#include #include #include #include #include #include #include #include #include #include // Create an empty corefile with a "kern ver str" LC_NOTE // or a "main bin spec" LC_NOTE.. // If an existing binary is given as a 3rd argument on the cmd line, // the UUID from that binary will be encoded in the corefile. // Otherwise a pre-set UUID will be put in the corefile that // is created. struct main_bin_spec_payload { uint32_t version; uint32_t type; uint64_t address; uint64_t slide; uuid_t uuid; uint32_t log2_pagesize; uint32_t platform; }; union uint32_buf { uint8_t bytebuf[4]; uint32_t val; }; union uint64_buf { uint8_t bytebuf[8]; uint64_t val; }; void add_uint64(std::vector &buf, uint64_t val) { uint64_buf conv; conv.val = val; for (int i = 0; i < 8; i++) buf.push_back(conv.bytebuf[i]); } void add_uint32(std::vector &buf, uint32_t val) { uint32_buf conv; conv.val = val; for (int i = 0; i < 4; i++) buf.push_back(conv.bytebuf[i]); } std::vector lc_thread_load_command(cpu_type_t cputype) { std::vector data; // Emit an LC_THREAD register context appropriate for the cputype // of the binary we're embedded. The tests in this case do not // use the register values, so 0's are fine, lldb needs to see at // least one LC_THREAD in the corefile. #if defined(__x86_64__) if (cputype == CPU_TYPE_X86_64) { add_uint32(data, LC_THREAD); // thread_command.cmd add_uint32(data, 16 + (x86_THREAD_STATE64_COUNT * 4)); // thread_command.cmdsize add_uint32(data, x86_THREAD_STATE64); // thread_command.flavor add_uint32(data, x86_THREAD_STATE64_COUNT); // thread_command.count for (int i = 0; i < x86_THREAD_STATE64_COUNT; i++) { add_uint32(data, 0); // whatever, just some empty register values } } #endif #if defined(__arm64__) || defined(__aarch64__) if (cputype == CPU_TYPE_ARM64) { add_uint32(data, LC_THREAD); // thread_command.cmd add_uint32(data, 16 + (ARM_THREAD_STATE64_COUNT * 4)); // thread_command.cmdsize add_uint32(data, ARM_THREAD_STATE64); // thread_command.flavor add_uint32(data, ARM_THREAD_STATE64_COUNT); // thread_command.count for (int i = 0; i < ARM_THREAD_STATE64_COUNT; i++) { add_uint32(data, 0); // whatever, just some empty register values } } #endif return data; } void add_lc_note_kern_ver_str_load_command( std::vector> &loadcmds, std::vector &payload, int payload_file_offset, std::string uuid, uint64_t address) { std::string ident; if (!uuid.empty()) { ident = "EFI UUID="; ident += uuid; if (address != 0xffffffffffffffff) { ident += "; stext="; char buf[24]; sprintf(buf, "0x%" PRIx64, address); ident += buf; } } std::vector loadcmd_data; add_uint32(loadcmd_data, LC_NOTE); // note_command.cmd add_uint32(loadcmd_data, 40); // note_command.cmdsize char lc_note_name[16]; memset(lc_note_name, 0, 16); strcpy(lc_note_name, "kern ver str"); // lc_note.data_owner for (int i = 0; i < 16; i++) loadcmd_data.push_back(lc_note_name[i]); // we start writing the payload at payload_file_offset to leave // room at the start for the header & the load commands. uint64_t current_payload_offset = payload.size() + payload_file_offset; add_uint64(loadcmd_data, current_payload_offset); // note_command.offset add_uint64(loadcmd_data, 4 + ident.size() + 1); // note_command.size loadcmds.push_back(loadcmd_data); add_uint32(payload, 1); // kerneL_version_string.version for (int i = 0; i < ident.size() + 1; i++) { payload.push_back(ident[i]); } } void add_lc_note_main_bin_spec_load_command( std::vector> &loadcmds, std::vector &payload, int payload_file_offset, std::string uuidstr, uint64_t address, uint64_t slide) { std::vector loadcmd_data; add_uint32(loadcmd_data, LC_NOTE); // note_command.cmd add_uint32(loadcmd_data, 40); // note_command.cmdsize char lc_note_name[16]; memset(lc_note_name, 0, 16); strcpy(lc_note_name, "main bin spec"); // lc_note.data_owner for (int i = 0; i < 16; i++) loadcmd_data.push_back(lc_note_name[i]); // we start writing the payload at payload_file_offset to leave // room at the start for the header & the load commands. uint64_t current_payload_offset = payload.size() + payload_file_offset; add_uint64(loadcmd_data, current_payload_offset); // note_command.offset add_uint64(loadcmd_data, sizeof(struct main_bin_spec_payload)); // note_command.size loadcmds.push_back(loadcmd_data); // Now write the "main bin spec" payload. add_uint32(payload, 2); // version add_uint32(payload, 3); // type == 3 [ firmware, standalone, etc ] add_uint64(payload, address); // load address add_uint64(payload, slide); // slide uuid_t uuid; uuid_parse(uuidstr.c_str(), uuid); for (int i = 0; i < sizeof(uuid_t); i++) payload.push_back(uuid[i]); add_uint32(payload, 0); // log2_pagesize unspecified add_uint32(payload, 0); // platform unspecified } void add_lc_segment(std::vector> &loadcmds, std::vector &payload, int payload_file_offset) { std::vector loadcmd_data; struct segment_command_64 seg; seg.cmd = LC_SEGMENT_64; seg.cmdsize = sizeof(struct segment_command_64); // no sections memset(seg.segname, 0, 16); seg.vmaddr = 0xffffff7f96400000; seg.vmsize = 4096; seg.fileoff = payload.size() + payload_file_offset; seg.filesize = 0; seg.maxprot = 1; seg.initprot = 1; seg.nsects = 0; seg.flags = 0; uint8_t *p = (uint8_t *)&seg; for (int i = 0; i < sizeof(struct segment_command_64); i++) { loadcmd_data.push_back(*(p + i)); } loadcmds.push_back(loadcmd_data); } std::string get_uuid_from_binary(const char *fn, cpu_type_t &cputype, cpu_subtype_t &cpusubtype) { // We may be given a file, set reasonable values. #if defined(__x86_64__) cputype = CPU_TYPE_X86; cpusubtype = CPU_SUBTYPE_X86_ALL; #else cputype = CPU_TYPE_ARM64; cpusubtype = CPU_SUBTYPE_ARM64_ALL; #endif if (strlen(fn) == 0) return {}; FILE *f = fopen(fn, "r"); if (f == nullptr) { fprintf(stderr, "Unable to open binary '%s' to get uuid\n", fn); exit(1); } uint32_t num_of_load_cmds = 0; uint32_t size_of_load_cmds = 0; std::string uuid; off_t file_offset = 0; uint8_t magic[4]; if (::fread(magic, 1, 4, f) != 4) { fprintf(stderr, "Failed to read magic number from input file %s\n", fn); exit(1); } uint8_t magic_32_be[] = {0xfe, 0xed, 0xfa, 0xce}; uint8_t magic_32_le[] = {0xce, 0xfa, 0xed, 0xfe}; uint8_t magic_64_be[] = {0xfe, 0xed, 0xfa, 0xcf}; uint8_t magic_64_le[] = {0xcf, 0xfa, 0xed, 0xfe}; if (memcmp(magic, magic_32_be, 4) == 0 || memcmp(magic, magic_64_be, 4) == 0) { fprintf(stderr, "big endian corefiles not supported\n"); exit(1); } ::fseeko(f, 0, SEEK_SET); if (memcmp(magic, magic_32_le, 4) == 0) { struct mach_header mh; if (::fread(&mh, 1, sizeof(mh), f) != sizeof(mh)) { fprintf(stderr, "error reading mach header from input file\n"); exit(1); } if (mh.cputype != CPU_TYPE_X86_64 && mh.cputype != CPU_TYPE_ARM64) { fprintf(stderr, "This tool creates an x86_64/arm64 corefile but " "the supplied binary '%s' is cputype 0x%x\n", fn, (uint32_t)mh.cputype); exit(1); } num_of_load_cmds = mh.ncmds; size_of_load_cmds = mh.sizeofcmds; file_offset += sizeof(struct mach_header); cputype = mh.cputype; cpusubtype = mh.cpusubtype; } else { struct mach_header_64 mh; if (::fread(&mh, 1, sizeof(mh), f) != sizeof(mh)) { fprintf(stderr, "error reading mach header from input file\n"); exit(1); } if (mh.cputype != CPU_TYPE_X86_64 && mh.cputype != CPU_TYPE_ARM64) { fprintf(stderr, "This tool creates an x86_64/arm64 corefile but " "the supplied binary '%s' is cputype 0x%x\n", fn, (uint32_t)mh.cputype); exit(1); } num_of_load_cmds = mh.ncmds; size_of_load_cmds = mh.sizeofcmds; file_offset += sizeof(struct mach_header_64); cputype = mh.cputype; cpusubtype = mh.cpusubtype; } off_t load_cmds_offset = file_offset; for (int i = 0; i < num_of_load_cmds && (file_offset - load_cmds_offset) < size_of_load_cmds; i++) { ::fseeko(f, file_offset, SEEK_SET); uint32_t cmd; uint32_t cmdsize; ::fread(&cmd, sizeof(uint32_t), 1, f); ::fread(&cmdsize, sizeof(uint32_t), 1, f); if (cmd == LC_UUID) { struct uuid_command uuidcmd; ::fseeko(f, file_offset, SEEK_SET); if (::fread(&uuidcmd, 1, sizeof(uuidcmd), f) != sizeof(uuidcmd)) { fprintf(stderr, "Unable to read LC_UUID load command.\n"); exit(1); } uuid_string_t uuidstr; uuid_unparse(uuidcmd.uuid, uuidstr); uuid = uuidstr; break; } file_offset += cmdsize; } return uuid; } int main(int argc, char **argv) { if (argc != 6) { fprintf( stderr, "usage: create-empty-corefile version-string|main-bin-spec " "
\n"); fprintf(stderr, "
is base 16, 0xffffffffffffffff means unknown\n"); fprintf(stderr, " is base 16, 0xffffffffffffffff means unknown\n"); fprintf( stderr, "Create a Mach-O corefile with an either LC_NOTE 'kern ver str' or \n"); fprintf(stderr, "an LC_NOTE 'main bin spec' load command without an " "address specified, depending on\n"); fprintf(stderr, "whether the 1st arg is version-string or main-bin-spec\n"); fprintf(stderr, "\nan LC_NOTE 'kern ver str' with no binary provided " "(empty string filename) to get a UUID\n"); fprintf(stderr, "means an empty 'kern ver str' will be written, an invalid " "LC_NOTE that lldb should handle.\n"); exit(1); } if (strcmp(argv[1], "version-string") != 0 && strcmp(argv[1], "main-bin-spec") != 0) { fprintf(stderr, "arg1 was not version-string or main-bin-spec\n"); exit(1); } cpu_type_t cputype; cpu_subtype_t cpusubtype; std::string uuid = get_uuid_from_binary(argv[3], cputype, cpusubtype); // An array of load commands (in the form of byte arrays) std::vector> load_commands; // An array of corefile contents (page data, lc_note data, etc) std::vector payload; errno = 0; uint64_t address = strtoull(argv[4], NULL, 16); if (errno != 0) { fprintf(stderr, "Unable to parse address %s as base 16", argv[4]); exit(1); } errno = 0; uint64_t slide = strtoull(argv[5], NULL, 16); if (errno != 0) { fprintf(stderr, "Unable to parse slide %s as base 16", argv[4]); exit(1); } // First add all the load commands / payload so we can figure out how large // the load commands will actually be. load_commands.push_back(lc_thread_load_command(cputype)); if (strcmp(argv[1], "version-string") == 0) add_lc_note_kern_ver_str_load_command(load_commands, payload, 0, uuid, address); else add_lc_note_main_bin_spec_load_command(load_commands, payload, 0, uuid, address, slide); add_lc_segment(load_commands, payload, 0); int size_of_load_commands = 0; for (const auto &lc : load_commands) size_of_load_commands += lc.size(); int header_and_load_cmd_room = sizeof(struct mach_header_64) + size_of_load_commands; // Erase the load commands / payload now that we know how much space is // needed, redo it. load_commands.clear(); payload.clear(); load_commands.push_back(lc_thread_load_command(cputype)); if (strcmp(argv[1], "version-string") == 0) add_lc_note_kern_ver_str_load_command( load_commands, payload, header_and_load_cmd_room, uuid, address); else add_lc_note_main_bin_spec_load_command( load_commands, payload, header_and_load_cmd_room, uuid, address, slide); add_lc_segment(load_commands, payload, header_and_load_cmd_room); struct mach_header_64 mh; mh.magic = MH_MAGIC_64; mh.cputype = cputype; mh.cpusubtype = cpusubtype; mh.filetype = MH_CORE; mh.ncmds = load_commands.size(); mh.sizeofcmds = size_of_load_commands; mh.flags = 0; mh.reserved = 0; FILE *f = fopen(argv[2], "w"); if (f == nullptr) { fprintf(stderr, "Unable to open file %s for writing\n", argv[2]); exit(1); } fwrite(&mh, sizeof(struct mach_header_64), 1, f); for (const auto &lc : load_commands) fwrite(lc.data(), lc.size(), 1, f); fseek(f, header_and_load_cmd_room, SEEK_SET); fwrite(payload.data(), payload.size(), 1, f); fclose(f); }