//===----------------------------------------------------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // UNSUPPORTED: c++03, c++11, c++14, c++17 // functional // template // constexpr unspecified bind_front(F&&, Args&&...); #include #include #include #include #include #include #include "callable_types.h" #include "test_macros.h" struct CopyMoveInfo { enum { none, copy, move } copy_kind; constexpr CopyMoveInfo() : copy_kind(none) {} constexpr CopyMoveInfo(CopyMoveInfo const&) : copy_kind(copy) {} constexpr CopyMoveInfo(CopyMoveInfo&&) : copy_kind(move) {} }; template struct is_bind_frontable { template static auto test(int) -> decltype((void)std::bind_front(std::declval()...), std::true_type()); template static std::false_type test(...); static constexpr bool value = decltype(test(0))::value; }; struct NotCopyMove { NotCopyMove() = delete; NotCopyMove(const NotCopyMove&) = delete; NotCopyMove(NotCopyMove&&) = delete; template void operator()(Args&& ...) const { } }; struct NonConstCopyConstructible { explicit NonConstCopyConstructible() {} NonConstCopyConstructible(NonConstCopyConstructible&) {} }; struct MoveConstructible { explicit MoveConstructible() {} MoveConstructible(MoveConstructible&&) {} }; struct MakeTuple { template constexpr auto operator()(Args&& ...args) const { return std::make_tuple(std::forward(args)...); } }; template struct Elem { template constexpr bool operator==(Elem const&) const { return X == Y; } }; constexpr bool test() { // Bind arguments, call without arguments { { auto f = std::bind_front(MakeTuple{}); assert(f() == std::make_tuple()); } { auto f = std::bind_front(MakeTuple{}, Elem<1>{}); assert(f() == std::make_tuple(Elem<1>{})); } { auto f = std::bind_front(MakeTuple{}, Elem<1>{}, Elem<2>{}); assert(f() == std::make_tuple(Elem<1>{}, Elem<2>{})); } { auto f = std::bind_front(MakeTuple{}, Elem<1>{}, Elem<2>{}, Elem<3>{}); assert(f() == std::make_tuple(Elem<1>{}, Elem<2>{}, Elem<3>{})); } } // Bind no arguments, call with arguments { { auto f = std::bind_front(MakeTuple{}); assert(f(Elem<1>{}) == std::make_tuple(Elem<1>{})); } { auto f = std::bind_front(MakeTuple{}); assert(f(Elem<1>{}, Elem<2>{}) == std::make_tuple(Elem<1>{}, Elem<2>{})); } { auto f = std::bind_front(MakeTuple{}); assert(f(Elem<1>{}, Elem<2>{}, Elem<3>{}) == std::make_tuple(Elem<1>{}, Elem<2>{}, Elem<3>{})); } } // Bind arguments, call with arguments { { auto f = std::bind_front(MakeTuple{}, Elem<1>{}); assert(f(Elem<10>{}) == std::make_tuple(Elem<1>{}, Elem<10>{})); } { auto f = std::bind_front(MakeTuple{}, Elem<1>{}, Elem<2>{}); assert(f(Elem<10>{}) == std::make_tuple(Elem<1>{}, Elem<2>{}, Elem<10>{})); } { auto f = std::bind_front(MakeTuple{}, Elem<1>{}, Elem<2>{}, Elem<3>{}); assert(f(Elem<10>{}) == std::make_tuple(Elem<1>{}, Elem<2>{}, Elem<3>{}, Elem<10>{})); } { auto f = std::bind_front(MakeTuple{}, Elem<1>{}); assert(f(Elem<10>{}, Elem<11>{}) == std::make_tuple(Elem<1>{}, Elem<10>{}, Elem<11>{})); } { auto f = std::bind_front(MakeTuple{}, Elem<1>{}, Elem<2>{}); assert(f(Elem<10>{}, Elem<11>{}) == std::make_tuple(Elem<1>{}, Elem<2>{}, Elem<10>{}, Elem<11>{})); } { auto f = std::bind_front(MakeTuple{}, Elem<1>{}, Elem<2>{}, Elem<3>{}); assert(f(Elem<10>{}, Elem<11>{}) == std::make_tuple(Elem<1>{}, Elem<2>{}, Elem<3>{}, Elem<10>{}, Elem<11>{})); } } // Basic tests with fundamental types { int n = 2; int m = 1; int sum = 0; auto add = [](int x, int y) { return x + y; }; auto addN = [](int a, int b, int c, int d, int e, int f) { return a + b + c + d + e + f; }; auto add_ref = [&](int x, int y) -> int& { return sum = x + y; }; auto add_rref = [&](int x, int y) -> int&& { return std::move(sum = x + y); }; auto a = std::bind_front(add, m, n); assert(a() == 3); auto b = std::bind_front(addN, m, n, m, m, m, m); assert(b() == 7); auto c = std::bind_front(addN, n, m); assert(c(1, 1, 1, 1) == 7); auto d = std::bind_front(add_ref, n, m); std::same_as decltype(auto) dresult(d()); assert(dresult == 3); auto e = std::bind_front(add_rref, n, m); std::same_as decltype(auto) eresult(e()); assert(eresult == 3); auto f = std::bind_front(add, n); assert(f(3) == 5); auto g = std::bind_front(add, n, 1); assert(g() == 3); auto h = std::bind_front(addN, 1, 1, 1); assert(h(2, 2, 2) == 9); auto i = std::bind_front(add_ref, n); std::same_as decltype(auto) iresult(i(5)); assert(iresult == 7); auto j = std::bind_front(add_rref, m); std::same_as decltype(auto) jresult(j(4)); assert(jresult == 5); } // Make sure we don't treat std::reference_wrapper specially. { auto add = [](std::reference_wrapper a, std::reference_wrapper b) { return a.get() + b.get(); }; int i = 1, j = 2; auto f = std::bind_front(add, std::ref(i)); assert(f(std::ref(j)) == 3); } // Make sure we can call a function that's a pointer to a member function. { struct MemberFunction { constexpr bool foo(int, int) { return true; } }; MemberFunction value; auto fn = std::bind_front(&MemberFunction::foo, value, 0); assert(fn(0)); } // Make sure that we copy the bound arguments into the unspecified-type. { auto add = [](int x, int y) { return x + y; }; int n = 2; auto i = std::bind_front(add, n, 1); n = 100; assert(i() == 3); } // Make sure we pass the bound arguments to the function object // with the right value category. { { auto wasCopied = [](CopyMoveInfo info) { return info.copy_kind == CopyMoveInfo::copy; }; CopyMoveInfo info; auto copied = std::bind_front(wasCopied, info); assert(copied()); } { auto wasMoved = [](CopyMoveInfo info) { return info.copy_kind == CopyMoveInfo::move; }; CopyMoveInfo info; auto moved = std::bind_front(wasMoved, info); assert(std::move(moved)()); } } // Make sure we call the correctly cv-ref qualified operator() based on the // value category of the bind_front unspecified-type. { struct F { constexpr int operator()() & { return 1; } constexpr int operator()() const& { return 2; } constexpr int operator()() && { return 3; } constexpr int operator()() const&& { return 4; } }; auto x = std::bind_front(F{}); using X = decltype(x); assert(static_cast(x)() == 1); assert(static_cast(x)() == 2); assert(static_cast(x)() == 3); assert(static_cast(x)() == 4); } // Make sure the bind_front unspecified-type is NOT invocable when the call would select a // differently-qualified operator(). // // For example, if the call to `operator()() &` is ill-formed, the call to the unspecified-type // should be ill-formed and not fall back to the `operator()() const&` overload. { // Make sure we delete the & overload when the underlying call isn't valid { struct F { void operator()() & = delete; void operator()() const&; void operator()() &&; void operator()() const&&; }; using X = decltype(std::bind_front(F{})); static_assert(!std::is_invocable_v); static_assert( std::is_invocable_v); static_assert( std::is_invocable_v); static_assert( std::is_invocable_v); } // There's no way to make sure we delete the const& overload when the underlying call isn't valid, // so we can't check this one. // Make sure we delete the && overload when the underlying call isn't valid { struct F { void operator()() &; void operator()() const&; void operator()() && = delete; void operator()() const&&; }; using X = decltype(std::bind_front(F{})); static_assert( std::is_invocable_v); static_assert( std::is_invocable_v); static_assert(!std::is_invocable_v); static_assert( std::is_invocable_v); } // Make sure we delete the const&& overload when the underlying call isn't valid { struct F { void operator()() &; void operator()() const&; void operator()() &&; void operator()() const&& = delete; }; using X = decltype(std::bind_front(F{})); static_assert( std::is_invocable_v); static_assert( std::is_invocable_v); static_assert( std::is_invocable_v); static_assert(!std::is_invocable_v); } } // Some examples by Tim Song { { struct T { }; struct F { void operator()(T&&) const &; void operator()(T&&) && = delete; }; using X = decltype(std::bind_front(F{})); static_assert(!std::is_invocable_v); } { struct T { }; struct F { void operator()(T const&) const; void operator()(T&&) const = delete; }; using X = decltype(std::bind_front(F{}, T{})); static_assert(!std::is_invocable_v); } } // Test properties of the constructor of the unspecified-type returned by bind_front. { { MoveOnlyCallable value(true); auto ret = std::bind_front(std::move(value), 1); assert(ret()); assert(ret(1, 2, 3)); auto ret1 = std::move(ret); assert(!ret()); assert(ret1()); assert(ret1(1, 2, 3)); using RetT = decltype(ret); static_assert( std::is_move_constructible::value); static_assert(!std::is_copy_constructible::value); static_assert(!std::is_move_assignable::value); static_assert(!std::is_copy_assignable::value); } { CopyCallable value(true); auto ret = std::bind_front(value, 1); assert(ret()); assert(ret(1, 2, 3)); auto ret1 = std::move(ret); assert(ret1()); assert(ret1(1, 2, 3)); auto ret2 = std::bind_front(std::move(value), 1); assert(!ret()); assert(ret2()); assert(ret2(1, 2, 3)); using RetT = decltype(ret); static_assert( std::is_move_constructible::value); static_assert( std::is_copy_constructible::value); static_assert(!std::is_move_assignable::value); static_assert(!std::is_copy_assignable::value); } { CopyAssignableWrapper value(true); using RetT = decltype(std::bind_front(value, 1)); static_assert(std::is_move_constructible::value); static_assert(std::is_copy_constructible::value); static_assert(std::is_move_assignable::value); static_assert(std::is_copy_assignable::value); } { MoveAssignableWrapper value(true); using RetT = decltype(std::bind_front(std::move(value), 1)); static_assert( std::is_move_constructible::value); static_assert(!std::is_copy_constructible::value); static_assert( std::is_move_assignable::value); static_assert(!std::is_copy_assignable::value); } } // Make sure bind_front is SFINAE friendly { static_assert(!std::is_constructible_v); static_assert(!std::is_move_constructible_v); static_assert(!is_bind_frontable::value); static_assert(!is_bind_frontable::value); auto takeAnything = [](auto&& ...) { }; static_assert(!std::is_constructible_v); static_assert( std::is_move_constructible_v); static_assert( is_bind_frontable::value); static_assert(!is_bind_frontable::value); static_assert( std::is_constructible_v); static_assert(!std::is_move_constructible_v); static_assert(!is_bind_frontable::value); static_assert(!is_bind_frontable::value); } // Make sure bind_front's unspecified type's operator() is SFINAE-friendly { using T = decltype(std::bind_front(std::declval(), 1)); static_assert(!std::is_invocable::value); static_assert( std::is_invocable::value); static_assert(!std::is_invocable::value); static_assert(!std::is_invocable::value); } return true; } int main(int, char**) { test(); static_assert(test()); return 0; }