//===----------------------------------------------------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // unique_ptr // T& unique_ptr::operator[](size_t) const #include #include #include #include #include "test_macros.h" #include "type_algorithms.h" static int next = 0; struct EnumeratedDefaultCtor { EnumeratedDefaultCtor() : value(0) { value = ++next; } int value; }; template struct WithTrivialDtor { std::array padding = {'x'}; TEST_CONSTEXPR_CXX23 friend bool operator==(WithTrivialDtor const& x, WithTrivialDtor const& y) { return x.padding == y.padding; } }; template struct WithNonTrivialDtor { std::array padding = {'x'}; TEST_CONSTEXPR_CXX23 friend bool operator==(WithNonTrivialDtor const& x, WithNonTrivialDtor const& y) { return x.padding == y.padding; } TEST_CONSTEXPR_CXX23 ~WithNonTrivialDtor() {} }; template struct CustomDeleter : std::default_delete {}; struct NoopDeleter { template TEST_CONSTEXPR_CXX23 void operator()(T*) const {} }; TEST_CONSTEXPR_CXX23 bool test() { // Basic test { std::unique_ptr p(new int[3]); { int& result = p[0]; result = 0; } { int& result = p[1]; result = 1; } { int& result = p[2]; result = 2; } assert(p[0] == 0); assert(p[1] == 1); assert(p[2] == 2); } // Ensure that the order of access is correct after initializing a unique_ptr but // before actually modifying any of its elements. The implementation would have to // really try for this not to be the case, but we still check it. // // This requires assigning known values to the elements when they are first constructed, // which requires global state. { if (!TEST_IS_CONSTANT_EVALUATED) { std::unique_ptr p(new EnumeratedDefaultCtor[3]); assert(p[0].value == 1); assert(p[1].value == 2); assert(p[2].value == 3); } } // Make sure operator[] is const-qualified { std::unique_ptr const p(new int[3]); p[0] = 42; assert(p[0] == 42); } // Make sure we properly handle types with trivial and non-trivial destructors of different // sizes. This is relevant because some implementations may want to use properties of the // ABI like array cookies and these properties often depend on e.g. the triviality of T's // destructor, T's size and so on. #if TEST_STD_VER >= 20 // this test is too painful to write before C++20 { using TrickyCookieTypes = types::type_list< WithTrivialDtor<1>, WithTrivialDtor<2>, WithTrivialDtor<3>, WithTrivialDtor<4>, WithTrivialDtor<8>, WithTrivialDtor<16>, WithTrivialDtor<256>, WithNonTrivialDtor<1>, WithNonTrivialDtor<2>, WithNonTrivialDtor<3>, WithNonTrivialDtor<4>, WithNonTrivialDtor<8>, WithNonTrivialDtor<16>, WithNonTrivialDtor<256>>; types::for_each(TrickyCookieTypes(), [] { // Array allocated with `new T[n]`, default deleter { std::unique_ptr> p(new T[3]); assert(p[0] == T()); assert(p[1] == T()); assert(p[2] == T()); } // Array allocated with `new T[n]`, custom deleter { std::unique_ptr> p(new T[3]); assert(p[0] == T()); assert(p[1] == T()); assert(p[2] == T()); } // Array not allocated with `new T[n]`, custom deleter // // This test aims to ensure that the implementation doesn't try to use an array cookie // when there is none. { T array[50] = {}; std::unique_ptr p(&array[0]); assert(p[0] == T()); assert(p[1] == T()); assert(p[2] == T()); } }); } #endif // C++20 return true; } int main(int, char**) { test(); #if TEST_STD_VER >= 23 static_assert(test()); #endif return 0; }