//===-- MemoryProfileInfo.cpp - memory profile info ------------------------==// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file contains utilities to analyze memory profile information. // //===----------------------------------------------------------------------===// #include "llvm/Analysis/MemoryProfileInfo.h" #include "llvm/IR/Constants.h" #include "llvm/Support/CommandLine.h" using namespace llvm; using namespace llvm::memprof; #define DEBUG_TYPE "memory-profile-info" // Upper bound on lifetime access density (accesses per byte per lifetime sec) // for marking an allocation cold. cl::opt MemProfLifetimeAccessDensityColdThreshold( "memprof-lifetime-access-density-cold-threshold", cl::init(0.05), cl::Hidden, cl::desc("The threshold the lifetime access density (accesses per byte per " "lifetime sec) must be under to consider an allocation cold")); // Lower bound on lifetime to mark an allocation cold (in addition to accesses // per byte per sec above). This is to avoid pessimizing short lived objects. cl::opt MemProfAveLifetimeColdThreshold( "memprof-ave-lifetime-cold-threshold", cl::init(200), cl::Hidden, cl::desc("The average lifetime (s) for an allocation to be considered " "cold")); // Lower bound on average lifetime accesses density (total life time access // density / alloc count) for marking an allocation hot. cl::opt MemProfMinAveLifetimeAccessDensityHotThreshold( "memprof-min-ave-lifetime-access-density-hot-threshold", cl::init(1000), cl::Hidden, cl::desc("The minimum TotalLifetimeAccessDensity / AllocCount for an " "allocation to be considered hot")); cl::opt MemProfUseHotHints("memprof-use-hot-hints", cl::init(false), cl::Hidden, cl::desc("Enable use of hot hints (only supported for " "unambigously hot allocations)")); cl::opt MemProfReportHintedSizes( "memprof-report-hinted-sizes", cl::init(false), cl::Hidden, cl::desc("Report total allocation sizes of hinted allocations")); // This is useful if we have enabled reporting of hinted sizes, and want to get // information from the indexing step for all contexts (especially for testing), // or have specified a value less than 100% for -memprof-cloning-cold-threshold. cl::opt MemProfKeepAllNotColdContexts( "memprof-keep-all-not-cold-contexts", cl::init(false), cl::Hidden, cl::desc("Keep all non-cold contexts (increases cloning overheads)")); AllocationType llvm::memprof::getAllocType(uint64_t TotalLifetimeAccessDensity, uint64_t AllocCount, uint64_t TotalLifetime) { // The access densities are multiplied by 100 to hold 2 decimal places of // precision, so need to divide by 100. if (((float)TotalLifetimeAccessDensity) / AllocCount / 100 < MemProfLifetimeAccessDensityColdThreshold // Lifetime is expected to be in ms, so convert the threshold to ms. && ((float)TotalLifetime) / AllocCount >= MemProfAveLifetimeColdThreshold * 1000) return AllocationType::Cold; // The access densities are multiplied by 100 to hold 2 decimal places of // precision, so need to divide by 100. if (MemProfUseHotHints && ((float)TotalLifetimeAccessDensity) / AllocCount / 100 > MemProfMinAveLifetimeAccessDensityHotThreshold) return AllocationType::Hot; return AllocationType::NotCold; } MDNode *llvm::memprof::buildCallstackMetadata(ArrayRef CallStack, LLVMContext &Ctx) { SmallVector StackVals; StackVals.reserve(CallStack.size()); for (auto Id : CallStack) { auto *StackValMD = ValueAsMetadata::get(ConstantInt::get(Type::getInt64Ty(Ctx), Id)); StackVals.push_back(StackValMD); } return MDNode::get(Ctx, StackVals); } MDNode *llvm::memprof::getMIBStackNode(const MDNode *MIB) { assert(MIB->getNumOperands() >= 2); // The stack metadata is the first operand of each memprof MIB metadata. return cast(MIB->getOperand(0)); } AllocationType llvm::memprof::getMIBAllocType(const MDNode *MIB) { assert(MIB->getNumOperands() >= 2); // The allocation type is currently the second operand of each memprof // MIB metadata. This will need to change as we add additional allocation // types that can be applied based on the allocation profile data. auto *MDS = dyn_cast(MIB->getOperand(1)); assert(MDS); if (MDS->getString() == "cold") { return AllocationType::Cold; } else if (MDS->getString() == "hot") { return AllocationType::Hot; } return AllocationType::NotCold; } std::string llvm::memprof::getAllocTypeAttributeString(AllocationType Type) { switch (Type) { case AllocationType::NotCold: return "notcold"; break; case AllocationType::Cold: return "cold"; break; case AllocationType::Hot: return "hot"; break; default: assert(false && "Unexpected alloc type"); } llvm_unreachable("invalid alloc type"); } static void addAllocTypeAttribute(LLVMContext &Ctx, CallBase *CI, AllocationType AllocType) { auto AllocTypeString = getAllocTypeAttributeString(AllocType); auto A = llvm::Attribute::get(Ctx, "memprof", AllocTypeString); CI->addFnAttr(A); } bool llvm::memprof::hasSingleAllocType(uint8_t AllocTypes) { const unsigned NumAllocTypes = llvm::popcount(AllocTypes); assert(NumAllocTypes != 0); return NumAllocTypes == 1; } void CallStackTrie::addCallStack( AllocationType AllocType, ArrayRef StackIds, std::vector ContextSizeInfo) { bool First = true; CallStackTrieNode *Curr = nullptr; for (auto StackId : StackIds) { // If this is the first stack frame, add or update alloc node. if (First) { First = false; if (Alloc) { assert(AllocStackId == StackId); Alloc->addAllocType(AllocType); } else { AllocStackId = StackId; Alloc = new CallStackTrieNode(AllocType); } Curr = Alloc; continue; } // Update existing caller node if it exists. CallStackTrieNode *Prev = nullptr; auto Next = Curr->Callers.find(StackId); if (Next != Curr->Callers.end()) { Prev = Curr; Curr = Next->second; Curr->addAllocType(AllocType); // If this node has an ambiguous alloc type, its callee is not the deepest // point where we have an ambigous allocation type. if (!hasSingleAllocType(Curr->AllocTypes)) Prev->DeepestAmbiguousAllocType = false; continue; } // Otherwise add a new caller node. auto *New = new CallStackTrieNode(AllocType); Curr->Callers[StackId] = New; Curr = New; } assert(Curr); Curr->ContextSizeInfo.insert(Curr->ContextSizeInfo.end(), ContextSizeInfo.begin(), ContextSizeInfo.end()); } void CallStackTrie::addCallStack(MDNode *MIB) { MDNode *StackMD = getMIBStackNode(MIB); assert(StackMD); std::vector CallStack; CallStack.reserve(StackMD->getNumOperands()); for (const auto &MIBStackIter : StackMD->operands()) { auto *StackId = mdconst::dyn_extract(MIBStackIter); assert(StackId); CallStack.push_back(StackId->getZExtValue()); } std::vector ContextSizeInfo; // Collect the context size information if it exists. if (MIB->getNumOperands() > 2) { for (unsigned I = 2; I < MIB->getNumOperands(); I++) { MDNode *ContextSizePair = dyn_cast(MIB->getOperand(I)); assert(ContextSizePair->getNumOperands() == 2); uint64_t FullStackId = mdconst::dyn_extract(ContextSizePair->getOperand(0)) ->getZExtValue(); uint64_t TotalSize = mdconst::dyn_extract(ContextSizePair->getOperand(1)) ->getZExtValue(); ContextSizeInfo.push_back({FullStackId, TotalSize}); } } addCallStack(getMIBAllocType(MIB), CallStack, std::move(ContextSizeInfo)); } static MDNode *createMIBNode(LLVMContext &Ctx, ArrayRef MIBCallStack, AllocationType AllocType, ArrayRef ContextSizeInfo) { SmallVector MIBPayload( {buildCallstackMetadata(MIBCallStack, Ctx)}); MIBPayload.push_back( MDString::get(Ctx, getAllocTypeAttributeString(AllocType))); if (!ContextSizeInfo.empty()) { for (const auto &[FullStackId, TotalSize] : ContextSizeInfo) { auto *FullStackIdMD = ValueAsMetadata::get( ConstantInt::get(Type::getInt64Ty(Ctx), FullStackId)); auto *TotalSizeMD = ValueAsMetadata::get( ConstantInt::get(Type::getInt64Ty(Ctx), TotalSize)); auto *ContextSizeMD = MDNode::get(Ctx, {FullStackIdMD, TotalSizeMD}); MIBPayload.push_back(ContextSizeMD); } } return MDNode::get(Ctx, MIBPayload); } void CallStackTrie::collectContextSizeInfo( CallStackTrieNode *Node, std::vector &ContextSizeInfo) { ContextSizeInfo.insert(ContextSizeInfo.end(), Node->ContextSizeInfo.begin(), Node->ContextSizeInfo.end()); for (auto &Caller : Node->Callers) collectContextSizeInfo(Caller.second, ContextSizeInfo); } void CallStackTrie::convertHotToNotCold(CallStackTrieNode *Node) { if (Node->hasAllocType(AllocationType::Hot)) { Node->removeAllocType(AllocationType::Hot); Node->addAllocType(AllocationType::NotCold); } for (auto &Caller : Node->Callers) convertHotToNotCold(Caller.second); } // Recursive helper to trim contexts and create metadata nodes. // Caller should have pushed Node's loc to MIBCallStack. Doing this in the // caller makes it simpler to handle the many early returns in this method. bool CallStackTrie::buildMIBNodes(CallStackTrieNode *Node, LLVMContext &Ctx, std::vector &MIBCallStack, std::vector &MIBNodes, bool CalleeHasAmbiguousCallerContext, bool &CalleeDeepestAmbiguousAllocType) { // Trim context below the first node in a prefix with a single alloc type. // Add an MIB record for the current call stack prefix. if (hasSingleAllocType(Node->AllocTypes)) { // Because we only clone cold contexts (we don't clone for exposing NotCold // contexts as that is the default allocation behavior), we create MIB // metadata for this context if any of the following are true: // 1) It is cold. // 2) The immediate callee is the deepest point where we have an ambiguous // allocation type (i.e. the other callers that are cold need to know // that we have a not cold context overlapping to this point so that we // know how deep to clone). // 3) MemProfKeepAllNotColdContexts is enabled, which is useful if we are // reporting hinted sizes, and want to get information from the indexing // step for all contexts, or have specified a value less than 100% for // -memprof-cloning-cold-threshold. if (Node->hasAllocType(AllocationType::Cold) || CalleeDeepestAmbiguousAllocType || MemProfKeepAllNotColdContexts) { std::vector ContextSizeInfo; collectContextSizeInfo(Node, ContextSizeInfo); MIBNodes.push_back(createMIBNode(Ctx, MIBCallStack, (AllocationType)Node->AllocTypes, ContextSizeInfo)); // If we just emitted an MIB for a not cold caller, don't need to emit // another one for the callee to correctly disambiguate its cold callers. if (!Node->hasAllocType(AllocationType::Cold)) CalleeDeepestAmbiguousAllocType = false; } return true; } // We don't have a single allocation for all the contexts sharing this prefix, // so recursively descend into callers in trie. if (!Node->Callers.empty()) { bool NodeHasAmbiguousCallerContext = Node->Callers.size() > 1; bool AddedMIBNodesForAllCallerContexts = true; for (auto &Caller : Node->Callers) { MIBCallStack.push_back(Caller.first); AddedMIBNodesForAllCallerContexts &= buildMIBNodes( Caller.second, Ctx, MIBCallStack, MIBNodes, NodeHasAmbiguousCallerContext, Node->DeepestAmbiguousAllocType); // Remove Caller. MIBCallStack.pop_back(); } if (AddedMIBNodesForAllCallerContexts) return true; // We expect that the callers should be forced to add MIBs to disambiguate // the context in this case (see below). assert(!NodeHasAmbiguousCallerContext); } // If we reached here, then this node does not have a single allocation type, // and we didn't add metadata for a longer call stack prefix including any of // Node's callers. That means we never hit a single allocation type along all // call stacks with this prefix. This can happen due to recursion collapsing // or the stack being deeper than tracked by the profiler runtime, leading to // contexts with different allocation types being merged. In that case, we // trim the context just below the deepest context split, which is this // node if the callee has an ambiguous caller context (multiple callers), // since the recursive calls above returned false. Conservatively give it // non-cold allocation type. if (!CalleeHasAmbiguousCallerContext) return false; std::vector ContextSizeInfo; collectContextSizeInfo(Node, ContextSizeInfo); MIBNodes.push_back(createMIBNode(Ctx, MIBCallStack, AllocationType::NotCold, ContextSizeInfo)); return true; } void CallStackTrie::addSingleAllocTypeAttribute(CallBase *CI, AllocationType AT, StringRef Descriptor) { addAllocTypeAttribute(CI->getContext(), CI, AT); if (MemProfReportHintedSizes) { std::vector ContextSizeInfo; collectContextSizeInfo(Alloc, ContextSizeInfo); for (const auto &[FullStackId, TotalSize] : ContextSizeInfo) { errs() << "MemProf hinting: Total size for full allocation context hash " << FullStackId << " and " << Descriptor << " alloc type " << getAllocTypeAttributeString(AT) << ": " << TotalSize << "\n"; } } } // Build and attach the minimal necessary MIB metadata. If the alloc has a // single allocation type, add a function attribute instead. Returns true if // memprof metadata attached, false if not (attribute added). bool CallStackTrie::buildAndAttachMIBMetadata(CallBase *CI) { if (hasSingleAllocType(Alloc->AllocTypes)) { addSingleAllocTypeAttribute(CI, (AllocationType)Alloc->AllocTypes, "single"); return false; } // If there were any hot allocation contexts, the Alloc trie node would have // the Hot type set. If so, because we don't currently support cloning for hot // contexts, they should be converted to NotCold. This happens in the cloning // support anyway, however, doing this now enables more aggressive context // trimming when building the MIB metadata (and possibly may make the // allocation have a single NotCold allocation type), greatly reducing // overheads in bitcode, cloning memory and cloning time. if (Alloc->hasAllocType(AllocationType::Hot)) { convertHotToNotCold(Alloc); // Check whether we now have a single alloc type. if (hasSingleAllocType(Alloc->AllocTypes)) { addSingleAllocTypeAttribute(CI, (AllocationType)Alloc->AllocTypes, "single"); return false; } } auto &Ctx = CI->getContext(); std::vector MIBCallStack; MIBCallStack.push_back(AllocStackId); std::vector MIBNodes; assert(!Alloc->Callers.empty() && "addCallStack has not been called yet"); // The CalleeHasAmbiguousCallerContext flag is meant to say whether the // callee of the given node has more than one caller. Here the node being // passed in is the alloc and it has no callees. So it's false. // Similarly, the last parameter is meant to say whether the callee of the // given node is the deepest point where we have ambiguous alloc types, which // is also false as the alloc has no callees. bool DeepestAmbiguousAllocType = true; if (buildMIBNodes(Alloc, Ctx, MIBCallStack, MIBNodes, /*CalleeHasAmbiguousCallerContext=*/false, DeepestAmbiguousAllocType)) { assert(MIBCallStack.size() == 1 && "Should only be left with Alloc's location in stack"); CI->setMetadata(LLVMContext::MD_memprof, MDNode::get(Ctx, MIBNodes)); return true; } // If there exists corner case that CallStackTrie has one chain to leaf // and all node in the chain have multi alloc type, conservatively give // it non-cold allocation type. // FIXME: Avoid this case before memory profile created. Alternatively, select // hint based on fraction cold. addSingleAllocTypeAttribute(CI, AllocationType::NotCold, "indistinguishable"); return false; } template <> CallStack::CallStackIterator::CallStackIterator( const MDNode *N, bool End) : N(N) { if (!N) return; Iter = End ? N->op_end() : N->op_begin(); } template <> uint64_t CallStack::CallStackIterator::operator*() { assert(Iter != N->op_end()); ConstantInt *StackIdCInt = mdconst::dyn_extract(*Iter); assert(StackIdCInt); return StackIdCInt->getZExtValue(); } template <> uint64_t CallStack::back() const { assert(N); return mdconst::dyn_extract(N->operands().back()) ->getZExtValue(); } MDNode *MDNode::getMergedMemProfMetadata(MDNode *A, MDNode *B) { // TODO: Support more sophisticated merging, such as selecting the one with // more bytes allocated, or implement support for carrying multiple allocation // leaf contexts. For now, keep the first one. if (A) return A; return B; } MDNode *MDNode::getMergedCallsiteMetadata(MDNode *A, MDNode *B) { // TODO: Support more sophisticated merging, which will require support for // carrying multiple contexts. For now, keep the first one. if (A) return A; return B; }