uxtw: return instCombineSVENoActiveZero(IC, II); case Intrinsic::aarch64_sve_prf: case Intrinsic::aarch64_sve_prfb_gather_index: case Intrinsic::aarch64_sve_prfb_gather_scalar_offset: case Intrinsic::aarch64_sve_prfb_gather_sxtw_index: case Intrinsic::aarch64_sve_prfb_gather_uxtw_index: case Intrinsic::aarch64_sve_prfd_gather_index: case Intrinsic::aarch64_sve_prfd_gather_scalar_offset: case Intrinsic::aarch64_sve_prfd_gather_sxtw_index: case Intrinsic::aarch64_sve_prfd_gather_uxtw_index: case Intrinsic::aarch64_sve_prfh_gather_index: case Intrinsic::aarch64_sve_prfh_gather_scalar_offset: case Intrinsic::aarch64_sve_prfh_gather_sxtw_index: case Intrinsic::aarch64_sve_prfh_gather_uxtw_index: case Intrinsic::aarch64_sve_prfw_gather_index: case Intrinsic::aarch64_sve_prfw_gather_scalar_offset: case Intrinsic::aarch64_sve_prfw_gather_sxtw_index: case Intrinsic::aarch64_sve_prfw_gather_uxtw_index: return instCombineSVENoActiveUnaryErase(IC, II, 0); case Intrinsic::aarch64_neon_fmaxnm: case Intrinsic::aarch64_neon_fminnm: return instCombineMaxMinNM(IC, II); case Intrinsic::aarch64_sve_convert_from_svbool: return instCombineConvertFromSVBool(IC, II); case Intrinsic::aarch64_sve_dup: return instCombineSVEDup(IC, II); case Intrinsic::aarch64_sve_dup_x: return instCombineSVEDupX(IC, II); case Intrinsic::aarch64_sve_cmpne: case Intrinsic::aarch64_sve_cmpne_wide: return instCombineSVECmpNE(IC, II); case Intrinsic::aarch64_sve_rdffr: return instCombineRDFFR(IC, II); case Intrinsic::aarch64_sve_lasta: case Intrinsic::aarch64_sve_lastb: return instCombineSVELast(IC, II); case Intrinsic::aarch64_sve_clasta_n: case Intrinsic::aarch64_sve_clastb_n: return instCombineSVECondLast(IC, II); case Intrinsic::aarch64_sve_cntd: return instCombineSVECntElts(IC, II, 2); case Intrinsic::aarch64_sve_cntw: return instCombineSVECntElts(IC, II, 4); case Intrinsic::aarch64_sve_cnth: return instCombineSVECntElts(IC, II, 8); case Intrinsic::aarch64_sve_cntb: return instCombineSVECntElts(IC, II, 16); case Intrinsic::aarch64_sve_ptest_any: case Intrinsic::aarch64_sve_ptest_first: case Intrinsic::aarch64_sve_ptest_last: return instCombineSVEPTest(IC, II); case Intrinsic::aarch64_sve_fabd: return instCombineSVEAllOrNoActive(IC, II, Intrinsic::aarch64_sve_fabd_u); case Intrinsic::aarch64_sve_fadd: return instCombineSVEVectorFAdd(IC, II); case Intrinsic::aarch64_sve_fadd_u: return instCombineSVEVectorFAddU(IC, II); case Intrinsic::aarch64_sve_fdiv: return instCombineSVEAllOrNoActive(IC, II, Intrinsic::aarch64_sve_fdiv_u); case Intrinsic::aarch64_sve_fmax: return instCombineSVEAllOrNoActive(IC, II, Intrinsic::aarch64_sve_fmax_u); case Intrinsic::aarch64_sve_fmaxnm: return instCombineSVEAllOrNoActive(IC, II, Intrinsic::aarch64_sve_fmaxnm_u); case Intrinsic::aarch64_sve_fmin: return instCombineSVEAllOrNoActive(IC, II, Intrinsic::aarch64_sve_fmin_u); case Intrinsic::aarch64_sve_fminnm: return instCombineSVEAllOrNoActive(IC, II, Intrinsic::aarch64_sve_fminnm_u); case Intrinsic::aarch64_sve_fmla: return instCombineSVEAllOrNoActive(IC, II, Intrinsic::aarch64_sve_fmla_u); case Intrinsic::aarch64_sve_fmls: return instCombineSVEAllOrNoActive(IC, II, Intrinsic::aarch64_sve_fmls_u); case Intrinsic::aarch64_sve_fmul: if (auto II_U = instCombineSVEAllOrNoActive(IC, II, Intrinsic::aarch64_sve_fmul_u)) return II_U; return instCombineSVEVectorMul(IC, II, Intrinsic::aarch64_sve_fmul_u); case Intrinsic::aarch64_sve_fmul_u: return instCombineSVEVectorMul(IC, II, Intrinsic::aarch64_sve_fmul_u); case Intrinsic::aarch64_sve_fmulx: return instCombineSVEAllOrNoActive(IC, II, Intrinsic::aarch64_sve_fmulx_u); case Intrinsic::aarch64_sve_fnmla: return instCombineSVEAllOrNoActive(IC, II, Intrinsic::aarch64_sve_fnmla_u); case Intrinsic::aarch64_sve_fnmls: return instCombineSVEAllOrNoActive(IC, II, Intrinsic::aarch64_sve_fnmls_u); case Intrinsic::aarch64_sve_fsub: return instCombineSVEVectorFSub(IC, II); case Intrinsic::aarch64_sve_fsub_u: return instCombineSVEVectorFSubU(IC, II); case Intrinsic::aarch64_sve_add: return instCombineSVEVectorAdd(IC, II); case Intrinsic::aarch64_sve_add_u: return instCombineSVEVectorFuseMulAddSub( IC, II, true); case Intrinsic::aarch64_sve_mla: return instCombineSVEAllOrNoActive(IC, II, Intrinsic::aarch64_sve_mla_u); case Intrinsic::aarch64_sve_mls: return instCombineSVEAllOrNoActive(IC, II, Intrinsic::aarch64_sve_mls_u); case Intrinsic::aarch64_sve_mul: if (auto II_U = instCombineSVEAllOrNoActive(IC, II, Intrinsic::aarch64_sve_mul_u)) return II_U; return instCombineSVEVectorMul(IC, II, Intrinsic::aarch64_sve_mul_u); case Intrinsic::aarch64_sve_mul_u: return instCombineSVEVectorMul(IC, II, Intrinsic::aarch64_sve_mul_u); case Intrinsic::aarch64_sve_sabd: return instCombineSVEAllOrNoActive(IC, II, Intrinsic::aarch64_sve_sabd_u); case Intrinsic::aarch64_sve_smax: return instCombineSVEAllOrNoActive(IC, II, Intrinsic::aarch64_sve_smax_u); case Intrinsic::aarch64_sve_smin: return instCombineSVEAllOrNoActive(IC, II, Intrinsic::aarch64_sve_smin_u); case Intrinsic::aarch64_sve_smulh: return instCombineSVEAllOrNoActive(IC, II, Intrinsic::aarch64_sve_smulh_u); case Intrinsic::aarch64_sve_sub: return instCombineSVEVectorSub(IC, II); case Intrinsic::aarch64_sve_sub_u: return instCombineSVEVectorFuseMulAddSub( IC, II, true); case Intrinsic::aarch64_sve_uabd: return instCombineSVEAllOrNoActive(IC, II, Intrinsic::aarch64_sve_uabd_u); case Intrinsic::aarch64_sve_umax: return instCombineSVEAllOrNoActive(IC, II, Intrinsic::aarch64_sve_umax_u); case Intrinsic::aarch64_sve_umin: return instCombineSVEAllOrNoActive(IC, II, Intrinsic::aarch64_sve_umin_u); case Intrinsic::aarch64_sve_umulh: return instCombineSVEAllOrNoActive(IC, II, Intrinsic::aarch64_sve_umulh_u); case Intrinsic::aarch64_sve_asr: return instCombineSVEAllOrNoActive(IC, II, Intrinsic::aarch64_sve_asr_u); case Intrinsic::aarch64_sve_lsl: return instCombineSVEAllOrNoActive(IC, II, Intrinsic::aarch64_sve_lsl_u); case Intrinsic::aarch64_sve_lsr: return instCombineSVEAllOrNoActive(IC, II, Intrinsic::aarch64_sve_lsr_u); case Intrinsic::aarch64_sve_and: return instCombineSVEAllOrNoActive(IC, II, Intrinsic::aarch64_sve_and_u); case Intrinsic::aarch64_sve_bic: return instCombineSVEAllOrNoActive(IC, II, Intrinsic::aarch64_sve_bic_u); case Intrinsic::aarch64_sve_eor: return instCombineSVEAllOrNoActive(IC, II, Intrinsic::aarch64_sve_eor_u); case Intrinsic::aarch64_sve_orr: return instCombineSVEAllOrNoActive(IC, II, Intrinsic::aarch64_sve_orr_u); case Intrinsic::aarch64_sve_sqsub: return instCombineSVEAllOrNoActive(IC, II, Intrinsic::aarch64_sve_sqsub_u); case Intrinsic::aarch64_sve_uqsub: return instCombineSVEAllOrNoActive(IC, II, Intrinsic::aarch64_sve_uqsub_u); case Intrinsic::aarch64_sve_tbl: return instCombineSVETBL(IC, II); case Intrinsic::aarch64_sve_uunpkhi: case Intrinsic::aarch64_sve_uunpklo: case Intrinsic::aarch64_sve_sunpkhi: case Intrinsic::aarch64_sve_sunpklo: return instCombineSVEUnpack(IC, II); case Intrinsic::aarch64_sve_uzp1: return instCombineSVEUzp1(IC, II); case Intrinsic::aarch64_sve_zip1: case Intrinsic::aarch64_sve_zip2: return instCombineSVEZip(IC, II); case Intrinsic::aarch64_sve_ld1_gather_index: return instCombineLD1GatherIndex(IC, II); case Intrinsic::aarch64_sve_st1_scatter_index: return instCombineST1ScatterIndex(IC, II); case Intrinsic::aarch64_sve_ld1: return instCombineSVELD1(IC, II, DL); case Intrinsic::aarch64_sve_st1: return instCombineSVEST1(IC, II, DL); case Intrinsic::aarch64_sve_sdiv: return instCombineSVESDIV(IC, II); case Intrinsic::aarch64_sve_sel: return instCombineSVESel(IC, II); case Intrinsic::aarch64_sve_srshl: return instCombineSVESrshl(IC, II); case Intrinsic::aarch64_sve_dupq_lane: return instCombineSVEDupqLane(IC, II); case Intrinsic::aarch64_sve_insr: return instCombineSVEInsr(IC, II); } return std::nullopt; } std::optional AArch64TTIImpl::simplifyDemandedVectorEltsIntrinsic( InstCombiner &IC, IntrinsicInst &II, APInt OrigDemandedElts, APInt &UndefElts, APInt &UndefElts2, APInt &UndefElts3, std::function SimplifyAndSetOp) const { switch (II.getIntrinsicID()) { default: break; case Intrinsic::aarch64_neon_fcvtxn: case Intrinsic::aarch64_neon_rshrn: case Intrinsic::aarch64_neon_sqrshrn: case Intrinsic::aarch64_neon_sqrshrun: case Intrinsic::aarch64_neon_sqshrn: case Intrinsic::aarch64_neon_sqshrun: case Intrinsic::aarch64_neon_sqxtn: case Intrinsic::aarch64_neon_sqxtun: case Intrinsic::aarch64_neon_uqrshrn: case Intrinsic::aarch64_neon_uqshrn: case Intrinsic::aarch64_neon_uqxtn: SimplifyAndSetOp(&II, 0, OrigDemandedElts, UndefElts); break; } return std::nullopt; } bool AArch64TTIImpl::enableScalableVectorization() const { return ST->isSVEAvailable() || (ST->isSVEorStreamingSVEAvailable() && EnableScalableAutovecInStreamingMode); } TypeSize AArch64TTIImpl::getRegisterBitWidth(TargetTransformInfo::RegisterKind K) const { switch (K) { case TargetTransformInfo::RGK_Scalar: return TypeSize::getFixed(64); case TargetTransformInfo::RGK_FixedWidthVector: if (ST->useSVEForFixedLengthVectors() && (ST->isSVEAvailable() || EnableFixedwidthAutovecInStreamingMode)) return TypeSize::getFixed( std::max(ST->getMinSVEVectorSizeInBits(), 128u)); else if (ST->isNeonAvailable()) return TypeSize::getFixed(128); else return TypeSize::getFixed(0); case TargetTransformInfo::RGK_ScalableVector: if (ST->isSVEAvailable() || (ST->isSVEorStreamingSVEAvailable() && EnableScalableAutovecInStreamingMode)) return TypeSize::getScalable(128); else return TypeSize::getScalable(0); } llvm_unreachable("Unsupported register kind"); } bool AArch64TTIImpl::isWideningInstruction(Type *DstTy, unsigned Opcode, ArrayRef Args, Type *SrcOverrideTy) { // A helper that returns a vector type from the given type. The number of // elements in type Ty determines the vector width. auto toVectorTy = [&](Type *ArgTy) { return VectorType::get(ArgTy->getScalarType(), cast(DstTy)->getElementCount()); }; // Exit early if DstTy is not a vector type whose elements are one of [i16, // i32, i64]. SVE doesn't generally have the same set of instructions to // perform an extend with the add/sub/mul. There are SMULLB style // instructions, but they operate on top/bottom, requiring some sort of lane // interleaving to be used with zext/sext. unsigned DstEltSize = DstTy->getScalarSizeInBits(); if (!useNeonVector(DstTy) || Args.size() != 2 || (DstEltSize != 16 && DstEltSize != 32 && DstEltSize != 64)) return false; // Determine if the operation has a widening variant. We consider both the // "long" (e.g., usubl) and "wide" (e.g., usubw) versions of the // instructions. // // TODO: Add additional widening operations (e.g., shl, etc.) once we // verify that their extending operands are eliminated during code // generation. Type *SrcTy = SrcOverrideTy; switch (Opcode) { case Instruction::Add: // UADDL(2), SADDL(2), UADDW(2), SADDW(2). case Instruction::Sub: // USUBL(2), SSUBL(2), USUBW(2), SSUBW(2). // The second operand needs to be an extend if (isa(Args[1]) || isa(Args[1])) { if (!SrcTy) SrcTy = toVectorTy(cast(Args[1])->getOperand(0)->getType()); } else return false; break; case Instruction::Mul: { // SMULL(2), UMULL(2) // Both operands need to be extends of the same type. if ((isa(Args[0]) && isa(Args[1])) || (isa(Args[0]) && isa(Args[1]))) { if (!SrcTy) SrcTy = toVectorTy(cast(Args[0])->getOperand(0)->getType()); } else if (isa(Args[0]) || isa(Args[1])) { // If one of the operands is a Zext and the other has enough zero bits to // be treated as unsigned, we can still general a umull, meaning the zext // is free. KnownBits Known = computeKnownBits(isa(Args[0]) ? Args[1] : Args[0], DL); if (Args[0]->getType()->getScalarSizeInBits() - Known.Zero.countLeadingOnes() > DstTy->getScalarSizeInBits() / 2) return false; if (!SrcTy) SrcTy = toVectorTy(Type::getIntNTy(DstTy->getContext(), DstTy->getScalarSizeInBits() / 2)); } else return false; break; } default: return false; } // Legalize the destination type and ensure it can be used in a widening // operation. auto DstTyL = getTypeLegalizationCost(DstTy); if (!DstTyL.second.isVector() || DstEltSize != DstTy->getScalarSizeInBits()) return false; // Legalize the source type and ensure it can be used in a widening // operation. assert(SrcTy && "Expected some SrcTy"); auto SrcTyL = getTypeLegalizationCost(SrcTy); unsigned SrcElTySize = SrcTyL.second.getScalarSizeInBits(); if (!SrcTyL.second.isVector() || SrcElTySize != SrcTy->getScalarSizeInBits()) return false; // Get the total number of vector elements in the legalized types. InstructionCost NumDstEls = DstTyL.first * DstTyL.second.getVectorMinNumElements(); InstructionCost NumSrcEls = SrcTyL.first * SrcTyL.second.getVectorMinNumElements(); // Return true if the legalized types have the same number of vector elements // and the destination element type size is twice that of the source type. return NumDstEls == NumSrcEls && 2 * SrcElTySize == DstEltSize; } // s/urhadd instructions implement the following pattern, making the // extends free: // %x = add ((zext i8 -> i16), 1) // %y = (zext i8 -> i16) // trunc i16 (lshr (add %x, %y), 1) -> i8 // bool AArch64TTIImpl::isExtPartOfAvgExpr(const Instruction *ExtUser, Type *Dst, Type *Src) { // The source should be a legal vector type. if (!Src->isVectorTy() || !TLI->isTypeLegal(TLI->getValueType(DL, Src)) || (Src->isScalableTy() && !ST->hasSVE2())) return false; if (ExtUser->getOpcode() != Instruction::Add || !ExtUser->hasOneUse()) return false; // Look for trunc/shl/add before trying to match the pattern. const Instruction *Add = ExtUser; auto *AddUser = dyn_cast_or_null(Add->getUniqueUndroppableUser()); if (AddUser && AddUser->getOpcode() == Instruction::Add) Add = AddUser; auto *Shr = dyn_cast_or_null(Add->getUniqueUndroppableUser()); if (!Shr || Shr->getOpcode() != Instruction::LShr) return false; auto *Trunc = dyn_cast_or_null(Shr->getUniqueUndroppableUser()); if (!Trunc || Trunc->getOpcode() != Instruction::Trunc || Src->getScalarSizeInBits() != cast(Trunc)->getDestTy()->getScalarSizeInBits()) return false; // Try to match the whole pattern. Ext could be either the first or second // m_ZExtOrSExt matched. Instruction *Ex1, *Ex2; if (!(match(Add, m_c_Add(m_Instruction(Ex1), m_c_Add(m_Instruction(Ex2), m_SpecificInt(1)))))) return false; // Ensure both extends are of the same type if (match(Ex1, m_ZExtOrSExt(m_Value())) && Ex1->getOpcode() == Ex2->getOpcode()) return true; return false; } InstructionCost AArch64TTIImpl::getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src, TTI::CastContextHint CCH, TTI::TargetCostKind CostKind, const Instruction *I) { int ISD = TLI->InstructionOpcodeToISD(Opcode); assert(ISD && "Invalid opcode"); // If the cast is observable, and it is used by a widening instruction (e.g., // uaddl, saddw, etc.), it may be free. if (I && I->hasOneUser()) { auto *SingleUser = cast(*I->user_begin()); SmallVector Operands(SingleUser->operand_values()); if (isWideningInstruction(Dst, SingleUser->getOpcode(), Operands, Src)) { // For adds only count the second operand as free if both operands are // extends but not the same operation. (i.e both operands are not free in // add(sext, zext)). if (SingleUser->getOpcode() == Instruction::Add) { if (I == SingleUser->getOperand(1) || (isa(SingleUser->getOperand(1)) && cast(SingleUser->getOperand(1))->getOpcode() == Opcode)) return 0; } else // Others are free so long as isWideningInstruction returned true. return 0; } // The cast will be free for the s/urhadd instructions if ((isa(I) || isa(I)) && isExtPartOfAvgExpr(SingleUser, Dst, Src)) return 0; } // TODO: Allow non-throughput costs that aren't binary. auto AdjustCost = [&CostKind](InstructionCost Cost) -> InstructionCost { if (CostKind != TTI::TCK_RecipThroughput) return Cost == 0 ? 0 : 1; return Cost; }; EVT SrcTy = TLI->getValueType(DL, Src); EVT DstTy = TLI->getValueType(DL, Dst); if (!SrcTy.isSimple() || !DstTy.isSimple()) return AdjustCost( BaseT::getCastInstrCost(Opcode, Dst, Src, CCH, CostKind, I)); static const TypeConversionCostTblEntry BF16Tbl[] = { {ISD::FP_ROUND, MVT::bf16, MVT::f32, 1}, // bfcvt {ISD::FP_ROUND, MVT::bf16, MVT::f64, 1}, // bfcvt {ISD::FP_ROUND, MVT::v4bf16, MVT::v4f32, 1}, // bfcvtn {ISD::FP_ROUND, MVT::v8bf16, MVT::v8f32, 2}, // bfcvtn+bfcvtn2 {ISD::FP_ROUND, MVT::v2bf16, MVT::v2f64, 2}, // bfcvtn+fcvtn {ISD::FP_ROUND, MVT::v4bf16, MVT::v4f64, 3}, // fcvtn+fcvtl2+bfcvtn {ISD::FP_ROUND, MVT::v8bf16, MVT::v8f64, 6}, // 2 * fcvtn+fcvtn2+bfcvtn }; if (ST->hasBF16()) if (const auto *Entry = ConvertCostTableLookup( BF16Tbl, ISD, DstTy.getSimpleVT(), SrcTy.getSimpleVT())) return AdjustCost(Entry->Cost); static const TypeConversionCostTblEntry ConversionTbl[] = { {ISD::TRUNCATE, MVT::v2i8, MVT::v2i64, 1}, // xtn {ISD::TRUNCATE, MVT::v2i16, MVT::v2i64, 1}, // xtn {ISD::TRUNCATE, MVT::v2i32, MVT::v2i64, 1}, // xtn {ISD::TRUNCATE, MVT::v4i8, MVT::v4i32, 1}, // xtn {ISD::TRUNCATE, MVT::v4i8, MVT::v4i64, 3}, // 2 xtn + 1 uzp1 {ISD::TRUNCATE, MVT::v4i16, MVT::v4i32, 1}, // xtn {ISD::TRUNCATE, MVT::v4i16, MVT::v4i64, 2}, // 1 uzp1 + 1 xtn {ISD::TRUNCATE, MVT::v4i32, MVT::v4i64, 1}, // 1 uzp1 {ISD::TRUNCATE, MVT::v8i8, MVT::v8i16, 1}, // 1 xtn {ISD::TRUNCATE, MVT::v8i8, MVT::v8i32, 2}, // 1 uzp1 + 1 xtn {ISD::TRUNCATE, MVT::v8i8, MVT::v8i64, 4}, // 3 x uzp1 + xtn {ISD::TRUNCATE, MVT::v8i16, MVT::v8i32, 1}, // 1 uzp1 {ISD::TRUNCATE, MVT::v8i16, MVT::v8i64, 3}, // 3 x uzp1 {ISD::TRUNCATE, MVT::v8i32, MVT::v8i64, 2}, // 2 x uzp1 {ISD::TRUNCATE, MVT::v16i8, MVT::v16i16, 1}, // uzp1 {ISD::TRUNCATE, MVT::v16i8, MVT::v16i32, 3}, // (2 + 1) x uzp1 {ISD::TRUNCATE, MVT::v16i8, MVT::v16i64, 7}, // (4 + 2 + 1) x uzp1 {ISD::TRUNCATE, MVT::v16i16, MVT::v16i32, 2}, // 2 x uzp1 {ISD::TRUNCATE, MVT::v16i16, MVT::v16i64, 6}, // (4 + 2) x uzp1 {ISD::TRUNCATE, MVT::v16i32, MVT::v16i64, 4}, // 4 x uzp1 // Truncations on nxvmiN {ISD::TRUNCATE, MVT::nxv2i1, MVT::nxv2i8, 2}, {ISD::TRUNCATE, MVT::nxv2i1, MVT::nxv2i16, 2}, {ISD::TRUNCATE, MVT::nxv2i1, MVT::nxv2i32, 2}, {ISD::TRUNCATE, MVT::nxv2i1, MVT::nxv2i64, 2}, {ISD::TRUNCATE, MVT::nxv4i1, MVT::nxv4i8, 2}, {ISD::TRUNCATE, MVT::nxv4i1, MVT::nxv4i16, 2}, {ISD::TRUNCATE, MVT::nxv4i1, MVT::nxv4i32, 2}, {ISD::TRUNCATE, MVT::nxv4i1, MVT::nxv4i64, 5}, {ISD::TRUNCATE, MVT::nxv8i1, MVT::nxv8i8, 2}, {ISD::TRUNCATE, MVT::nxv8i1, MVT::nxv8i16, 2}, {ISD::TRUNCATE, MVT::nxv8i1, MVT::nxv8i32, 5}, {ISD::TRUNCATE, MVT::nxv8i1, MVT::nxv8i64, 11}, {ISD::TRUNCATE, MVT::nxv16i1, MVT::nxv16i8, 2}, {ISD::TRUNCATE, MVT::nxv2i8, MVT::nxv2i16, 0}, {ISD::TRUNCATE, MVT::nxv2i8, MVT::nxv2i32, 0}, {ISD::TRUNCATE, MVT::nxv2i8, MVT::nxv2i64, 0}, {ISD::TRUNCATE, MVT::nxv2i16, MVT::nxv2i32, 0}, {ISD::TRUNCATE, MVT::nxv2i16, MVT::nxv2i64, 0}, {ISD::TRUNCATE, MVT::nxv2i32, MVT::nxv2i64, 0}, {ISD::TRUNCATE, MVT::nxv4i8, MVT::nxv4i16, 0}, {ISD::TRUNCATE, MVT::nxv4i8, MVT::nxv4i32, 0}, {ISD::TRUNCATE, MVT::nxv4i8, MVT::nxv4i64, 1}, {ISD::TRUNCATE, MVT::nxv4i16, MVT::nxv4i32, 0}, {ISD::TRUNCATE, MVT::nxv4i16, MVT::nxv4i64, 1}, {ISD::TRUNCATE, MVT::nxv4i32, MVT::nxv4i64, 1}, {ISD::TRUNCATE, MVT::nxv8i8, MVT::nxv8i16, 0}, {ISD::TRUNCATE, MVT::nxv8i8, MVT::nxv8i32, 1}, {ISD::TRUNCATE, MVT::nxv8i8, MVT::nxv8i64, 3}, {ISD::TRUNCATE, MVT::nxv8i16, MVT::nxv8i32, 1}, {ISD::TRUNCATE, MVT::nxv8i16, MVT::nxv8i64, 3}, {ISD::TRUNCATE, MVT::nxv16i8, MVT::nxv16i16, 1}, {ISD::TRUNCATE, MVT::nxv16i8, MVT::nxv16i32, 3}, {ISD::TRUNCATE, MVT::nxv16i8, MVT::nxv16i64, 7}, // The number of shll instructions for the extension. {ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i16, 3}, {ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i16, 3}, {ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i32, 2}, {ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i32, 2}, {ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i8, 3}, {ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i8, 3}, {ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i16, 2}, {ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i16, 2}, {ISD::SIGN_EXTEND, MVT::v8i64, MVT::v8i8, 7}, {ISD::ZERO_EXTEND, MVT::v8i64, MVT::v8i8, 7}, {ISD::SIGN_EXTEND, MVT::v8i64, MVT::v8i16, 6}, {ISD::ZERO_EXTEND, MVT::v8i64, MVT::v8i16, 6}, {ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i8, 2}, {ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i8, 2}, {ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i8, 6}, {ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i8, 6}, // FP Ext and trunc {ISD::FP_EXTEND, MVT::f64, MVT::f32, 1}, // fcvt {ISD::FP_EXTEND, MVT::v2f64, MVT::v2f32, 1}, // fcvtl {ISD::FP_EXTEND, MVT::v4f64, MVT::v4f32, 2}, // fcvtl+fcvtl2 // FP16 {ISD::FP_EXTEND, MVT::f32, MVT::f16, 1}, // fcvt {ISD::FP_EXTEND, MVT::f64, MVT::f16, 1}, // fcvt {ISD::FP_EXTEND, MVT::v4f32, MVT::v4f16, 1}, // fcvtl {ISD::FP_EXTEND, MVT::v8f32, MVT::v8f16, 2}, // fcvtl+fcvtl2 {ISD::FP_EXTEND, MVT::v2f64, MVT::v2f16, 2}, // fcvtl+fcvtl {ISD::FP_EXTEND, MVT::v4f64, MVT::v4f16, 3}, // fcvtl+fcvtl2+fcvtl {ISD::FP_EXTEND, MVT::v8f64, MVT::v8f16, 6}, // 2 * fcvtl+fcvtl2+fcvtl // BF16 (uses shift) {ISD::FP_EXTEND, MVT::f32, MVT::bf16, 1}, // shl {ISD::FP_EXTEND, MVT::f64, MVT::bf16, 2}, // shl+fcvt {ISD::FP_EXTEND, MVT::v4f32, MVT::v4bf16, 1}, // shll {ISD::FP_EXTEND, MVT::v8f32, MVT::v8bf16, 2}, // shll+shll2 {ISD::FP_EXTEND, MVT::v2f64, MVT::v2bf16, 2}, // shll+fcvtl {ISD::FP_EXTEND, MVT::v4f64, MVT::v4bf16, 3}, // shll+fcvtl+fcvtl2 {ISD::FP_EXTEND, MVT::v8f64, MVT::v8bf16, 6}, // 2 * shll+fcvtl+fcvtl2 // FP Ext and trunc {ISD::FP_ROUND, MVT::f32, MVT::f64, 1}, // fcvt {ISD::FP_ROUND, MVT::v2f32, MVT::v2f64, 1}, // fcvtn {ISD::FP_ROUND, MVT::v4f32, MVT::v4f64, 2}, // fcvtn+fcvtn2 // FP16 {ISD::FP_ROUND, MVT::f16, MVT::f32, 1}, // fcvt {ISD::FP_ROUND, MVT::f16, MVT::f64, 1}, // fcvt {ISD::FP_ROUND, MVT::v4f16, MVT::v4f32, 1}, // fcvtn {ISD::FP_ROUND, MVT::v8f16, MVT::v8f32, 2}, // fcvtn+fcvtn2 {ISD::FP_ROUND, MVT::v2f16, MVT::v2f64, 2}, // fcvtn+fcvtn {ISD::FP_ROUND, MVT::v4f16, MVT::v4f64, 3}, // fcvtn+fcvtn2+fcvtn {ISD::FP_ROUND, MVT::v8f16, MVT::v8f64, 6}, // 2 * fcvtn+fcvtn2+fcvtn // BF16 (more complex, with +bf16 is handled above) {ISD::FP_ROUND, MVT::bf16, MVT::f32, 8}, // Expansion is ~8 insns {ISD::FP_ROUND, MVT::bf16, MVT::f64, 9}, // fcvtn + above {ISD::FP_ROUND, MVT::v2bf16, MVT::v2f32, 8}, {ISD::FP_ROUND, MVT::v4bf16, MVT::v4f32, 8}, {ISD::FP_ROUND, MVT::v8bf16, MVT::v8f32, 15}, {ISD::FP_ROUND, MVT::v2bf16, MVT::v2f64, 9}, {ISD::FP_ROUND, MVT::v4bf16, MVT::v4f64, 10}, {ISD::FP_ROUND, MVT::v8bf16, MVT::v8f64, 19}, // LowerVectorINT_TO_FP: {ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i32, 1}, {ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i32, 1}, {ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i64, 1}, {ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i32, 1}, {ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i32, 1}, {ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i64, 1}, // Complex: to v2f32 {ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i8, 3}, {ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i16, 3}, {ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i64, 2}, {ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i8, 3}, {ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i16, 3}, {ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i64, 2}, // Complex: to v4f32 {ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i8, 4}, {ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i16, 2}, {ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i8, 3}, {ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i16, 2}, // Complex: to v8f32 {ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i8, 10}, {ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i16, 4}, {ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i8, 10}, {ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i16, 4}, // Complex: to v16f32 {ISD::SINT_TO_FP, MVT::v16f32, MVT::v16i8, 21}, {ISD::UINT_TO_FP, MVT::v16f32, MVT::v16i8, 21}, // Complex: to v2f64 {ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i8, 4}, {ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i16, 4}, {ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i32, 2}, {ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i8, 4}, {ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i16, 4}, {ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i32, 2}, // Complex: to v4f64 {ISD::SINT_TO_FP, MVT::v4f64, MVT::v4i32, 4}, {ISD::UINT_TO_FP, MVT::v4f64, MVT::v4i32, 4}, // LowerVectorFP_TO_INT {ISD::FP_TO_SINT, MVT::v2i32, MVT::v2f32, 1}, {ISD::FP_TO_SINT, MVT::v4i32, MVT::v4f32, 1}, {ISD::FP_TO_SINT, MVT::v2i64, MVT::v2f64, 1}, {ISD::FP_TO_UINT, MVT::v2i32, MVT::v2f32, 1}, {ISD::FP_TO_UINT, MVT::v4i32, MVT::v4f32, 1}, {ISD::FP_TO_UINT, MVT::v2i64, MVT::v2f64, 1}, // Complex, from v2f32: legal type is v2i32 (no cost) or v2i64 (1 ext). {ISD::FP_TO_SINT, MVT::v2i64, MVT::v2f32, 2}, {ISD::FP_TO_SINT, MVT::v2i16, MVT::v2f32, 1}, {ISD::FP_TO_SINT, MVT::v2i8, MVT::v2f32, 1}, {ISD::FP_TO_UINT, MVT::v2i64, MVT::v2f32, 2}, {ISD::FP_TO_UINT, MVT::v2i16, MVT::v2f32, 1}, {ISD::FP_TO_UINT, MVT::v2i8, MVT::v2f32, 1}, // Complex, from v4f32: legal type is v4i16, 1 narrowing => ~2 {ISD::FP_TO_SINT, MVT::v4i16, MVT::v4f32, 2}, {ISD::FP_TO_SINT, MVT::v4i8, MVT::v4f32, 2}, {ISD::FP_TO_UINT, MVT::v4i16, MVT::v4f32, 2}, {ISD::FP_TO_UINT, MVT::v4i8, MVT::v4f32, 2}, // Complex, from nxv2f32. {ISD::FP_TO_SINT, MVT::nxv2i64, MVT::nxv2f32, 1}, {ISD::FP_TO_SINT, MVT::nxv2i32, MVT::nxv2f32, 1}, {ISD::FP_TO_SINT, MVT::nxv2i16, MVT::nxv2f32, 1}, {ISD::FP_TO_SINT, MVT::nxv2i8, MVT::nxv2f32, 1}, {ISD::FP_TO_UINT, MVT::nxv2i64, MVT::nxv2f32, 1}, {ISD::FP_TO_UINT, MVT::nxv2i32, MVT::nxv2f32, 1}, {ISD::FP_TO_UINT, MVT::nxv2i16, MVT::nxv2f32, 1}, {ISD::FP_TO_UINT, MVT::nxv2i8, MVT::nxv2f32, 1}, // Complex, from v2f64: legal type is v2i32, 1 narrowing => ~2. {ISD::FP_TO_SINT, MVT::v2i32, MVT::v2f64, 2}, {ISD::FP_TO_SINT, MVT::v2i16, MVT::v2f64, 2}, {ISD::FP_TO_SINT, MVT::v2i8, MVT::v2f64, 2}, {ISD::FP_TO_UINT, MVT::v2i32, MVT::v2f64, 2}, {ISD::FP_TO_UINT, MVT::v2i16, MVT::v2f64, 2}, {ISD::FP_TO_UINT, MVT::v2i8, MVT::v2f64, 2}, // Complex, from nxv2f64. {ISD::FP_TO_SINT, MVT::nxv2i64, MVT::nxv2f64, 1}, {ISD::FP_TO_SINT, MVT::nxv2i32, MVT::nxv2f64, 1}, {ISD::FP_TO_SINT, MVT::nxv2i16, MVT::nxv2f64, 1}, {ISD::FP_TO_SINT, MVT::nxv2i8, MVT::nxv2f64, 1}, {ISD::FP_TO_UINT, MVT::nxv2i64, MVT::nxv2f64, 1}, {ISD::FP_TO_UINT, MVT::nxv2i32, MVT::nxv2f64, 1}, {ISD::FP_TO_UINT, MVT::nxv2i16, MVT::nxv2f64, 1}, {ISD::FP_TO_UINT, MVT::nxv2i8, MVT::nxv2f64, 1}, // Complex, from nxv4f32. {ISD::FP_TO_SINT, MVT::nxv4i64, MVT::nxv4f32, 4}, {ISD::FP_TO_SINT, MVT::nxv4i32, MVT::nxv4f32, 1}, {ISD::FP_TO_SINT, MVT::nxv4i16, MVT::nxv4f32, 1}, {ISD::FP_TO_SINT, MVT::nxv4i8, MVT::nxv4f32, 1}, {ISD::FP_TO_UINT, MVT::nxv4i64, MVT::nxv4f32, 4}, {ISD::FP_TO_UINT, MVT::nxv4i32, MVT::nxv4f32, 1}, {ISD::FP_TO_UINT, MVT::nxv4i16, MVT::nxv4f32, 1}, {ISD::FP_TO_UINT, MVT::nxv4i8, MVT::nxv4f32, 1}, // Complex, from nxv8f64. Illegal -> illegal conversions not required. {ISD::FP_TO_SINT, MVT::nxv8i16, MVT::nxv8f64, 7}, {ISD::FP_TO_SINT, MVT::nxv8i8, MVT::nxv8f64, 7}, {ISD::FP_TO_UINT, MVT::nxv8i16, MVT::nxv8f64, 7}, {ISD::FP_TO_UINT, MVT::nxv8i8, MVT::nxv8f64, 7}, // Complex, from nxv4f64. Illegal -> illegal conversions not required. {ISD::FP_TO_SINT, MVT::nxv4i32, MVT::nxv4f64, 3}, {ISD::FP_TO_SINT, MVT::nxv4i16, MVT::nxv4f64, 3}, {ISD::FP_TO_SINT, MVT::nxv4i8, MVT::nxv4f64, 3}, {ISD::FP_TO_UINT, MVT::nxv4i32, MVT::nxv4f64, 3}, {ISD::FP_TO_UINT, MVT::nxv4i16, MVT::nxv4f64, 3}, {ISD::FP_TO_UINT, MVT::nxv4i8, MVT::nxv4f64, 3}, // Complex, from nxv8f32. Illegal -> illegal conversions not required. {ISD::FP_TO_SINT, MVT::nxv8i16, MVT::nxv8f32, 3}, {ISD::FP_TO_SINT, MVT::nxv8i8, MVT::nxv8f32, 3}, {ISD::FP_TO_UINT, MVT::nxv8i16, MVT::nxv8f32, 3}, {ISD::FP_TO_UINT, MVT::nxv8i8, MVT::nxv8f32, 3}, // Complex, from nxv8f16. {ISD::FP_TO_SINT, MVT::nxv8i64, MVT::nxv8f16, 10}, {ISD::FP_TO_SINT, MVT::nxv8i32, MVT::nxv8f16, 4}, {ISD::FP_TO_SINT, MVT::nxv8i16, MVT::nxv8f16, 1}, {ISD::FP_TO_SINT, MVT::nxv8i8, MVT::nxv8f16, 1}, {ISD::FP_TO_UINT, MVT::nxv8i64, MVT::nxv8f16, 10}, {ISD::FP_TO_UINT, MVT::nxv8i32, MVT::nxv8f16, 4}, {ISD::FP_TO_UINT, MVT::nxv8i16, MVT::nxv8f16, 1}, {ISD::FP_TO_UINT, MVT::nxv8i8, MVT::nxv8f16, 1}, // Complex, from nxv4f16. {ISD::FP_TO_SINT, MVT::nxv4i64, MVT::nxv4f16, 4}, {ISD::FP_TO_SINT, MVT::nxv4i32, MVT::nxv4f16, 1}, {ISD::FP_TO_SINT, MVT::nxv4i16, MVT::nxv4f16, 1}, {ISD::FP_TO_SINT, MVT::nxv4i8, MVT::nxv4f16, 1}, {ISD::FP_TO_UINT, MVT::nxv4i64, MVT::nxv4f16, 4}, {ISD::FP_TO_UINT, MVT::nxv4i32, MVT::nxv4f16, 1}, {ISD::FP_TO_UINT, MVT::nxv4i16, MVT::nxv4f16, 1}, {ISD::FP_TO_UINT, MVT::nxv4i8, MVT::nxv4f16, 1}, // Complex, from nxv2f16. {ISD::FP_TO_SINT, MVT::nxv2i64, MVT::nxv2f16, 1}, {ISD::FP_TO_SINT, MVT::nxv2i32, MVT::nxv2f16, 1}, {ISD::FP_TO_SINT, MVT::nxv2i16, MVT::nxv2f16, 1}, {ISD::FP_TO_SINT, MVT::nxv2i8, MVT::nxv2f16, 1}, {ISD::FP_TO_UINT, MVT::nxv2i64, MVT::nxv2f16, 1}, {ISD::FP_TO_UINT, MVT::nxv2i32, MVT::nxv2f16, 1}, {ISD::FP_TO_UINT, MVT::nxv2i16, MVT::nxv2f16, 1}, {ISD::FP_TO_UINT, MVT::nxv2i8, MVT::nxv2f16, 1}, // Truncate from nxvmf32 to nxvmf16. {ISD::FP_ROUND, MVT::nxv2f16, MVT::nxv2f32, 1}, {ISD::FP_ROUND, MVT::nxv4f16, MVT::nxv4f32, 1}, {ISD::FP_ROUND, MVT::nxv8f16, MVT::nxv8f32, 3}, // Truncate from nxvmf64 to nxvmf16. {ISD::FP_ROUND, MVT::nxv2f16, MVT::nxv2f64, 1}, {ISD::FP_ROUND, MVT::nxv4f16, MVT::nxv4f64, 3}, {ISD::FP_ROUND, MVT::nxv8f16, MVT::nxv8f64, 7}, // Truncate from nxvmf64 to nxvmf32. {ISD::FP_ROUND, MVT::nxv2f32, MVT::nxv2f64, 1}, {ISD::FP_ROUND, MVT::nxv4f32, MVT::nxv4f64, 3}, {ISD::FP_ROUND, MVT::nxv8f32, MVT::nxv8f64, 6}, // Extend from nxvmf16 to nxvmf32. {ISD::FP_EXTEND, MVT::nxv2f32, MVT::nxv2f16, 1}, {ISD::FP_EXTEND, MVT::nxv4f32, MVT::nxv4f16, 1}, {ISD::FP_EXTEND, MVT::nxv8f32, MVT::nxv8f16, 2}, // Extend from nxvmf16 to nxvmf64. {ISD::FP_EXTEND, MVT::nxv2f64, MVT::nxv2f16, 1}, {ISD::FP_EXTEND, MVT::nxv4f64, MVT::nxv4f16, 2}, {ISD::FP_EXTEND, MVT::nxv8f64, MVT::nxv8f16, 4}, // Extend from nxvmf32 to nxvmf64. {ISD::FP_EXTEND, MVT::nxv2f64, MVT::nxv2f32, 1}, {ISD::FP_EXTEND, MVT::nxv4f64, MVT::nxv4f32, 2}, {ISD::FP_EXTEND, MVT::nxv8f64, MVT::nxv8f32, 6}, // Bitcasts from float to integer {ISD::BITCAST, MVT::nxv2f16, MVT::nxv2i16, 0}, {ISD::BITCAST, MVT::nxv4f16, MVT::nxv4i16, 0}, {ISD::BITCAST, MVT::nxv2f32, MVT::nxv2i32, 0}, // Bitcasts from integer to float {ISD::BITCAST, MVT::nxv2i16, MVT::nxv2f16, 0}, {ISD::BITCAST, MVT::nxv4i16, MVT::nxv4f16, 0}, {ISD::BITCAST, MVT::nxv2i32, MVT::nxv2f32, 0}, // Add cost for extending to illegal -too wide- scalable vectors. // zero/sign extend are implemented by multiple unpack operations, // where each operation has a cost of 1. {ISD::ZERO_EXTEND, MVT::nxv16i16, MVT::nxv16i8, 2}, {ISD::ZERO_EXTEND, MVT::nxv16i32, MVT::nxv16i8, 6}, {ISD::ZERO_EXTEND, MVT::nxv16i64, MVT::nxv16i8, 14}, {ISD::ZERO_EXTEND, MVT::nxv8i32, MVT::nxv8i16, 2}, {ISD::ZERO_EXTEND, MVT::nxv8i64, MVT::nxv8i16, 6}, {ISD::ZERO_EXTEND, MVT::nxv4i64, MVT::nxv4i32, 2}, {ISD::SIGN_EXTEND, MVT::nxv16i16, MVT::nxv16i8, 2}, {ISD::SIGN_EXTEND, MVT::nxv16i32, MVT::nxv16i8, 6}, {ISD::SIGN_EXTEND, MVT::nxv16i64, MVT::nxv16i8, 14}, {ISD::SIGN_EXTEND, MVT::nxv8i32, MVT::nxv8i16, 2}, {ISD::SIGN_EXTEND, MVT::nxv8i64, MVT::nxv8i16, 6}, {ISD::SIGN_EXTEND, MVT::nxv4i64, MVT::nxv4i32, 2}, }; // We have to estimate a cost of fixed length operation upon // SVE registers(operations) with the number of registers required // for a fixed type to be represented upon SVE registers. EVT WiderTy = SrcTy.bitsGT(DstTy) ? SrcTy : DstTy; if (SrcTy.isFixedLengthVector() && DstTy.isFixedLengthVector() && SrcTy.getVectorNumElements() == DstTy.getVectorNumElements() && ST->useSVEForFixedLengthVectors(WiderTy)) { std::pair LT = getTypeLegalizationCost(WiderTy.getTypeForEVT(Dst->getContext())); unsigned NumElements = AArch64::SVEBitsPerBlock / LT.second.getScalarSizeInBits(); return AdjustCost( LT.first * getCastInstrCost( Opcode, ScalableVectorType::get(Dst->getScalarType(), NumElements), ScalableVectorType::get(Src->getScalarType(), NumElements), CCH, CostKind, I)); } if (const auto *Entry = ConvertCostTableLookup( ConversionTbl, ISD, DstTy.getSimpleVT(), SrcTy.getSimpleVT())) return AdjustCost(Entry->Cost); static const TypeConversionCostTblEntry FP16Tbl[] = { {ISD::FP_TO_SINT, MVT::v4i8, MVT::v4f16, 1}, // fcvtzs {ISD::FP_TO_UINT, MVT::v4i8, MVT::v4f16, 1}, {ISD::FP_TO_SINT, MVT::v4i16, MVT::v4f16, 1}, // fcvtzs {ISD::FP_TO_UINT, MVT::v4i16, MVT::v4f16, 1}, {ISD::FP_TO_SINT, MVT::v4i32, MVT::v4f16, 2}, // fcvtl+fcvtzs {ISD::FP_TO_UINT, MVT::v4i32, MVT::v4f16, 2}, {ISD::FP_TO_SINT, MVT::v8i8, MVT::v8f16, 2}, // fcvtzs+xtn {ISD::FP_TO_UINT, MVT::v8i8, MVT::v8f16, 2}, {ISD::FP_TO_SINT, MVT::v8i16, MVT::v8f16, 1}, // fcvtzs {ISD::FP_TO_UINT, MVT::v8i16, MVT::v8f16, 1}, {ISD::FP_TO_SINT, MVT::v8i32, MVT::v8f16, 4}, // 2*fcvtl+2*fcvtzs {ISD::FP_TO_UINT, MVT::v8i32, MVT::v8f16, 4}, {ISD::FP_TO_SINT, MVT::v16i8, MVT::v16f16, 3}, // 2*fcvtzs+xtn {ISD::FP_TO_UINT, MVT::v16i8, MVT::v16f16, 3}, {ISD::FP_TO_SINT, MVT::v16i16, MVT::v16f16, 2}, // 2*fcvtzs {ISD::FP_TO_UINT, MVT::v16i16, MVT::v16f16, 2}, {ISD::FP_TO_SINT, MVT::v16i32, MVT::v16f16, 8}, // 4*fcvtl+4*fcvtzs {ISD::FP_TO_UINT, MVT::v16i32, MVT::v16f16, 8}, {ISD::UINT_TO_FP, MVT::v8f16, MVT::v8i8, 2}, // ushll + ucvtf {ISD::SINT_TO_FP, MVT::v8f16, MVT::v8i8, 2}, // sshll + scvtf {ISD::UINT_TO_FP, MVT::v16f16, MVT::v16i8, 4}, // 2 * ushl(2) + 2 * ucvtf {ISD::SINT_TO_FP, MVT::v16f16, MVT::v16i8, 4}, // 2 * sshl(2) + 2 * scvtf }; if (ST->hasFullFP16()) if (const auto *Entry = ConvertCostTableLookup( FP16Tbl, ISD, DstTy.getSimpleVT(), SrcTy.getSimpleVT())) return AdjustCost(Entry->Cost); if ((ISD == ISD::ZERO_EXTEND || ISD == ISD::SIGN_EXTEND) && CCH == TTI::CastContextHint::Masked && ST->isSVEorStreamingSVEAvailable() && TLI->getTypeAction(Src->getContext(), SrcTy) == TargetLowering::TypePromoteInteger && TLI->getTypeAction(Dst->getContext(), DstTy) == TargetLowering::TypeSplitVector) { // The standard behaviour in the backend for these cases is to split the // extend up into two parts: // 1. Perform an extending load or masked load up to the legal type. // 2. Extend the loaded data to the final type. std::pair SrcLT = getTypeLegalizationCost(Src); Type *LegalTy = EVT(SrcLT.second).getTypeForEVT(Src->getContext()); InstructionCost Part1 = AArch64TTIImpl::getCastInstrCost( Opcode, LegalTy, Src, CCH, CostKind, I); InstructionCost Part2 = AArch64TTIImpl::getCastInstrCost( Opcode, Dst, LegalTy, TTI::CastContextHint::None, CostKind, I); return Part1 + Part2; } // The BasicTTIImpl version only deals with CCH==TTI::CastContextHint::Normal, // but we also want to include the TTI::CastContextHint::Masked case too. if ((ISD == ISD::ZERO_EXTEND || ISD == ISD::SIGN_EXTEND) && CCH == TTI::CastContextHint::Masked && ST->isSVEorStreamingSVEAvailable() && TLI->isTypeLegal(DstTy)) CCH = TTI::CastContextHint::Normal; return AdjustCost( BaseT::getCastInstrCost(Opcode, Dst, Src, CCH, CostKind, I)); } InstructionCost AArch64TTIImpl::getExtractWithExtendCost(unsigned Opcode, Type *Dst, VectorType *VecTy, unsigned Index) { // Make sure we were given a valid extend opcode. assert((Opcode == Instruction::SExt || Opcode == Instruction::ZExt) && "Invalid opcode"); // We are extending an element we extract from a vector, so the source type // of the extend is the element type of the vector. auto *Src = VecTy->getElementType(); // Sign- and zero-extends are for integer types only. assert(isa(Dst) && isa(Src) && "Invalid type"); // Get the cost for the extract. We compute the cost (if any) for the extend // below. TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; InstructionCost Cost = getVectorInstrCost(Instruction::ExtractElement, VecTy, CostKind, Index, nullptr, nullptr); // Legalize the types. auto VecLT = getTypeLegalizationCost(VecTy); auto DstVT = TLI->getValueType(DL, Dst); auto SrcVT = TLI->getValueType(DL, Src); // If the resulting type is still a vector and the destination type is legal, // we may get the extension for free. If not, get the default cost for the // extend. if (!VecLT.second.isVector() || !TLI->isTypeLegal(DstVT)) return Cost + getCastInstrCost(Opcode, Dst, Src, TTI::CastContextHint::None, CostKind); // The destination type should be larger than the element type. If not, get // the default cost for the extend. if (DstVT.getFixedSizeInBits() < SrcVT.getFixedSizeInBits()) return Cost + getCastInstrCost(Opcode, Dst, Src, TTI::CastContextHint::None, CostKind); switch (Opcode) { default: llvm_unreachable("Opcode should be either SExt or ZExt"); // For sign-extends, we only need a smov, which performs the extension // automatically. case Instruction::SExt: return Cost; // For zero-extends, the extend is performed automatically by a umov unless // the destination type is i64 and the element type is i8 or i16. case Instruction::ZExt: if (DstVT.getSizeInBits() != 64u || SrcVT.getSizeInBits() == 32u) return Cost; } // If we are unable to perform the extend for free, get the default cost. return Cost + getCastInstrCost(Opcode, Dst, Src, TTI::CastContextHint::None, CostKind); } InstructionCost AArch64TTIImpl::getCFInstrCost(unsigned Opcode, TTI::TargetCostKind CostKind, const Instruction *I) { if (CostKind != TTI::TCK_RecipThroughput) return Opcode == Instruction::PHI ? 0 : 1; assert(CostKind == TTI::TCK_RecipThroughput && "unexpected CostKind"); // Branches are assumed to be predicted. return 0; } InstructionCost AArch64TTIImpl::getVectorInstrCostHelper( unsigned Opcode, Type *Val, unsigned Index, bool HasRealUse, const Instruction *I, Value *Scalar, ArrayRef> ScalarUserAndIdx) { assert(Val->isVectorTy() && "This must be a vector type"); if (Index != -1U) { // Legalize the type. std::pair LT = getTypeLegalizationCost(Val); // This type is legalized to a scalar type. if (!LT.second.isVector()) return 0; // The type may be split. For fixed-width vectors we can normalize the // index to the new type. if (LT.second.isFixedLengthVector()) { unsigned Width = LT.second.getVectorNumElements(); Index = Index % Width; } // The element at index zero is already inside the vector. // - For a physical (HasRealUse==true) insert-element or extract-element // instruction that extracts integers, an explicit FPR -> GPR move is // needed. So it has non-zero cost. // - For the rest of cases (virtual instruction or element type is float), // consider the instruction free. if (Index == 0 && (!HasRealUse || !Val->getScalarType()->isIntegerTy())) return 0; // This is recognising a LD1 single-element structure to one lane of one // register instruction. I.e., if this is an `insertelement` instruction, // and its second operand is a load, then we will generate a LD1, which // are expensive instructions. if (I && dyn_cast(I->getOperand(1))) return ST->getVectorInsertExtractBaseCost() + 1; // i1 inserts and extract will include an extra cset or cmp of the vector // value. Increase the cost by 1 to account. if (Val->getScalarSizeInBits() == 1) return ST->getVectorInsertExtractBaseCost() + 1; // FIXME: // If the extract-element and insert-element instructions could be // simplified away (e.g., could be combined into users by looking at use-def // context), they have no cost. This is not done in the first place for // compile-time considerations. } // In case of Neon, if there exists extractelement from lane != 0 such that // 1. extractelement does not necessitate a move from vector_reg -> GPR. // 2. extractelement result feeds into fmul. // 3. Other operand of fmul is an extractelement from lane 0 or lane // equivalent to 0. // then the extractelement can be merged with fmul in the backend and it // incurs no cost. // e.g. // define double @foo(<2 x double> %a) { // %1 = extractelement <2 x double> %a, i32 0 // %2 = extractelement <2 x double> %a, i32 1 // %res = fmul double %1, %2 // ret double %res // } // %2 and %res can be merged in the backend to generate fmul d0, d0, v1.d[1] auto ExtractCanFuseWithFmul = [&]() { // We bail out if the extract is from lane 0. if (Index == 0) return false; // Check if the scalar element type of the vector operand of ExtractElement // instruction is one of the allowed types. auto IsAllowedScalarTy = [&](const Type *T) { return T->isFloatTy() || T->isDoubleTy() || (T->isHalfTy() && ST->hasFullFP16()); }; // Check if the extractelement user is scalar fmul. auto IsUserFMulScalarTy = [](const Value *EEUser) { // Check if the user is scalar fmul. const auto *BO = dyn_cast(EEUser); return BO && BO->getOpcode() == BinaryOperator::FMul && !BO->getType()->isVectorTy(); }; // Check if the extract index is from lane 0 or lane equivalent to 0 for a // certain scalar type and a certain vector register width. auto IsExtractLaneEquivalentToZero = [&](unsigned Idx, unsigned EltSz) { auto RegWidth = getRegisterBitWidth(TargetTransformInfo::RGK_FixedWidthVector) .getFixedValue(); return Idx == 0 || (RegWidth != 0 && (Idx * EltSz) % RegWidth == 0); }; // Check if the type constraints on input vector type and result scalar type // of extractelement instruction are satisfied. if (!isa(Val) || !IsAllowedScalarTy(Val->getScalarType())) return false; if (Scalar) { DenseMap UserToExtractIdx; for (auto *U : Scalar->users()) { if (!IsUserFMulScalarTy(U)) return false; // Recording entry for the user is important. Index value is not // important. UserToExtractIdx[U]; } if (UserToExtractIdx.empty()) return false; for (auto &[S, U, L] : ScalarUserAndIdx) { for (auto *U : S->users()) { if (UserToExtractIdx.find(U) != UserToExtractIdx.end()) { auto *FMul = cast(U); auto *Op0 = FMul->getOperand(0); auto *Op1 = FMul->getOperand(1); if ((Op0 == S && Op1 == S) || Op0 != S || Op1 != S) { UserToExtractIdx[U] = L; break; } } } } for (auto &[U, L] : UserToExtractIdx) { if (!IsExtractLaneEquivalentToZero(Index, Val->getScalarSizeInBits()) && !IsExtractLaneEquivalentToZero(L, Val->getScalarSizeInBits())) return false; } } else { const auto *EE = cast(I); const auto *IdxOp = dyn_cast(EE->getIndexOperand()); if (!IdxOp) return false; return !EE->users().empty() && all_of(EE->users(), [&](const User *U) { if (!IsUserFMulScalarTy(U)) return false; // Check if the other operand of extractelement is also extractelement // from lane equivalent to 0. const auto *BO = cast(U); const auto *OtherEE = dyn_cast( BO->getOperand(0) == EE ? BO->getOperand(1) : BO->getOperand(0)); if (OtherEE) { const auto *IdxOp = dyn_cast(OtherEE->getIndexOperand()); if (!IdxOp) return false; return IsExtractLaneEquivalentToZero( cast(OtherEE->getIndexOperand()) ->getValue() .getZExtValue(), OtherEE->getType()->getScalarSizeInBits()); } return true; }); } return true; }; if (Opcode == Instruction::ExtractElement && (I || Scalar) && ExtractCanFuseWithFmul()) return 0; // All other insert/extracts cost this much. return ST->getVectorInsertExtractBaseCost(); } InstructionCost AArch64TTIImpl::getVectorInstrCost(unsigned Opcode, Type *Val, TTI::TargetCostKind CostKind, unsigned Index, Value *Op0, Value *Op1) { bool HasRealUse = Opcode == Instruction::InsertElement && Op0 && !isa(Op0); return getVectorInstrCostHelper(Opcode, Val, Index, HasRealUse); } InstructionCost AArch64TTIImpl::getVectorInstrCost( unsigned Opcode, Type *Val, TTI::TargetCostKind CostKind, unsigned Index, Value *Scalar, ArrayRef> ScalarUserAndIdx) { return getVectorInstrCostHelper(Opcode, Val, Index, false, nullptr, Scalar, ScalarUserAndIdx); } InstructionCost AArch64TTIImpl::getVectorInstrCost(const Instruction &I, Type *Val, TTI::TargetCostKind CostKind, unsigned Index) { return getVectorInstrCostHelper(I.getOpcode(), Val, Index, true /* HasRealUse */, &I); } InstructionCost AArch64TTIImpl::getScalarizationOverhead( VectorType *Ty, const APInt &DemandedElts, bool Insert, bool Extract, TTI::TargetCostKind CostKind, ArrayRef VL) { if (isa(Ty)) return InstructionCost::getInvalid(); if (Ty->getElementType()->isFloatingPointTy()) return BaseT::getScalarizationOverhead(Ty, DemandedElts, Insert, Extract, CostKind); return DemandedElts.popcount() * (Insert + Extract) * ST->getVectorInsertExtractBaseCost(); } InstructionCost AArch64TTIImpl::getArithmeticInstrCost( unsigned Opcode, Type *Ty, TTI::TargetCostKind CostKind, TTI::OperandValueInfo Op1Info, TTI::OperandValueInfo Op2Info, ArrayRef Args, const Instruction *CxtI) { // The code-generator is currently not able to handle scalable vectors // of yet, so return an invalid cost to avoid selecting // it. This change will be removed when code-generation for these types is // sufficiently reliable. if (auto *VTy = dyn_cast(Ty)) if (VTy->getElementCount() == ElementCount::getScalable(1)) return InstructionCost::getInvalid(); // TODO: Handle more cost kinds. if (CostKind != TTI::TCK_RecipThroughput) return BaseT::getArithmeticInstrCost(Opcode, Ty, CostKind, Op1Info, Op2Info, Args, CxtI); // Legalize the type. std::pair LT = getTypeLegalizationCost(Ty); int ISD = TLI->InstructionOpcodeToISD(Opcode); switch (ISD) { default: return BaseT::getArithmeticInstrCost(Opcode, Ty, CostKind, Op1Info, Op2Info); case ISD::SDIV: if (Op2Info.isConstant() && Op2Info.isUniform() && Op2Info.isPowerOf2()) { // On AArch64, scalar signed division by constants power-of-two are // normally expanded to the sequence ADD + CMP + SELECT + SRA. // The OperandValue properties many not be same as that of previous // operation; conservatively assume OP_None. InstructionCost Cost = getArithmeticInstrCost( Instruction::Add, Ty, CostKind, Op1Info.getNoProps(), Op2Info.getNoProps()); Cost += getArithmeticInstrCost(Instruction::Sub, Ty, CostKind, Op1Info.getNoProps(), Op2Info.getNoProps()); Cost += getArithmeticInstrCost( Instruction::Select, Ty, CostKind, Op1Info.getNoProps(), Op2Info.getNoProps()); Cost += getArithmeticInstrCost(Instruction::AShr, Ty, CostKind, Op1Info.getNoProps(), Op2Info.getNoProps()); return Cost; } [[fallthrough]]; case ISD::UDIV: { auto VT = TLI->getValueType(DL, Ty); if (Op2Info.isConstant() && Op2Info.isUniform()) { if (TLI->isOperationLegalOrCustom(ISD::MULHU, VT)) { // Vector signed division by constant are expanded to the // sequence MULHS + ADD/SUB + SRA + SRL + ADD, and unsigned division // to MULHS + SUB + SRL + ADD + SRL. InstructionCost MulCost = getArithmeticInstrCost( Instruction::Mul, Ty, CostKind, Op1Info.getNoProps(), Op2Info.getNoProps()); InstructionCost AddCost = getArithmeticInstrCost( Instruction::Add, Ty, CostKind, Op1Info.getNoProps(), Op2Info.getNoProps()); InstructionCost ShrCost = getArithmeticInstrCost( Instruction::AShr, Ty, CostKind, Op1Info.getNoProps(), Op2Info.getNoProps()); return MulCost * 2 + AddCost * 2 + ShrCost * 2 + 1; } } // div i128's are lowered as libcalls. Pass nullptr as (u)divti3 calls are // emitted by the backend even when those functions are not declared in the // module. if (!VT.isVector() && VT.getSizeInBits() > 64) return getCallInstrCost(/*Function*/ nullptr, Ty, {Ty, Ty}, CostKind); InstructionCost Cost = BaseT::getArithmeticInstrCost( Opcode, Ty, CostKind, Op1Info, Op2Info); if (Ty->isVectorTy()) { if (TLI->isOperationLegalOrCustom(ISD, LT.second) && ST->hasSVE()) { // SDIV/UDIV operations are lowered using SVE, then we can have less // costs. if (isa(Ty) && cast(Ty) ->getPrimitiveSizeInBits() .getFixedValue() < 128) { EVT VT = TLI->getValueType(DL, Ty); static const CostTblEntry DivTbl[]{ {ISD::SDIV, MVT::v2i8, 5}, {ISD::SDIV, MVT::v4i8, 8}, {ISD::SDIV, MVT::v8i8, 8}, {ISD::SDIV, MVT::v2i16, 5}, {ISD::SDIV, MVT::v4i16, 5}, {ISD::SDIV, MVT::v2i32, 1}, {ISD::UDIV, MVT::v2i8, 5}, {ISD::UDIV, MVT::v4i8, 8}, {ISD::UDIV, MVT::v8i8, 8}, {ISD::UDIV, MVT::v2i16, 5}, {ISD::UDIV, MVT::v4i16, 5}, {ISD::UDIV, MVT::v2i32, 1}}; const auto *Entry = CostTableLookup(DivTbl, ISD, VT.getSimpleVT()); if (nullptr != Entry) return Entry->Cost; } // For 8/16-bit elements, the cost is higher because the type // requires promotion and possibly splitting: if (LT.second.getScalarType() == MVT::i8) Cost *= 8; else if (LT.second.getScalarType() == MVT::i16) Cost *= 4; return Cost; } else { // If one of the operands is a uniform constant then the cost for each // element is Cost for insertion, extraction and division. // Insertion cost = 2, Extraction Cost = 2, Division = cost for the // operation with scalar type if ((Op1Info.isConstant() && Op1Info.isUniform()) || (Op2Info.isConstant() && Op2Info.isUniform())) { if (auto *VTy = dyn_cast(Ty)) { InstructionCost DivCost = BaseT::getArithmeticInstrCost( Opcode, Ty->getScalarType(), CostKind, Op1Info, Op2Info); return (4 + DivCost) * VTy->getNumElements(); } } // On AArch64, without SVE, vector divisions are expanded // into scalar divisions of each pair of elements. Cost += getArithmeticInstrCost(Instruction::ExtractElement, Ty, CostKind, Op1Info, Op2Info); Cost += getArithmeticInstrCost(Instruction::InsertElement, Ty, CostKind, Op1Info, Op2Info); } // TODO: if one of the arguments is scalar, then it's not necessary to // double the cost of handling the vector elements. Cost += Cost; } return Cost; } case ISD::MUL: // When SVE is available, then we can lower the v2i64 operation using // the SVE mul instruction, which has a lower cost. if (LT.second == MVT::v2i64 && ST->hasSVE()) return LT.first; // When SVE is not available, there is no MUL.2d instruction, // which means mul <2 x i64> is expensive as elements are extracted // from the vectors and the muls scalarized. // As getScalarizationOverhead is a bit too pessimistic, we // estimate the cost for a i64 vector directly here, which is: // - four 2-cost i64 extracts, // - two 2-cost i64 inserts, and // - two 1-cost muls. // So, for a v2i64 with LT.First = 1 the cost is 14, and for a v4i64 with // LT.first = 2 the cost is 28. If both operands are extensions it will not // need to scalarize so the cost can be cheaper (smull or umull). // so the cost can be cheaper (smull or umull). if (LT.second != MVT::v2i64 || isWideningInstruction(Ty, Opcode, Args)) return LT.first; return cast(Ty)->getElementCount().getKnownMinValue() * (getArithmeticInstrCost(Opcode, Ty->getScalarType(), CostKind) + getVectorInstrCost(Instruction::ExtractElement, Ty, CostKind, -1, nullptr, nullptr) * 2 + getVectorInstrCost(Instruction::InsertElement, Ty, CostKind, -1, nullptr, nullptr)); case ISD::ADD: case ISD::XOR: case ISD::OR: case ISD::AND: case ISD::SRL: case ISD::SRA: case ISD::SHL: // These nodes are marked as 'custom' for combining purposes only. // We know that they are legal. See LowerAdd in ISelLowering. return LT.first; case ISD::FNEG: // Scalar fmul(fneg) or fneg(fmul) can be converted to fnmul if ((Ty->isFloatTy() || Ty->isDoubleTy() || (Ty->isHalfTy() && ST->hasFullFP16())) && CxtI && ((CxtI->hasOneUse() && match(*CxtI->user_begin(), m_FMul(m_Value(), m_Value()))) || match(CxtI->getOperand(0), m_FMul(m_Value(), m_Value())))) return 0; [[fallthrough]]; case ISD::FADD: case ISD::FSUB: // Increase the cost for half and bfloat types if not architecturally // supported. if ((Ty->getScalarType()->isHalfTy() && !ST->hasFullFP16()) || (Ty->getScalarType()->isBFloatTy() && !ST->hasBF16())) return 2 * LT.first; if (!Ty->getScalarType()->isFP128Ty()) return LT.first; [[fallthrough]]; case ISD::FMUL: case ISD::FDIV: // These nodes are marked as 'custom' just to lower them to SVE. // We know said lowering will incur no additional cost. if (!Ty->getScalarType()->isFP128Ty()) return 2 * LT.first; return BaseT::getArithmeticInstrCost(Opcode, Ty, CostKind, Op1Info, Op2Info); case ISD::FREM: // Pass nullptr as fmod/fmodf calls are emitted by the backend even when // those functions are not declared in the module. if (!Ty->isVectorTy()) return getCallInstrCost(/*Function*/ nullptr, Ty, {Ty, Ty}, CostKind); return BaseT::getArithmeticInstrCost(Opcode, Ty, CostKind, Op1Info, Op2Info); } } InstructionCost AArch64TTIImpl::getAddressComputationCost(Type *Ty, ScalarEvolution *SE, const SCEV *Ptr) { // Address computations in vectorized code with non-consecutive addresses will // likely result in more instructions compared to scalar code where the // computation can more often be merged into the index mode. The resulting // extra micro-ops can significantly decrease throughput. unsigned NumVectorInstToHideOverhead = NeonNonConstStrideOverhead; int MaxMergeDistance = 64; if (Ty->isVectorTy() && SE && !BaseT::isConstantStridedAccessLessThan(SE, Ptr, MaxMergeDistance + 1)) return NumVectorInstToHideOverhead; // In many cases the address computation is not merged into the instruction // addressing mode. return 1; } InstructionCost AArch64TTIImpl::getCmpSelInstrCost( unsigned Opcode, Type *ValTy, Type *CondTy, CmpInst::Predicate VecPred, TTI::TargetCostKind CostKind, TTI::OperandValueInfo Op1Info, TTI::OperandValueInfo Op2Info, const Instruction *I) { // TODO: Handle other cost kinds. if (CostKind != TTI::TCK_RecipThroughput) return BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy, VecPred, CostKind, Op1Info, Op2Info, I); int ISD = TLI->InstructionOpcodeToISD(Opcode); // We don't lower some vector selects well that are wider than the register // width. if (isa(ValTy) && ISD == ISD::SELECT) { // We would need this many instructions to hide the scalarization happening. const int AmortizationCost = 20; // If VecPred is not set, check if we can get a predicate from the context // instruction, if its type matches the requested ValTy. if (VecPred == CmpInst::BAD_ICMP_PREDICATE && I && I->getType() == ValTy) { CmpPredicate CurrentPred; if (match(I, m_Select(m_Cmp(CurrentPred, m_Value(), m_Value()), m_Value(), m_Value()))) VecPred = CurrentPred; } // Check if we have a compare/select chain that can be lowered using // a (F)CMxx & BFI pair. if (CmpInst::isIntPredicate(VecPred) || VecPred == CmpInst::FCMP_OLE || VecPred == CmpInst::FCMP_OLT || VecPred == CmpInst::FCMP_OGT || VecPred == CmpInst::FCMP_OGE || VecPred == CmpInst::FCMP_OEQ || VecPred == CmpInst::FCMP_UNE) { static const auto ValidMinMaxTys = { MVT::v8i8, MVT::v16i8, MVT::v4i16, MVT::v8i16, MVT::v2i32, MVT::v4i32, MVT::v2i64, MVT::v2f32, MVT::v4f32, MVT::v2f64}; static const auto ValidFP16MinMaxTys = {MVT::v4f16, MVT::v8f16}; auto LT = getTypeLegalizationCost(ValTy); if (any_of(ValidMinMaxTys, [<](MVT M) { return M == LT.second; }) || (ST->hasFullFP16() && any_of(ValidFP16MinMaxTys, [<](MVT M) { return M == LT.second; }))) return LT.first; } static const TypeConversionCostTblEntry VectorSelectTbl[] = { { ISD::SELECT, MVT::v2i1, MVT::v2f32, 2 }, { ISD::SELECT, MVT::v2i1, MVT::v2f64, 2 }, { ISD::SELECT, MVT::v4i1, MVT::v4f32, 2 }, { ISD::SELECT, MVT::v4i1, MVT::v4f16, 2 }, { ISD::SELECT, MVT::v8i1, MVT::v8f16, 2 }, { ISD::SELECT, MVT::v16i1, MVT::v16i16, 16 }, { ISD::SELECT, MVT::v8i1, MVT::v8i32, 8 }, { ISD::SELECT, MVT::v16i1, MVT::v16i32, 16 }, { ISD::SELECT, MVT::v4i1, MVT::v4i64, 4 * AmortizationCost }, { ISD::SELECT, MVT::v8i1, MVT::v8i64, 8 * AmortizationCost }, { ISD::SELECT, MVT::v16i1, MVT::v16i64, 16 * AmortizationCost } }; EVT SelCondTy = TLI->getValueType(DL, CondTy); EVT SelValTy = TLI->getValueType(DL, ValTy); if (SelCondTy.isSimple() && SelValTy.isSimple()) { if (const auto *Entry = ConvertCostTableLookup(VectorSelectTbl, ISD, SelCondTy.getSimpleVT(), SelValTy.getSimpleVT())) return Entry->Cost; } } if (isa(ValTy) && ISD == ISD::SETCC) { auto LT = getTypeLegalizationCost(ValTy); // Cost v4f16 FCmp without FP16 support via converting to v4f32 and back. if (LT.second == MVT::v4f16 && !ST->hasFullFP16()) return LT.first * 4; // fcvtl + fcvtl + fcmp + xtn } // Treat the icmp in icmp(and, 0) as free, as we can make use of ands. // FIXME: This can apply to more conditions and add/sub if it can be shown to // be profitable. if (ValTy->isIntegerTy() && ISD == ISD::SETCC && I && ICmpInst::isEquality(VecPred) && TLI->isTypeLegal(TLI->getValueType(DL, ValTy)) && match(I->getOperand(1), m_Zero()) && match(I->getOperand(0), m_And(m_Value(), m_Value()))) return 0; // The base case handles scalable vectors fine for now, since it treats the // cost as 1 * legalization cost. return BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy, VecPred, CostKind, Op1Info, Op2Info, I); } AArch64TTIImpl::TTI::MemCmpExpansionOptions AArch64TTIImpl::enableMemCmpExpansion(bool OptSize, bool IsZeroCmp) const { TTI::MemCmpExpansionOptions Options; if (ST->requiresStrictAlign()) { // TODO: Add cost modeling for strict align. Misaligned loads expand to // a bunch of instructions when strict align is enabled. return Options; } Options.AllowOverlappingLoads = true; Options.MaxNumLoads = TLI->getMaxExpandSizeMemcmp(OptSize); Options.NumLoadsPerBlock = Options.MaxNumLoads; // TODO: Though vector loads usually perform well on AArch64, in some targets // they may wake up the FP unit, which raises the power consumption. Perhaps // they could be used with no holds barred (-O3). Options.LoadSizes = {8, 4, 2, 1}; Options.AllowedTailExpansions = {3, 5, 6}; return Options; } bool AArch64TTIImpl::prefersVectorizedAddressing() const { return ST->hasSVE(); } InstructionCost AArch64TTIImpl::getMaskedMemoryOpCost(unsigned Opcode, Type *Src, Align Alignment, unsigned AddressSpace, TTI::TargetCostKind CostKind) { if (useNeonVector(Src)) return BaseT::getMaskedMemoryOpCost(Opcode, Src, Alignment, AddressSpace, CostKind); auto LT = getTypeLegalizationCost(Src); if (!LT.first.isValid()) return InstructionCost::getInvalid(); // Return an invalid cost for element types that we are unable to lower. auto *VT = cast(Src); if (VT->getElementType()->isIntegerTy(1)) return InstructionCost::getInvalid(); // The code-generator is currently not able to handle scalable vectors // of yet, so return an invalid cost to avoid selecting // it. This change will be removed when code-generation for these types is // sufficiently reliable. if (VT->getElementCount() == ElementCount::getScalable(1)) return InstructionCost::getInvalid(); return LT.first; } // This function returns gather/scatter overhead either from // user-provided value or specialized values per-target from \p ST. static unsigned getSVEGatherScatterOverhead(unsigned Opcode, const AArch64Subtarget *ST) { assert((Opcode == Instruction::Load || Opcode == Instruction::Store) && "Should be called on only load or stores."); switch (Opcode) { case Instruction::Load: if (SVEGatherOverhead.getNumOccurrences() > 0) return SVEGatherOverhead; return ST->getGatherOverhead(); break; case Instruction::Store: if (SVEScatterOverhead.getNumOccurrences() > 0) return SVEScatterOverhead; return ST->getScatterOverhead(); break; default: llvm_unreachable("Shouldn't have reached here"); } } InstructionCost AArch64TTIImpl::getGatherScatterOpCost( unsigned Opcode, Type *DataTy, const Value *Ptr, bool VariableMask, Align Alignment, TTI::TargetCostKind CostKind, const Instruction *I) { if (useNeonVector(DataTy) || !isLegalMaskedGatherScatter(DataTy)) return BaseT::getGatherScatterOpCost(Opcode, DataTy, Ptr, VariableMask, Alignment, CostKind, I); auto *VT = cast(DataTy); auto LT = getTypeLegalizationCost(DataTy); if (!LT.first.isValid()) return InstructionCost::getInvalid(); // Return an invalid cost for element types that we are unable to lower. if (!LT.second.isVector() || !isElementTypeLegalForScalableVector(VT->getElementType()) || VT->getElementType()->isIntegerTy(1)) return InstructionCost::getInvalid(); // The code-generator is currently not able to handle scalable vectors // of yet, so return an invalid cost to avoid selecting // it. This change will be removed when code-generation for these types is // sufficiently reliable. if (VT->getElementCount() == ElementCount::getScalable(1)) return InstructionCost::getInvalid(); ElementCount LegalVF = LT.second.getVectorElementCount(); InstructionCost MemOpCost = getMemoryOpCost(Opcode, VT->getElementType(), Alignment, 0, CostKind, {TTI::OK_AnyValue, TTI::OP_None}, I); // Add on an overhead cost for using gathers/scatters. MemOpCost *= getSVEGatherScatterOverhead(Opcode, ST); return LT.first * MemOpCost * getMaxNumElements(LegalVF); } bool AArch64TTIImpl::useNeonVector(const Type *Ty) const { return isa(Ty) && !ST->useSVEForFixedLengthVectors(); } InstructionCost AArch64TTIImpl::getMemoryOpCost(unsigned Opcode, Type *Ty, MaybeAlign Alignment, unsigned AddressSpace, TTI::TargetCostKind CostKind, TTI::OperandValueInfo OpInfo, const Instruction *I) { EVT VT = TLI->getValueType(DL, Ty, true); // Type legalization can't handle structs if (VT == MVT::Other) return BaseT::getMemoryOpCost(Opcode, Ty, Alignment, AddressSpace, CostKind); auto LT = getTypeLegalizationCost(Ty); if (!LT.first.isValid()) return InstructionCost::getInvalid(); // The code-generator is currently not able to handle scalable vectors // of yet, so return an invalid cost to avoid selecting // it. This change will be removed when code-generation for these types is // sufficiently reliable. // We also only support full register predicate loads and stores. if (auto *VTy = dyn_cast(Ty)) if (VTy->getElementCount() == ElementCount::getScalable(1) || (VTy->getElementType()->isIntegerTy(1) && !VTy->getElementCount().isKnownMultipleOf( ElementCount::getScalable(16)))) return InstructionCost::getInvalid(); // TODO: consider latency as well for TCK_SizeAndLatency. if (CostKind == TTI::TCK_CodeSize || CostKind == TTI::TCK_SizeAndLatency) return LT.first; if (CostKind != TTI::TCK_RecipThroughput) return 1; if (ST->isMisaligned128StoreSlow() && Opcode == Instruction::Store && LT.second.is128BitVector() && (!Alignment || *Alignment < Align(16))) { // Unaligned stores are extremely inefficient. We don't split all // unaligned 128-bit stores because the negative impact that has shown in // practice on inlined block copy code. // We make such stores expensive so that we will only vectorize if there // are 6 other instructions getting vectorized. const int AmortizationCost = 6; return LT.first * 2 * AmortizationCost; } // Opaque ptr or ptr vector types are i64s and can be lowered to STP/LDPs. if (Ty->isPtrOrPtrVectorTy()) return LT.first; if (useNeonVector(Ty)) { // Check truncating stores and extending loads. if (Ty->getScalarSizeInBits() != LT.second.getScalarSizeInBits()) { // v4i8 types are lowered to scalar a load/store and sshll/xtn. if (VT == MVT::v4i8) return 2; // Otherwise we need to scalarize. return cast(Ty)->getNumElements() * 2; } EVT EltVT = VT.getVectorElementType(); unsigned EltSize = EltVT.getScalarSizeInBits(); if (!isPowerOf2_32(EltSize) || EltSize < 8 || EltSize > 64 || VT.getVectorNumElements() >= (128 / EltSize) || !Alignment || *Alignment != Align(1)) return LT.first; // FIXME: v3i8 lowering currently is very inefficient, due to automatic // widening to v4i8, which produces suboptimal results. if (VT.getVectorNumElements() == 3 && EltVT == MVT::i8) return LT.first; // Check non-power-of-2 loads/stores for legal vector element types with // NEON. Non-power-of-2 memory ops will get broken down to a set of // operations on smaller power-of-2 ops, including ld1/st1. LLVMContext &C = Ty->getContext(); InstructionCost Cost(0); SmallVector TypeWorklist; TypeWorklist.push_back(VT); while (!TypeWorklist.empty()) { EVT CurrVT = TypeWorklist.pop_back_val(); unsigned CurrNumElements = CurrVT.getVectorNumElements(); if (isPowerOf2_32(CurrNumElements)) { Cost += 1; continue; } unsigned PrevPow2 = NextPowerOf2(CurrNumElements) / 2; TypeWorklist.push_back(EVT::getVectorVT(C, EltVT, PrevPow2)); TypeWorklist.push_back( EVT::getVectorVT(C, EltVT, CurrNumElements - PrevPow2)); } return Cost; } return LT.first; } InstructionCost AArch64TTIImpl::getInterleavedMemoryOpCost( unsigned Opcode, Type *VecTy, unsigned Factor, ArrayRef Indices, Align Alignment, unsigned AddressSpace, TTI::TargetCostKind CostKind, bool UseMaskForCond, bool UseMaskForGaps) { assert(Factor >= 2 && "Invalid interleave factor"); auto *VecVTy = cast(VecTy); if (VecTy->isScalableTy() && !ST->hasSVE()) return InstructionCost::getInvalid(); // Vectorization for masked interleaved accesses is only enabled for scalable // VF. if (!VecTy->isScalableTy() && (UseMaskForCond || UseMaskForGaps)) return InstructionCost::getInvalid(); if (!UseMaskForGaps && Factor <= TLI->getMaxSupportedInterleaveFactor()) { unsigned MinElts = VecVTy->getElementCount().getKnownMinValue(); auto *SubVecTy = VectorType::get(VecVTy->getElementType(), VecVTy->getElementCount().divideCoefficientBy(Factor)); // ldN/stN only support legal vector types of size 64 or 128 in bits. // Accesses having vector types that are a multiple of 128 bits can be // matched to more than one ldN/stN instruction. bool UseScalable; if (MinElts % Factor == 0 && TLI->isLegalInterleavedAccessType(SubVecTy, DL, UseScalable)) return Factor * TLI->getNumInterleavedAccesses(SubVecTy, DL, UseScalable); } return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices, Alignment, AddressSpace, CostKind, UseMaskForCond, UseMaskForGaps); } InstructionCost AArch64TTIImpl::getCostOfKeepingLiveOverCall(ArrayRef Tys) { InstructionCost Cost = 0; TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; for (auto *I : Tys) { if (!I->isVectorTy()) continue; if (I->getScalarSizeInBits() * cast(I)->getNumElements() == 128) Cost += getMemoryOpCost(Instruction::Store, I, Align(128), 0, CostKind) + getMemoryOpCost(Instruction::Load, I, Align(128), 0, CostKind); } return Cost; } unsigned AArch64TTIImpl::getMaxInterleaveFactor(ElementCount VF) { return ST->getMaxInterleaveFactor(); } // For Falkor, we want to avoid having too many strided loads in a loop since // that can exhaust the HW prefetcher resources. We adjust the unroller // MaxCount preference below to attempt to ensure unrolling doesn't create too // many strided loads. static void getFalkorUnrollingPreferences(Loop *L, ScalarEvolution &SE, TargetTransformInfo::UnrollingPreferences &UP) { enum { MaxStridedLoads = 7 }; auto countStridedLoads = [](Loop *L, ScalarEvolution &SE) { int StridedLoads = 0; // FIXME? We could make this more precise by looking at the CFG and // e.g. not counting loads in each side of an if-then-else diamond. for (const auto BB : L->blocks()) { for (auto &I : *BB) { LoadInst *LMemI = dyn_cast(&I); if (!LMemI) continue; Value *PtrValue = LMemI->getPointerOperand(); if (L->isLoopInvariant(PtrValue)) continue; const SCEV *LSCEV = SE.getSCEV(PtrValue); const SCEVAddRecExpr *LSCEVAddRec = dyn_cast(LSCEV); if (!LSCEVAddRec || !LSCEVAddRec->isAffine()) continue; // FIXME? We could take pairing of unrolled load copies into account // by looking at the AddRec, but we would probably have to limit this // to loops with no stores or other memory optimization barriers. ++StridedLoads; // We've seen enough strided loads that seeing more won't make a // difference. if (StridedLoads > MaxStridedLoads / 2) return StridedLoads; } } return StridedLoads; }; int StridedLoads = countStridedLoads(L, SE); LLVM_DEBUG(dbgs() << "falkor-hwpf: detected " << StridedLoads << " strided loads\n"); // Pick the largest power of 2 unroll count that won't result in too many // strided loads. if (StridedLoads) { UP.MaxCount = 1 << Log2_32(MaxStridedLoads / StridedLoads); LLVM_DEBUG(dbgs() << "falkor-hwpf: setting unroll MaxCount to " << UP.MaxCount << '\n'); } } /// For Apple CPUs, we want to runtime-unroll loops to make better use if the /// OOO engine's wide instruction window and various predictors. static void getAppleRuntimeUnrollPreferences(Loop *L, ScalarEvolution &SE, TargetTransformInfo::UnrollingPreferences &UP, AArch64TTIImpl &TTI) { // Limit loops with structure that is highly likely to benefit from runtime // unrolling; that is we exclude outer loops, loops with multiple exits and // many blocks (i.e. likely with complex control flow). Note that the // heuristics here may be overly conservative and we err on the side of // avoiding runtime unrolling rather than unroll excessively. They are all // subject to further refinement. if (!L->isInnermost() || !L->getExitBlock() || L->getNumBlocks() > 8) return; const SCEV *BTC = SE.getBackedgeTakenCount(L); if (isa(BTC) || isa(BTC) || (SE.getSmallConstantMaxTripCount(L) > 0 && SE.getSmallConstantMaxTripCount(L) <= 32)) return; if (findStringMetadataForLoop(L, "llvm.loop.isvectorized")) return; int64_t Size = 0; for (auto *BB : L->getBlocks()) { for (auto &I : *BB) { if (!isa(&I) && isa(&I)) return; SmallVector Operands(I.operand_values()); Size += *TTI.getInstructionCost(&I, Operands, TTI::TCK_CodeSize).getValue(); } } // Limit to loops with trip counts that are cheap to expand. UP.SCEVExpansionBudget = 1; // Try to unroll small, single block loops, if they have load/store // dependencies, to expose more parallel memory access streams. BasicBlock *Header = L->getHeader(); if (Header == L->getLoopLatch()) { if (Size > 8) return; SmallPtrSet LoadedValues; SmallVector Stores; for (auto *BB : L->blocks()) { for (auto &I : *BB) { Value *Ptr = getLoadStorePointerOperand(&I); if (!Ptr) continue; const SCEV *PtrSCEV = SE.getSCEV(Ptr); if (SE.isLoopInvariant(PtrSCEV, L)) continue; if (isa(&I)) LoadedValues.insert(&I); else Stores.push_back(cast(&I)); } } // Try to find an unroll count that maximizes the use of the instruction // window, i.e. trying to fetch as many instructions per cycle as possible. unsigned MaxInstsPerLine = 16; unsigned UC = 1; unsigned BestUC = 1; unsigned SizeWithBestUC = BestUC * Size; while (UC <= 8) { unsigned SizeWithUC = UC * Size; if (SizeWithUC > 48) break; if ((SizeWithUC % MaxInstsPerLine) == 0 || (SizeWithBestUC % MaxInstsPerLine) < (SizeWithUC % MaxInstsPerLine)) { BestUC = UC; SizeWithBestUC = BestUC * Size; } UC++; } if (BestUC == 1 || none_of(Stores, [&LoadedValues](StoreInst *SI) { return LoadedValues.contains(SI->getOperand(0)); })) return; UP.Runtime = true; UP.DefaultUnrollRuntimeCount = BestUC; return; } // Try to runtime-unroll loops with early-continues depending on loop-varying // loads; this helps with branch-prediction for the early-continues. auto *Term = dyn_cast(Header->getTerminator()); auto *Latch = L->getLoopLatch(); SmallVector Preds(predecessors(Latch)); if (!Term || !Term->isConditional() || Preds.size() == 1 || none_of(Preds, [Header](BasicBlock *Pred) { return Header == Pred; }) || none_of(Preds, [L](BasicBlock *Pred) { return L->contains(Pred); })) return; std::function DependsOnLoopLoad = [&](Instruction *I, unsigned Depth) -> bool { if (isa(I) || L->isLoopInvariant(I) || Depth > 8) return false; if (isa(I)) return true; return any_of(I->operands(), [&](Value *V) { auto *I = dyn_cast(V); return I && DependsOnLoopLoad(I, Depth + 1); }); }; CmpPredicate Pred; Instruction *I; if (match(Term, m_Br(m_ICmp(Pred, m_Instruction(I), m_Value()), m_Value(), m_Value())) && DependsOnLoopLoad(I, 0)) { UP.Runtime = true; } } void AArch64TTIImpl::getUnrollingPreferences(Loop *L, ScalarEvolution &SE, TTI::UnrollingPreferences &UP, OptimizationRemarkEmitter *ORE) { // Enable partial unrolling and runtime unrolling. BaseT::getUnrollingPreferences(L, SE, UP, ORE); UP.UpperBound = true; // For inner loop, it is more likely to be a hot one, and the runtime check // can be promoted out from LICM pass, so the overhead is less, let's try // a larger threshold to unroll more loops. if (L->getLoopDepth() > 1) UP.PartialThreshold *= 2; // Disable partial & runtime unrolling on -Os. UP.PartialOptSizeThreshold = 0; // Apply subtarget-specific unrolling preferences. switch (ST->getProcFamily()) { case AArch64Subtarget::AppleA14: case AArch64Subtarget::AppleA15: case AArch64Subtarget::AppleA16: case AArch64Subtarget::AppleM4: getAppleRuntimeUnrollPreferences(L, SE, UP, *this); break; case AArch64Subtarget::Falkor: if (EnableFalkorHWPFUnrollFix) getFalkorUnrollingPreferences(L, SE, UP); break; default: break; } // Scan the loop: don't unroll loops with calls as this could prevent // inlining. Don't unroll vector loops either, as they don't benefit much from // unrolling. for (auto *BB : L->getBlocks()) { for (auto &I : *BB) { // Don't unroll vectorised loop. if (I.getType()->isVectorTy()) return; if (isa(I) || isa(I)) { if (const Function *F = cast(I).getCalledFunction()) { if (!isLoweredToCall(F)) continue; } return; } } } // Enable runtime unrolling for in-order models // If mcpu is omitted, getProcFamily() returns AArch64Subtarget::Others, so by // checking for that case, we can ensure that the default behaviour is // unchanged if (ST->getProcFamily() != AArch64Subtarget::Others && !ST->getSchedModel().isOutOfOrder()) { UP.Runtime = true; UP.Partial = true; UP.UnrollRemainder = true; UP.DefaultUnrollRuntimeCount = 4; UP.UnrollAndJam = true; UP.UnrollAndJamInnerLoopThreshold = 60; } } void AArch64TTIImpl::getPeelingPreferences(Loop *L, ScalarEvolution &SE, TTI::PeelingPreferences &PP) { BaseT::getPeelingPreferences(L, SE, PP); } Value *AArch64TTIImpl::getOrCreateResultFromMemIntrinsic(IntrinsicInst *Inst, Type *ExpectedType) { switch (Inst->getIntrinsicID()) { default: return nullptr; case Intrinsic::aarch64_neon_st2: case Intrinsic::aarch64_neon_st3: case Intrinsic::aarch64_neon_st4: { // Create a struct type StructType *ST = dyn_cast(ExpectedType); if (!ST) return nullptr; unsigned NumElts = Inst->arg_size() - 1; if (ST->getNumElements() != NumElts) return nullptr; for (unsigned i = 0, e = NumElts; i != e; ++i) { if (Inst->getArgOperand(i)->getType() != ST->getElementType(i)) return nullptr; } Value *Res = PoisonValue::get(ExpectedType); IRBuilder<> Builder(Inst); for (unsigned i = 0, e = NumElts; i != e; ++i) { Value *L = Inst->getArgOperand(i); Res = Builder.CreateInsertValue(Res, L, i); } return Res; } case Intrinsic::aarch64_neon_ld2: case Intrinsic::aarch64_neon_ld3: case Intrinsic::aarch64_neon_ld4: if (Inst->getType() == ExpectedType) return Inst; return nullptr; } } bool AArch64TTIImpl::getTgtMemIntrinsic(IntrinsicInst *Inst, MemIntrinsicInfo &Info) { switch (Inst->getIntrinsicID()) { default: break; case Intrinsic::aarch64_neon_ld2: case Intrinsic::aarch64_neon_ld3: case Intrinsic::aarch64_neon_ld4: Info.ReadMem = true; Info.WriteMem = false; Info.PtrVal = Inst->getArgOperand(0); break; case Intrinsic::aarch64_neon_st2: case Intrinsic::aarch64_neon_st3: case Intrinsic::aarch64_neon_st4: Info.ReadMem = false; Info.WriteMem = true; Info.PtrVal = Inst->getArgOperand(Inst->arg_size() - 1); break; } switch (Inst->getIntrinsicID()) { default: return false; case Intrinsic::aarch64_neon_ld2: case Intrinsic::aarch64_neon_st2: Info.MatchingId = VECTOR_LDST_TWO_ELEMENTS; break; case Intrinsic::aarch64_neon_ld3: case Intrinsic::aarch64_neon_st3: Info.MatchingId = VECTOR_LDST_THREE_ELEMENTS; break; case Intrinsic::aarch64_neon_ld4: case Intrinsic::aarch64_neon_st4: Info.MatchingId = VECTOR_LDST_FOUR_ELEMENTS; break; } return true; } /// See if \p I should be considered for address type promotion. We check if \p /// I is a sext with right type and used in memory accesses. If it used in a /// "complex" getelementptr, we allow it to be promoted without finding other /// sext instructions that sign extended the same initial value. A getelementptr /// is considered as "complex" if it has more than 2 operands. bool AArch64TTIImpl::shouldConsiderAddressTypePromotion( const Instruction &I, bool &AllowPromotionWithoutCommonHeader) { bool Considerable = false; AllowPromotionWithoutCommonHeader = false; if (!isa(&I)) return false; Type *ConsideredSExtType = Type::getInt64Ty(I.getParent()->getParent()->getContext()); if (I.getType() != ConsideredSExtType) return false; // See if the sext is the one with the right type and used in at least one // GetElementPtrInst. for (const User *U : I.users()) { if (const GetElementPtrInst *GEPInst = dyn_cast(U)) { Considerable = true; // A getelementptr is considered as "complex" if it has more than 2 // operands. We will promote a SExt used in such complex GEP as we // expect some computation to be merged if they are done on 64 bits. if (GEPInst->getNumOperands() > 2) { AllowPromotionWithoutCommonHeader = true; break; } } } return Considerable; } bool AArch64TTIImpl::isLegalToVectorizeReduction( const RecurrenceDescriptor &RdxDesc, ElementCount VF) const { if (!VF.isScalable()) return true; Type *Ty = RdxDesc.getRecurrenceType(); if (Ty->isBFloatTy() || !isElementTypeLegalForScalableVector(Ty)) return false; switch (RdxDesc.getRecurrenceKind()) { case RecurKind::Add: case RecurKind::FAdd: case RecurKind::And: case RecurKind::Or: case RecurKind::Xor: case RecurKind::SMin: case RecurKind::SMax: case RecurKind::UMin: case RecurKind::UMax: case RecurKind::FMin: case RecurKind::FMax: case RecurKind::FMulAdd: case RecurKind::IAnyOf: case RecurKind::FAnyOf: return true; default: return false; } } InstructionCost AArch64TTIImpl::getMinMaxReductionCost(Intrinsic::ID IID, VectorType *Ty, FastMathFlags FMF, TTI::TargetCostKind CostKind) { // The code-generator is currently not able to handle scalable vectors // of yet, so return an invalid cost to avoid selecting // it. This change will be removed when code-generation for these types is // sufficiently reliable. if (auto *VTy = dyn_cast(Ty)) if (VTy->getElementCount() == ElementCount::getScalable(1)) return InstructionCost::getInvalid(); std::pair LT = getTypeLegalizationCost(Ty); if (LT.second.getScalarType() == MVT::f16 && !ST->hasFullFP16()) return BaseT::getMinMaxReductionCost(IID, Ty, FMF, CostKind); InstructionCost LegalizationCost = 0; if (LT.first > 1) { Type *LegalVTy = EVT(LT.second).getTypeForEVT(Ty->getContext()); IntrinsicCostAttributes Attrs(IID, LegalVTy, {LegalVTy, LegalVTy}, FMF); LegalizationCost = getIntrinsicInstrCost(Attrs, CostKind) * (LT.first - 1); } return LegalizationCost + /*Cost of horizontal reduction*/ 2; } InstructionCost AArch64TTIImpl::getArithmeticReductionCostSVE( unsigned Opcode, VectorType *ValTy, TTI::TargetCostKind CostKind) { std::pair LT = getTypeLegalizationCost(ValTy); InstructionCost LegalizationCost = 0; if (LT.first > 1) { Type *LegalVTy = EVT(LT.second).getTypeForEVT(ValTy->getContext()); LegalizationCost = getArithmeticInstrCost(Opcode, LegalVTy, CostKind); LegalizationCost *= LT.first - 1; } int ISD = TLI->InstructionOpcodeToISD(Opcode); assert(ISD && "Invalid opcode"); // Add the final reduction cost for the legal horizontal reduction switch (ISD) { case ISD::ADD: case ISD::AND: case ISD::OR: case ISD::XOR: case ISD::FADD: return LegalizationCost + 2; default: return InstructionCost::getInvalid(); } } InstructionCost AArch64TTIImpl::getArithmeticReductionCost(unsigned Opcode, VectorType *ValTy, std::optional FMF, TTI::TargetCostKind CostKind) { // The code-generator is currently not able to handle scalable vectors // of yet, so return an invalid cost to avoid selecting // it. This change will be removed when code-generation for these types is // sufficiently reliable. if (auto *VTy = dyn_cast(ValTy)) if (VTy->getElementCount() == ElementCount::getScalable(1)) return InstructionCost::getInvalid(); if (TTI::requiresOrderedReduction(FMF)) { if (auto *FixedVTy = dyn_cast(ValTy)) { InstructionCost BaseCost = BaseT::getArithmeticReductionCost(Opcode, ValTy, FMF, CostKind); // Add on extra cost to reflect the extra overhead on some CPUs. We still // end up vectorizing for more computationally intensive loops. return BaseCost + FixedVTy->getNumElements(); } if (Opcode != Instruction::FAdd) return InstructionCost::getInvalid(); auto *VTy = cast(ValTy); InstructionCost Cost = getArithmeticInstrCost(Opcode, VTy->getScalarType(), CostKind); Cost *= getMaxNumElements(VTy->getElementCount()); return Cost; } if (isa(ValTy)) return getArithmeticReductionCostSVE(Opcode, ValTy, CostKind); std::pair LT = getTypeLegalizationCost(ValTy); MVT MTy = LT.second; int ISD = TLI->InstructionOpcodeToISD(Opcode); assert(ISD && "Invalid opcode"); // Horizontal adds can use the 'addv' instruction. We model the cost of these // instructions as twice a normal vector add, plus 1 for each legalization // step (LT.first). This is the only arithmetic vector reduction operation for // which we have an instruction. // OR, XOR and AND costs should match the codegen from: // OR: llvm/test/CodeGen/AArch64/reduce-or.ll // XOR: llvm/test/CodeGen/AArch64/reduce-xor.ll // AND: llvm/test/CodeGen/AArch64/reduce-and.ll static const CostTblEntry CostTblNoPairwise[]{ {ISD::ADD, MVT::v8i8, 2}, {ISD::ADD, MVT::v16i8, 2}, {ISD::ADD, MVT::v4i16, 2}, {ISD::ADD, MVT::v8i16, 2}, {ISD::ADD, MVT::v4i32, 2}, {ISD::ADD, MVT::v2i64, 2}, {ISD::OR, MVT::v8i8, 15}, {ISD::OR, MVT::v16i8, 17}, {ISD::OR, MVT::v4i16, 7}, {ISD::OR, MVT::v8i16, 9}, {ISD::OR, MVT::v2i32, 3}, {ISD::OR, MVT::v4i32, 5}, {ISD::OR, MVT::v2i64, 3}, {ISD::XOR, MVT::v8i8, 15}, {ISD::XOR, MVT::v16i8, 17}, {ISD::XOR, MVT::v4i16, 7}, {ISD::XOR, MVT::v8i16, 9}, {ISD::XOR, MVT::v2i32, 3}, {ISD::XOR, MVT::v4i32, 5}, {ISD::XOR, MVT::v2i64, 3}, {ISD::AND, MVT::v8i8, 15}, {ISD::AND, MVT::v16i8, 17}, {ISD::AND, MVT::v4i16, 7}, {ISD::AND, MVT::v8i16, 9}, {ISD::AND, MVT::v2i32, 3}, {ISD::AND, MVT::v4i32, 5}, {ISD::AND, MVT::v2i64, 3}, }; switch (ISD) { default: break; case ISD::FADD: if (Type *EltTy = ValTy->getScalarType(); // FIXME: For half types without fullfp16 support, this could extend and // use a fp32 faddp reduction but current codegen unrolls. MTy.isVector() && (EltTy->isFloatTy() || EltTy->isDoubleTy() || (EltTy->isHalfTy() && ST->hasFullFP16()))) { const unsigned NElts = MTy.getVectorNumElements(); if (ValTy->getElementCount().getFixedValue() >= 2 && NElts >= 2 && isPowerOf2_32(NElts)) // Reduction corresponding to series of fadd instructions is lowered to // series of faddp instructions. faddp has latency/throughput that // matches fadd instruction and hence, every faddp instruction can be // considered to have a relative cost = 1 with // CostKind = TCK_RecipThroughput. // An faddp will pairwise add vector elements, so the size of input // vector reduces by half every time, requiring // #(faddp instructions) = log2_32(NElts). return (LT.first - 1) + /*No of faddp instructions*/ Log2_32(NElts); } break; case ISD::ADD: if (const auto *Entry = CostTableLookup(CostTblNoPairwise, ISD, MTy)) return (LT.first - 1) + Entry->Cost; break; case ISD::XOR: case ISD::AND: case ISD::OR: const auto *Entry = CostTableLookup(CostTblNoPairwise, ISD, MTy); if (!Entry) break; auto *ValVTy = cast(ValTy); if (MTy.getVectorNumElements() <= ValVTy->getNumElements() && isPowerOf2_32(ValVTy->getNumElements())) { InstructionCost ExtraCost = 0; if (LT.first != 1) { // Type needs to be split, so there is an extra cost of LT.first - 1 // arithmetic ops. auto *Ty = FixedVectorType::get(ValTy->getElementType(), MTy.getVectorNumElements()); ExtraCost = getArithmeticInstrCost(Opcode, Ty, CostKind); ExtraCost *= LT.first - 1; } // All and/or/xor of i1 will be lowered with maxv/minv/addv + fmov auto Cost = ValVTy->getElementType()->isIntegerTy(1) ? 2 : Entry->Cost; return Cost + ExtraCost; } break; } return BaseT::getArithmeticReductionCost(Opcode, ValTy, FMF, CostKind); } InstructionCost AArch64TTIImpl::getSpliceCost(VectorType *Tp, int Index) { static const CostTblEntry ShuffleTbl[] = { { TTI::SK_Splice, MVT::nxv16i8, 1 }, { TTI::SK_Splice, MVT::nxv8i16, 1 }, { TTI::SK_Splice, MVT::nxv4i32, 1 }, { TTI::SK_Splice, MVT::nxv2i64, 1 }, { TTI::SK_Splice, MVT::nxv2f16, 1 }, { TTI::SK_Splice, MVT::nxv4f16, 1 }, { TTI::SK_Splice, MVT::nxv8f16, 1 }, { TTI::SK_Splice, MVT::nxv2bf16, 1 }, { TTI::SK_Splice, MVT::nxv4bf16, 1 }, { TTI::SK_Splice, MVT::nxv8bf16, 1 }, { TTI::SK_Splice, MVT::nxv2f32, 1 }, { TTI::SK_Splice, MVT::nxv4f32, 1 }, { TTI::SK_Splice, MVT::nxv2f64, 1 }, }; // The code-generator is currently not able to handle scalable vectors // of yet, so return an invalid cost to avoid selecting // it. This change will be removed when code-generation for these types is // sufficiently reliable. if (Tp->getElementCount() == ElementCount::getScalable(1)) return InstructionCost::getInvalid(); std::pair LT = getTypeLegalizationCost(Tp); Type *LegalVTy = EVT(LT.second).getTypeForEVT(Tp->getContext()); TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; EVT PromotedVT = LT.second.getScalarType() == MVT::i1 ? TLI->getPromotedVTForPredicate(EVT(LT.second)) : LT.second; Type *PromotedVTy = EVT(PromotedVT).getTypeForEVT(Tp->getContext()); InstructionCost LegalizationCost = 0; if (Index < 0) { LegalizationCost = getCmpSelInstrCost(Instruction::ICmp, PromotedVTy, PromotedVTy, CmpInst::BAD_ICMP_PREDICATE, CostKind) + getCmpSelInstrCost(Instruction::Select, PromotedVTy, LegalVTy, CmpInst::BAD_ICMP_PREDICATE, CostKind); } // Predicated splice are promoted when lowering. See AArch64ISelLowering.cpp // Cost performed on a promoted type. if (LT.second.getScalarType() == MVT::i1) { LegalizationCost += getCastInstrCost(Instruction::ZExt, PromotedVTy, LegalVTy, TTI::CastContextHint::None, CostKind) + getCastInstrCost(Instruction::Trunc, LegalVTy, PromotedVTy, TTI::CastContextHint::None, CostKind); } const auto *Entry = CostTableLookup(ShuffleTbl, TTI::SK_Splice, PromotedVT.getSimpleVT()); assert(Entry && "Illegal Type for Splice"); LegalizationCost += Entry->Cost; return LegalizationCost * LT.first; } InstructionCost AArch64TTIImpl::getPartialReductionCost( unsigned Opcode, Type *InputTypeA, Type *InputTypeB, Type *AccumType, ElementCount VF, TTI::PartialReductionExtendKind OpAExtend, TTI::PartialReductionExtendKind OpBExtend, std::optional BinOp) const { InstructionCost Invalid = InstructionCost::getInvalid(); InstructionCost Cost(TTI::TCC_Basic); if (Opcode != Instruction::Add) return Invalid; if (InputTypeA != InputTypeB) return Invalid; EVT InputEVT = EVT::getEVT(InputTypeA); EVT AccumEVT = EVT::getEVT(AccumType); if (VF.isScalable() && !ST->isSVEorStreamingSVEAvailable()) return Invalid; if (VF.isFixed() && (!ST->isNeonAvailable() || !ST->hasDotProd())) return Invalid; if (InputEVT == MVT::i8) { switch (VF.getKnownMinValue()) { default: return Invalid; case 8: if (AccumEVT == MVT::i32) Cost *= 2; else if (AccumEVT != MVT::i64) return Invalid; break; case 16: if (AccumEVT == MVT::i64) Cost *= 2; else if (AccumEVT != MVT::i32) return Invalid; break; } } else if (InputEVT == MVT::i16) { // FIXME: Allow i32 accumulator but increase cost, as we would extend // it to i64. if (VF.getKnownMinValue() != 8 || AccumEVT != MVT::i64) return Invalid; } else return Invalid; // AArch64 supports lowering mixed extensions to a usdot but only if the // i8mm or sve/streaming features are available. if (OpAExtend == TTI::PR_None || OpBExtend == TTI::PR_None || (OpAExtend != OpBExtend && !ST->hasMatMulInt8() && !ST->isSVEorStreamingSVEAvailable())) return Invalid; if (!BinOp || *BinOp != Instruction::Mul) return Invalid; return Cost; } InstructionCost AArch64TTIImpl::getShuffleCost( TTI::ShuffleKind Kind, VectorType *Tp, ArrayRef Mask, TTI::TargetCostKind CostKind, int Index, VectorType *SubTp, ArrayRef Args, const Instruction *CxtI) { std::pair LT = getTypeLegalizationCost(Tp); // If we have a Mask, and the LT is being legalized somehow, split the Mask // into smaller vectors and sum the cost of each shuffle. if (!Mask.empty() && isa(Tp) && LT.second.isVector() && Tp->getScalarSizeInBits() == LT.second.getScalarSizeInBits() && Mask.size() > LT.second.getVectorNumElements() && !Index && !SubTp) { // Check for LD3/LD4 instructions, which are represented in llvm IR as // deinterleaving-shuffle(load). The shuffle cost could potentially be free, // but we model it with a cost of LT.first so that LD3/LD4 have a higher // cost than just the load. if (Args.size() >= 1 && isa(Args[0]) && (ShuffleVectorInst::isDeInterleaveMaskOfFactor(Mask, 3) || ShuffleVectorInst::isDeInterleaveMaskOfFactor(Mask, 4))) return std::max(1, LT.first / 4); // Check for ST3/ST4 instructions, which are represented in llvm IR as // store(interleaving-shuffle). The shuffle cost could potentially be free, // but we model it with a cost of LT.first so that ST3/ST4 have a higher // cost than just the store. if (CxtI && CxtI->hasOneUse() && isa(*CxtI->user_begin()) && (ShuffleVectorInst::isInterleaveMask( Mask, 4, Tp->getElementCount().getKnownMinValue() * 2) || ShuffleVectorInst::isInterleaveMask( Mask, 3, Tp->getElementCount().getKnownMinValue() * 2))) return LT.first; unsigned TpNumElts = Mask.size(); unsigned LTNumElts = LT.second.getVectorNumElements(); unsigned NumVecs = (TpNumElts + LTNumElts - 1) / LTNumElts; VectorType *NTp = VectorType::get(Tp->getScalarType(), LT.second.getVectorElementCount()); InstructionCost Cost; for (unsigned N = 0; N < NumVecs; N++) { SmallVector NMask; // Split the existing mask into chunks of size LTNumElts. Track the source // sub-vectors to ensure the result has at most 2 inputs. unsigned Source1, Source2; unsigned NumSources = 0; for (unsigned E = 0; E < LTNumElts; E++) { int MaskElt = (N * LTNumElts + E < TpNumElts) ? Mask[N * LTNumElts + E] : PoisonMaskElem; if (MaskElt < 0) { NMask.push_back(PoisonMaskElem); continue; } // Calculate which source from the input this comes from and whether it // is new to us. unsigned Source = MaskElt / LTNumElts; if (NumSources == 0) { Source1 = Source; NumSources = 1; } else if (NumSources == 1 && Source != Source1) { Source2 = Source; NumSources = 2; } else if (NumSources >= 2 && Source != Source1 && Source != Source2) { NumSources++; } // Add to the new mask. For the NumSources>2 case these are not correct, // but are only used for the modular lane number. if (Source == Source1) NMask.push_back(MaskElt % LTNumElts); else if (Source == Source2) NMask.push_back(MaskElt % LTNumElts + LTNumElts); else NMask.push_back(MaskElt % LTNumElts); } // If the sub-mask has at most 2 input sub-vectors then re-cost it using // getShuffleCost. If not then cost it using the worst case as the number // of element moves into a new vector. if (NumSources <= 2) Cost += getShuffleCost(NumSources <= 1 ? TTI::SK_PermuteSingleSrc : TTI::SK_PermuteTwoSrc, NTp, NMask, CostKind, 0, nullptr, Args, CxtI); else Cost += LTNumElts; } return Cost; } Kind = improveShuffleKindFromMask(Kind, Mask, Tp, Index, SubTp); bool IsExtractSubvector = Kind == TTI::SK_ExtractSubvector; // A subvector extract can be implemented with an ext (or trivial extract, if // from lane 0). This currently only handles low or high extracts to prevent // SLP vectorizer regressions. if (IsExtractSubvector && LT.second.isFixedLengthVector()) { if (LT.second.is128BitVector() && cast(SubTp)->getNumElements() == LT.second.getVectorNumElements() / 2) { if (Index == 0) return 0; if (Index == (int)LT.second.getVectorNumElements() / 2) return 1; } Kind = TTI::SK_PermuteSingleSrc; } // Check for broadcast loads, which are supported by the LD1R instruction. // In terms of code-size, the shuffle vector is free when a load + dup get // folded into a LD1R. That's what we check and return here. For performance // and reciprocal throughput, a LD1R is not completely free. In this case, we // return the cost for the broadcast below (i.e. 1 for most/all types), so // that we model the load + dup sequence slightly higher because LD1R is a // high latency instruction. if (CostKind == TTI::TCK_CodeSize && Kind == TTI::SK_Broadcast) { bool IsLoad = !Args.empty() && isa(Args[0]); if (IsLoad && LT.second.isVector() && isLegalBroadcastLoad(Tp->getElementType(), LT.second.getVectorElementCount())) return 0; } // If we have 4 elements for the shuffle and a Mask, get the cost straight // from the perfect shuffle tables. if (Mask.size() == 4 && Tp->getElementCount() == ElementCount::getFixed(4) && (Tp->getScalarSizeInBits() == 16 || Tp->getScalarSizeInBits() == 32) && all_of(Mask, [](int E) { return E < 8; })) return getPerfectShuffleCost(Mask); // Check for identity masks, which we can treat as free. if (!Mask.empty() && LT.second.isFixedLengthVector() && (Kind == TTI::SK_PermuteTwoSrc || Kind == TTI::SK_PermuteSingleSrc) && all_of(enumerate(Mask), [](const auto &M) { return M.value() < 0 || M.value() == (int)M.index(); })) return 0; // Check for other shuffles that are not SK_ kinds but we have native // instructions for, for example ZIP and UZP. unsigned Unused; if (LT.second.isFixedLengthVector() && LT.second.getVectorNumElements() == Mask.size() && (Kind == TTI::SK_PermuteTwoSrc || Kind == TTI::SK_PermuteSingleSrc) && (isZIPMask(Mask, LT.second.getVectorNumElements(), Unused) || isUZPMask(Mask, LT.second.getVectorNumElements(), Unused) || // Check for non-zero lane splats all_of(drop_begin(Mask), [&Mask](int M) { return M < 0 || M == Mask[0]; }))) return 1; if (Kind == TTI::SK_Broadcast || Kind == TTI::SK_Transpose || Kind == TTI::SK_Select || Kind == TTI::SK_PermuteSingleSrc || Kind == TTI::SK_Reverse || Kind == TTI::SK_Splice) { static const CostTblEntry ShuffleTbl[] = { // Broadcast shuffle kinds can be performed with 'dup'. {TTI::SK_Broadcast, MVT::v8i8, 1}, {TTI::SK_Broadcast, MVT::v16i8, 1}, {TTI::SK_Broadcast, MVT::v4i16, 1}, {TTI::SK_Broadcast, MVT::v8i16, 1}, {TTI::SK_Broadcast, MVT::v2i32, 1}, {TTI::SK_Broadcast, MVT::v4i32, 1}, {TTI::SK_Broadcast, MVT::v2i64, 1}, {TTI::SK_Broadcast, MVT::v4f16, 1}, {TTI::SK_Broadcast, MVT::v8f16, 1}, {TTI::SK_Broadcast, MVT::v2f32, 1}, {TTI::SK_Broadcast, MVT::v4f32, 1}, {TTI::SK_Broadcast, MVT::v2f64, 1}, // Transpose shuffle kinds can be performed with 'trn1/trn2' and // 'zip1/zip2' instructions. {TTI::SK_Transpose, MVT::v8i8, 1}, {TTI::SK_Transpose, MVT::v16i8, 1}, {TTI::SK_Transpose, MVT::v4i16, 1}, {TTI::SK_Transpose, MVT::v8i16, 1}, {TTI::SK_Transpose, MVT::v2i32, 1}, {TTI::SK_Transpose, MVT::v4i32, 1}, {TTI::SK_Transpose, MVT::v2i64, 1}, {TTI::SK_Transpose, MVT::v4f16, 1}, {TTI::SK_Transpose, MVT::v8f16, 1}, {TTI::SK_Transpose, MVT::v2f32, 1}, {TTI::SK_Transpose, MVT::v4f32, 1}, {TTI::SK_Transpose, MVT::v2f64, 1}, // Select shuffle kinds. // TODO: handle vXi8/vXi16. {TTI::SK_Select, MVT::v2i32, 1}, // mov. {TTI::SK_Select, MVT::v4i32, 2}, // rev+trn (or similar). {TTI::SK_Select, MVT::v2i64, 1}, // mov. {TTI::SK_Select, MVT::v2f32, 1}, // mov. {TTI::SK_Select, MVT::v4f32, 2}, // rev+trn (or similar). {TTI::SK_Select, MVT::v2f64, 1}, // mov. // PermuteSingleSrc shuffle kinds. {TTI::SK_PermuteSingleSrc, MVT::v2i32, 1}, // mov. {TTI::SK_PermuteSingleSrc, MVT::v4i32, 3}, // perfectshuffle worst case. {TTI::SK_PermuteSingleSrc, MVT::v2i64, 1}, // mov. {TTI::SK_PermuteSingleSrc, MVT::v2f32, 1}, // mov. {TTI::SK_PermuteSingleSrc, MVT::v4f32, 3}, // perfectshuffle worst case. {TTI::SK_PermuteSingleSrc, MVT::v2f64, 1}, // mov. {TTI::SK_PermuteSingleSrc, MVT::v4i16, 3}, // perfectshuffle worst case. {TTI::SK_PermuteSingleSrc, MVT::v4f16, 3}, // perfectshuffle worst case. {TTI::SK_PermuteSingleSrc, MVT::v4bf16, 3}, // same {TTI::SK_PermuteSingleSrc, MVT::v8i16, 8}, // constpool + load + tbl {TTI::SK_PermuteSingleSrc, MVT::v8f16, 8}, // constpool + load + tbl {TTI::SK_PermuteSingleSrc, MVT::v8bf16, 8}, // constpool + load + tbl {TTI::SK_PermuteSingleSrc, MVT::v8i8, 8}, // constpool + load + tbl {TTI::SK_PermuteSingleSrc, MVT::v16i8, 8}, // constpool + load + tbl // Reverse can be lowered with `rev`. {TTI::SK_Reverse, MVT::v2i32, 1}, // REV64 {TTI::SK_Reverse, MVT::v4i32, 2}, // REV64; EXT {TTI::SK_Reverse, MVT::v2i64, 1}, // EXT {TTI::SK_Reverse, MVT::v2f32, 1}, // REV64 {TTI::SK_Reverse, MVT::v4f32, 2}, // REV64; EXT {TTI::SK_Reverse, MVT::v2f64, 1}, // EXT {TTI::SK_Reverse, MVT::v8f16, 2}, // REV64; EXT {TTI::SK_Reverse, MVT::v8i16, 2}, // REV64; EXT {TTI::SK_Reverse, MVT::v16i8, 2}, // REV64; EXT {TTI::SK_Reverse, MVT::v4f16, 1}, // REV64 {TTI::SK_Reverse, MVT::v4i16, 1}, // REV64 {TTI::SK_Reverse, MVT::v8i8, 1}, // REV64 // Splice can all be lowered as `ext`. {TTI::SK_Splice, MVT::v2i32, 1}, {TTI::SK_Splice, MVT::v4i32, 1}, {TTI::SK_Splice, MVT::v2i64, 1}, {TTI::SK_Splice, MVT::v2f32, 1}, {TTI::SK_Splice, MVT::v4f32, 1}, {TTI::SK_Splice, MVT::v2f64, 1}, {TTI::SK_Splice, MVT::v8f16, 1}, {TTI::SK_Splice, MVT::v8bf16, 1}, {TTI::SK_Splice, MVT::v8i16, 1}, {TTI::SK_Splice, MVT::v16i8, 1}, {TTI::SK_Splice, MVT::v4bf16, 1}, {TTI::SK_Splice, MVT::v4f16, 1}, {TTI::SK_Splice, MVT::v4i16, 1}, {TTI::SK_Splice, MVT::v8i8, 1}, // Broadcast shuffle kinds for scalable vectors {TTI::SK_Broadcast, MVT::nxv16i8, 1}, {TTI::SK_Broadcast, MVT::nxv8i16, 1}, {TTI::SK_Broadcast, MVT::nxv4i32, 1}, {TTI::SK_Broadcast, MVT::nxv2i64, 1}, {TTI::SK_Broadcast, MVT::nxv2f16, 1}, {TTI::SK_Broadcast, MVT::nxv4f16, 1}, {TTI::SK_Broadcast, MVT::nxv8f16, 1}, {TTI::SK_Broadcast, MVT::nxv2bf16, 1}, {TTI::SK_Broadcast, MVT::nxv4bf16, 1}, {TTI::SK_Broadcast, MVT::nxv8bf16, 1}, {TTI::SK_Broadcast, MVT::nxv2f32, 1}, {TTI::SK_Broadcast, MVT::nxv4f32, 1}, {TTI::SK_Broadcast, MVT::nxv2f64, 1}, {TTI::SK_Broadcast, MVT::nxv16i1, 1}, {TTI::SK_Broadcast, MVT::nxv8i1, 1}, {TTI::SK_Broadcast, MVT::nxv4i1, 1}, {TTI::SK_Broadcast, MVT::nxv2i1, 1}, // Handle the cases for vector.reverse with scalable vectors {TTI::SK_Reverse, MVT::nxv16i8, 1}, {TTI::SK_Reverse, MVT::nxv8i16, 1}, {TTI::SK_Reverse, MVT::nxv4i32, 1}, {TTI::SK_Reverse, MVT::nxv2i64, 1}, {TTI::SK_Reverse, MVT::nxv2f16, 1}, {TTI::SK_Reverse, MVT::nxv4f16, 1}, {TTI::SK_Reverse, MVT::nxv8f16, 1}, {TTI::SK_Reverse, MVT::nxv2bf16, 1}, {TTI::SK_Reverse, MVT::nxv4bf16, 1}, {TTI::SK_Reverse, MVT::nxv8bf16, 1}, {TTI::SK_Reverse, MVT::nxv2f32, 1}, {TTI::SK_Reverse, MVT::nxv4f32, 1}, {TTI::SK_Reverse, MVT::nxv2f64, 1}, {TTI::SK_Reverse, MVT::nxv16i1, 1}, {TTI::SK_Reverse, MVT::nxv8i1, 1}, {TTI::SK_Reverse, MVT::nxv4i1, 1}, {TTI::SK_Reverse, MVT::nxv2i1, 1}, }; if (const auto *Entry = CostTableLookup(ShuffleTbl, Kind, LT.second)) return LT.first * Entry->Cost; } if (Kind == TTI::SK_Splice && isa(Tp)) return getSpliceCost(Tp, Index); // Inserting a subvector can often be done with either a D, S or H register // move, so long as the inserted vector is "aligned". if (Kind == TTI::SK_InsertSubvector && LT.second.isFixedLengthVector() && LT.second.getSizeInBits() <= 128 && SubTp) { std::pair SubLT = getTypeLegalizationCost(SubTp); if (SubLT.second.isVector()) { int NumElts = LT.second.getVectorNumElements(); int NumSubElts = SubLT.second.getVectorNumElements(); if ((Index % NumSubElts) == 0 && (NumElts % NumSubElts) == 0) return SubLT.first; } } // Restore optimal kind. if (IsExtractSubvector) Kind = TTI::SK_ExtractSubvector; return BaseT::getShuffleCost(Kind, Tp, Mask, CostKind, Index, SubTp, Args, CxtI); } static bool containsDecreasingPointers(Loop *TheLoop, PredicatedScalarEvolution *PSE) { const auto &Strides = DenseMap(); for (BasicBlock *BB : TheLoop->blocks()) { // Scan the instructions in the block and look for addresses that are // consecutive and decreasing. for (Instruction &I : *BB) { if (isa(&I) || isa(&I)) { Value *Ptr = getLoadStorePointerOperand(&I); Type *AccessTy = getLoadStoreType(&I); if (getPtrStride(*PSE, AccessTy, Ptr, TheLoop, Strides, /*Assume=*/true, /*ShouldCheckWrap=*/false) .value_or(0) < 0) return true; } } } return false; } bool AArch64TTIImpl::preferFixedOverScalableIfEqualCost() const { if (SVEPreferFixedOverScalableIfEqualCost.getNumOccurrences()) return SVEPreferFixedOverScalableIfEqualCost; return ST->useFixedOverScalableIfEqualCost(); } unsigned AArch64TTIImpl::getEpilogueVectorizationMinVF() const { return ST->getEpilogueVectorizationMinVF(); } bool AArch64TTIImpl::preferPredicateOverEpilogue(TailFoldingInfo *TFI) { if (!ST->hasSVE()) return false; // We don't currently support vectorisation with interleaving for SVE - with // such loops we're better off not using tail-folding. This gives us a chance // to fall back on fixed-width vectorisation using NEON's ld2/st2/etc. if (TFI->IAI->hasGroups()) return false; TailFoldingOpts Required = TailFoldingOpts::Disabled; if (TFI->LVL->getReductionVars().size()) Required |= TailFoldingOpts::Reductions; if (TFI->LVL->getFixedOrderRecurrences().size()) Required |= TailFoldingOpts::Recurrences; // We call this to discover whether any load/store pointers in the loop have // negative strides. This will require extra work to reverse the loop // predicate, which may be expensive. if (containsDecreasingPointers(TFI->LVL->getLoop(), TFI->LVL->getPredicatedScalarEvolution())) Required |= TailFoldingOpts::Reverse; if (Required == TailFoldingOpts::Disabled) Required |= TailFoldingOpts::Simple; if (!TailFoldingOptionLoc.satisfies(ST->getSVETailFoldingDefaultOpts(), Required)) return false; // Don't tail-fold for tight loops where we would be better off interleaving // with an unpredicated loop. unsigned NumInsns = 0; for (BasicBlock *BB : TFI->LVL->getLoop()->blocks()) { NumInsns += BB->sizeWithoutDebug(); } // We expect 4 of these to be a IV PHI, IV add, IV compare and branch. return NumInsns >= SVETailFoldInsnThreshold; } InstructionCost AArch64TTIImpl::getScalingFactorCost(Type *Ty, GlobalValue *BaseGV, StackOffset BaseOffset, bool HasBaseReg, int64_t Scale, unsigned AddrSpace) const { // Scaling factors are not free at all. // Operands | Rt Latency // ------------------------------------------- // Rt, [Xn, Xm] | 4 // ------------------------------------------- // Rt, [Xn, Xm, lsl #imm] | Rn: 4 Rm: 5 // Rt, [Xn, Wm, #imm] | TargetLoweringBase::AddrMode AM; AM.BaseGV = BaseGV; AM.BaseOffs = BaseOffset.getFixed(); AM.HasBaseReg = HasBaseReg; AM.Scale = Scale; AM.ScalableOffset = BaseOffset.getScalable(); if (getTLI()->isLegalAddressingMode(DL, AM, Ty, AddrSpace)) // Scale represents reg2 * scale, thus account for 1 if // it is not equal to 0 or 1. return AM.Scale != 0 && AM.Scale != 1; return -1; } bool AArch64TTIImpl::shouldTreatInstructionLikeSelect(const Instruction *I) { if (EnableOrLikeSelectOpt) { // For the binary operators (e.g. or) we need to be more careful than // selects, here we only transform them if they are already at a natural // break point in the code - the end of a block with an unconditional // terminator. if (I->getOpcode() == Instruction::Or && isa(I->getNextNode()) && cast(I->getNextNode())->isUnconditional()) return true; if (I->getOpcode() == Instruction::Add || I->getOpcode() == Instruction::Sub) return true; } return BaseT::shouldTreatInstructionLikeSelect(I); } bool AArch64TTIImpl::isLSRCostLess(const TargetTransformInfo::LSRCost &C1, const TargetTransformInfo::LSRCost &C2) { // AArch64 specific here is adding the number of instructions to the // comparison (though not as the first consideration, as some targets do) // along with changing the priority of the base additions. // TODO: Maybe a more nuanced tradeoff between instruction count // and number of registers? To be investigated at a later date. if (EnableLSRCostOpt) return std::tie(C1.NumRegs, C1.Insns, C1.NumBaseAdds, C1.AddRecCost, C1.NumIVMuls, C1.ScaleCost, C1.ImmCost, C1.SetupCost) < std::tie(C2.NumRegs, C2.Insns, C2.NumBaseAdds, C2.AddRecCost, C2.NumIVMuls, C2.ScaleCost, C2.ImmCost, C2.SetupCost); return TargetTransformInfoImplBase::isLSRCostLess(C1, C2); } static bool isSplatShuffle(Value *V) { if (auto *Shuf = dyn_cast(V)) return all_equal(Shuf->getShuffleMask()); return false; } /// Check if both Op1 and Op2 are shufflevector extracts of either the lower /// or upper half of the vector elements. static bool areExtractShuffleVectors(Value *Op1, Value *Op2, bool AllowSplat = false) { // Scalable types can't be extract shuffle vectors. if (Op1->getType()->isScalableTy() || Op2->getType()->isScalableTy()) return false; auto areTypesHalfed = [](Value *FullV, Value *HalfV) { auto *FullTy = FullV->getType(); auto *HalfTy = HalfV->getType(); return FullTy->getPrimitiveSizeInBits().getFixedValue() == 2 * HalfTy->getPrimitiveSizeInBits().getFixedValue(); }; auto extractHalf = [](Value *FullV, Value *HalfV) { auto *FullVT = cast(FullV->getType()); auto *HalfVT = cast(HalfV->getType()); return FullVT->getNumElements() == 2 * HalfVT->getNumElements(); }; ArrayRef M1, M2; Value *S1Op1 = nullptr, *S2Op1 = nullptr; if (!match(Op1, m_Shuffle(m_Value(S1Op1), m_Undef(), m_Mask(M1))) || !match(Op2, m_Shuffle(m_Value(S2Op1), m_Undef(), m_Mask(M2)))) return false; // If we allow splats, set S1Op1/S2Op1 to nullptr for the relavant arg so that // it is not checked as an extract below. if (AllowSplat && isSplatShuffle(Op1)) S1Op1 = nullptr; if (AllowSplat && isSplatShuffle(Op2)) S2Op1 = nullptr; // Check that the operands are half as wide as the result and we extract // half of the elements of the input vectors. if ((S1Op1 && (!areTypesHalfed(S1Op1, Op1) || !extractHalf(S1Op1, Op1))) || (S2Op1 && (!areTypesHalfed(S2Op1, Op2) || !extractHalf(S2Op1, Op2)))) return false; // Check the mask extracts either the lower or upper half of vector // elements. int M1Start = 0; int M2Start = 0; int NumElements = cast(Op1->getType())->getNumElements() * 2; if ((S1Op1 && !ShuffleVectorInst::isExtractSubvectorMask(M1, NumElements, M1Start)) || (S2Op1 && !ShuffleVectorInst::isExtractSubvectorMask(M2, NumElements, M2Start))) return false; if ((M1Start != 0 && M1Start != (NumElements / 2)) || (M2Start != 0 && M2Start != (NumElements / 2))) return false; if (S1Op1 && S2Op1 && M1Start != M2Start) return false; return true; } /// Check if Ext1 and Ext2 are extends of the same type, doubling the bitwidth /// of the vector elements. static bool areExtractExts(Value *Ext1, Value *Ext2) { auto areExtDoubled = [](Instruction *Ext) { return Ext->getType()->getScalarSizeInBits() == 2 * Ext->getOperand(0)->getType()->getScalarSizeInBits(); }; if (!match(Ext1, m_ZExtOrSExt(m_Value())) || !match(Ext2, m_ZExtOrSExt(m_Value())) || !areExtDoubled(cast(Ext1)) || !areExtDoubled(cast(Ext2))) return false; return true; } /// Check if Op could be used with vmull_high_p64 intrinsic. static bool isOperandOfVmullHighP64(Value *Op) { Value *VectorOperand = nullptr; ConstantInt *ElementIndex = nullptr; return match(Op, m_ExtractElt(m_Value(VectorOperand), m_ConstantInt(ElementIndex))) && ElementIndex->getValue() == 1 && isa(VectorOperand->getType()) && cast(VectorOperand->getType())->getNumElements() == 2; } /// Check if Op1 and Op2 could be used with vmull_high_p64 intrinsic. static bool areOperandsOfVmullHighP64(Value *Op1, Value *Op2) { return isOperandOfVmullHighP64(Op1) && isOperandOfVmullHighP64(Op2); } static bool shouldSinkVectorOfPtrs(Value *Ptrs, SmallVectorImpl &Ops) { // Restrict ourselves to the form CodeGenPrepare typically constructs. auto *GEP = dyn_cast(Ptrs); if (!GEP || GEP->getNumOperands() != 2) return false; Value *Base = GEP->getOperand(0); Value *Offsets = GEP->getOperand(1); // We only care about scalar_base+vector_offsets. if (Base->getType()->isVectorTy() || !Offsets->getType()->isVectorTy()) return false; // Sink extends that would allow us to use 32-bit offset vectors. if (isa(Offsets) || isa(Offsets)) { auto *OffsetsInst = cast(Offsets); if (OffsetsInst->getType()->getScalarSizeInBits() > 32 && OffsetsInst->getOperand(0)->getType()->getScalarSizeInBits() <= 32) Ops.push_back(&GEP->getOperandUse(1)); } // Sink the GEP. return true; } /// We want to sink following cases: /// (add|sub|gep) A, ((mul|shl) vscale, imm); (add|sub|gep) A, vscale; /// (add|sub|gep) A, ((mul|shl) zext(vscale), imm); static bool shouldSinkVScale(Value *Op, SmallVectorImpl &Ops) { if (match(Op, m_VScale())) return true; if (match(Op, m_Shl(m_VScale(), m_ConstantInt())) || match(Op, m_Mul(m_VScale(), m_ConstantInt()))) { Ops.push_back(&cast(Op)->getOperandUse(0)); return true; } if (match(Op, m_Shl(m_ZExt(m_VScale()), m_ConstantInt())) || match(Op, m_Mul(m_ZExt(m_VScale()), m_ConstantInt()))) { Value *ZExtOp = cast(Op)->getOperand(0); Ops.push_back(&cast(ZExtOp)->getOperandUse(0)); Ops.push_back(&cast(Op)->getOperandUse(0)); return true; } return false; } /// Check if sinking \p I's operands to I's basic block is profitable, because /// the operands can be folded into a target instruction, e.g. /// shufflevectors extracts and/or sext/zext can be folded into (u,s)subl(2). bool AArch64TTIImpl::isProfitableToSinkOperands( Instruction *I, SmallVectorImpl &Ops) const { if (IntrinsicInst *II = dyn_cast(I)) { switch (II->getIntrinsicID()) { case Intrinsic::aarch64_neon_smull: case Intrinsic::aarch64_neon_umull: if (areExtractShuffleVectors(II->getOperand(0), II->getOperand(1), /*AllowSplat=*/true)) { Ops.push_back(&II->getOperandUse(0)); Ops.push_back(&II->getOperandUse(1)); return true; } [[fallthrough]]; case Intrinsic::fma: case Intrinsic::fmuladd: if (isa(I->getType()) && cast(I->getType())->getElementType()->isHalfTy() && !ST->hasFullFP16()) return false; [[fallthrough]]; case Intrinsic::aarch64_neon_sqdmull: case Intrinsic::aarch64_neon_sqdmulh: case Intrinsic::aarch64_neon_sqrdmulh: // Sink splats for index lane variants if (isSplatShuffle(II->getOperand(0))) Ops.push_back(&II->getOperandUse(0)); if (isSplatShuffle(II->getOperand(1))) Ops.push_back(&II->getOperandUse(1)); return !Ops.empty(); case Intrinsic::aarch64_neon_fmlal: case Intrinsic::aarch64_neon_fmlal2: case Intrinsic::aarch64_neon_fmlsl: case Intrinsic::aarch64_neon_fmlsl2: // Sink splats for index lane variants if (isSplatShuffle(II->getOperand(1))) Ops.push_back(&II->getOperandUse(1)); if (isSplatShuffle(II->getOperand(2))) Ops.push_back(&II->getOperandUse(2)); return !Ops.empty(); case Intrinsic::aarch64_sve_ptest_first: case Intrinsic::aarch64_sve_ptest_last: if (auto *IIOp = dyn_cast(II->getOperand(0))) if (IIOp->getIntrinsicID() == Intrinsic::aarch64_sve_ptrue) Ops.push_back(&II->getOperandUse(0)); return !Ops.empty(); case Intrinsic::aarch64_sme_write_horiz: case Intrinsic::aarch64_sme_write_vert: case Intrinsic::aarch64_sme_writeq_horiz: case Intrinsic::aarch64_sme_writeq_vert: { auto *Idx = dyn_cast(II->getOperand(1)); if (!Idx || Idx->getOpcode() != Instruction::Add) return false; Ops.push_back(&II->getOperandUse(1)); return true; } case Intrinsic::aarch64_sme_read_horiz: case Intrinsic::aarch64_sme_read_vert: case Intrinsic::aarch64_sme_readq_horiz: case Intrinsic::aarch64_sme_readq_vert: case Intrinsic::aarch64_sme_ld1b_vert: case Intrinsic::aarch64_sme_ld1h_vert: case Intrinsic::aarch64_sme_ld1w_vert: case Intrinsic::aarch64_sme_ld1d_vert: case Intrinsic::aarch64_sme_ld1q_vert: case Intrinsic::aarch64_sme_st1b_vert: case Intrinsic::aarch64_sme_st1h_vert: case Intrinsic::aarch64_sme_st1w_vert: case Intrinsic::aarch64_sme_st1d_vert: case Intrinsic::aarch64_sme_st1q_vert: case Intrinsic::aarch64_sme_ld1b_horiz: case Intrinsic::aarch64_sme_ld1h_horiz: case Intrinsic::aarch64_sme_ld1w_horiz: case Intrinsic::aarch64_sme_ld1d_horiz: case Intrinsic::aarch64_sme_ld1q_horiz: case Intrinsic::aarch64_sme_st1b_horiz: case Intrinsic::aarch64_sme_st1h_horiz: case Intrinsic::aarch64_sme_st1w_horiz: case Intrinsic::aarch64_sme_st1d_horiz: case Intrinsic::aarch64_sme_st1q_horiz: { auto *Idx = dyn_cast(II->getOperand(3)); if (!Idx || Idx->getOpcode() != Instruction::Add) return false; Ops.push_back(&II->getOperandUse(3)); return true; } case Intrinsic::aarch64_neon_pmull: if (!areExtractShuffleVectors(II->getOperand(0), II->getOperand(1))) return false; Ops.push_back(&II->getOperandUse(0)); Ops.push_back(&II->getOperandUse(1)); return true; case Intrinsic::aarch64_neon_pmull64: if (!areOperandsOfVmullHighP64(II->getArgOperand(0), II->getArgOperand(1))) return false; Ops.push_back(&II->getArgOperandUse(0)); Ops.push_back(&II->getArgOperandUse(1)); return true; case Intrinsic::masked_gather: if (!shouldSinkVectorOfPtrs(II->getArgOperand(0), Ops)) return false; Ops.push_back(&II->getArgOperandUse(0)); return true; case Intrinsic::masked_scatter: if (!shouldSinkVectorOfPtrs(II->getArgOperand(1), Ops)) return false; Ops.push_back(&II->getArgOperandUse(1)); return true; default: return false; } } auto ShouldSinkCondition = [](Value *Cond) -> bool { auto *II = dyn_cast(Cond); return II && II->getIntrinsicID() == Intrinsic::vector_reduce_or && isa(II->getOperand(0)->getType()); }; switch (I->getOpcode()) { case Instruction::GetElementPtr: case Instruction::Add: case Instruction::Sub: // Sink vscales closer to uses for better isel for (unsigned Op = 0; Op < I->getNumOperands(); ++Op) { if (shouldSinkVScale(I->getOperand(Op), Ops)) { Ops.push_back(&I->getOperandUse(Op)); return true; } } break; case Instruction::Select: { if (!ShouldSinkCondition(I->getOperand(0))) return false; Ops.push_back(&I->getOperandUse(0)); return true; } case Instruction::Br: { if (cast(I)->isUnconditional()) return false; if (!ShouldSinkCondition(cast(I)->getCondition())) return false; Ops.push_back(&I->getOperandUse(0)); return true; } default: break; } if (!I->getType()->isVectorTy()) return false; switch (I->getOpcode()) { case Instruction::Sub: case Instruction::Add: { if (!areExtractExts(I->getOperand(0), I->getOperand(1))) return false; // If the exts' operands extract either the lower or upper elements, we // can sink them too. auto Ext1 = cast(I->getOperand(0)); auto Ext2 = cast(I->getOperand(1)); if (areExtractShuffleVectors(Ext1->getOperand(0), Ext2->getOperand(0))) { Ops.push_back(&Ext1->getOperandUse(0)); Ops.push_back(&Ext2->getOperandUse(0)); } Ops.push_back(&I->getOperandUse(0)); Ops.push_back(&I->getOperandUse(1)); return true; } case Instruction::Or: { // Pattern: Or(And(MaskValue, A), And(Not(MaskValue), B)) -> // bitselect(MaskValue, A, B) where Not(MaskValue) = Xor(MaskValue, -1) if (ST->hasNEON()) { Instruction *OtherAnd, *IA, *IB; Value *MaskValue; // MainAnd refers to And instruction that has 'Not' as one of its operands if (match(I, m_c_Or(m_OneUse(m_Instruction(OtherAnd)), m_OneUse(m_c_And(m_OneUse(m_Not(m_Value(MaskValue))), m_Instruction(IA)))))) { if (match(OtherAnd, m_c_And(m_Specific(MaskValue), m_Instruction(IB)))) { Instruction *MainAnd = I->getOperand(0) == OtherAnd ? cast(I->getOperand(1)) : cast(I->getOperand(0)); // Both Ands should be in same basic block as Or if (I->getParent() != MainAnd->getParent() || I->getParent() != OtherAnd->getParent()) return false; // Non-mask operands of both Ands should also be in same basic block if (I->getParent() != IA->getParent() || I->getParent() != IB->getParent()) return false; Ops.push_back( &MainAnd->getOperandUse(MainAnd->getOperand(0) == IA ? 1 : 0)); Ops.push_back(&I->getOperandUse(0)); Ops.push_back(&I->getOperandUse(1)); return true; } } } return false; } case Instruction::Mul: { auto ShouldSinkSplatForIndexedVariant = [](Value *V) { auto *Ty = cast(V->getType()); // For SVE the lane-indexing is within 128-bits, so we can't fold splats. if (Ty->isScalableTy()) return false; // Indexed variants of Mul exist for i16 and i32 element types only. return Ty->getScalarSizeInBits() == 16 || Ty->getScalarSizeInBits() == 32; }; int NumZExts = 0, NumSExts = 0; for (auto &Op : I->operands()) { // Make sure we are not already sinking this operand if (any_of(Ops, [&](Use *U) { return U->get() == Op; })) continue; if (match(&Op, m_ZExtOrSExt(m_Value()))) { auto *Ext = cast(Op); auto *ExtOp = Ext->getOperand(0); if (isSplatShuffle(ExtOp) && ShouldSinkSplatForIndexedVariant(ExtOp)) Ops.push_back(&Ext->getOperandUse(0)); Ops.push_back(&Op); if (isa(Ext)) NumSExts++; else NumZExts++; continue; } ShuffleVectorInst *Shuffle = dyn_cast(Op); if (!Shuffle) continue; // If the Shuffle is a splat and the operand is a zext/sext, sinking the // operand and the s/zext can help create indexed s/umull. This is // especially useful to prevent i64 mul being scalarized. if (isSplatShuffle(Shuffle) && match(Shuffle->getOperand(0), m_ZExtOrSExt(m_Value()))) { Ops.push_back(&Shuffle->getOperandUse(0)); Ops.push_back(&Op); if (match(Shuffle->getOperand(0), m_SExt(m_Value()))) NumSExts++; else NumZExts++; continue; } Value *ShuffleOperand = Shuffle->getOperand(0); InsertElementInst *Insert = dyn_cast(ShuffleOperand); if (!Insert) continue; Instruction *OperandInstr = dyn_cast(Insert->getOperand(1)); if (!OperandInstr) continue; ConstantInt *ElementConstant = dyn_cast(Insert->getOperand(2)); // Check that the insertelement is inserting into element 0 if (!ElementConstant || !ElementConstant->isZero()) continue; unsigned Opcode = OperandInstr->getOpcode(); if (Opcode == Instruction::SExt) NumSExts++; else if (Opcode == Instruction::ZExt) NumZExts++; else { // If we find that the top bits are known 0, then we can sink and allow // the backend to generate a umull. unsigned Bitwidth = I->getType()->getScalarSizeInBits(); APInt UpperMask = APInt::getHighBitsSet(Bitwidth, Bitwidth / 2); const DataLayout &DL = I->getDataLayout(); if (!MaskedValueIsZero(OperandInstr, UpperMask, DL)) continue; NumZExts++; } // And(Load) is excluded to prevent CGP getting stuck in a loop of sinking // the And, just to hoist it again back to the load. if (!match(OperandInstr, m_And(m_Load(m_Value()), m_Value()))) Ops.push_back(&Insert->getOperandUse(1)); Ops.push_back(&Shuffle->getOperandUse(0)); Ops.push_back(&Op); } // It is profitable to sink if we found two of the same type of extends. if (!Ops.empty() && (NumSExts == 2 || NumZExts == 2)) return true; // Otherwise, see if we should sink splats for indexed variants. if (!ShouldSinkSplatForIndexedVariant(I)) return false; Ops.clear(); if (isSplatShuffle(I->getOperand(0))) Ops.push_back(&I->getOperandUse(0)); if (isSplatShuffle(I->getOperand(1))) Ops.push_back(&I->getOperandUse(1)); return !Ops.empty(); } case Instruction::FMul: { // For SVE the lane-indexing is within 128-bits, so we can't fold splats. if (I->getType()->isScalableTy()) return false; if (cast(I->getType())->getElementType()->isHalfTy() && !ST->hasFullFP16()) return false; // Sink splats for index lane variants if (isSplatShuffle(I->getOperand(0))) Ops.push_back(&I->getOperandUse(0)); if (isSplatShuffle(I->getOperand(1))) Ops.push_back(&I->getOperandUse(1)); return !Ops.empty(); } default: return false; } return false; }