//===----------------------------------------------------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // UNSUPPORTED: c++03, c++11, c++14, c++17, c++20 // // template // constexpr unspecified bind_back(F&& f, Args&&... args); #include #include #include #include #include #include "callable_types.h" #include "types.h" constexpr void test_basic_bindings() { { // Bind arguments, call without arguments { auto f = std::bind_back(MakeTuple{}); assert(f() == std::make_tuple()); } { auto f = std::bind_back(MakeTuple{}, Elem<1>{}); assert(f() == std::make_tuple(Elem<1>{})); } { auto f = std::bind_back(MakeTuple{}, Elem<1>{}, Elem<2>{}); assert(f() == std::make_tuple(Elem<1>{}, Elem<2>{})); } { auto f = std::bind_back(MakeTuple{}, Elem<1>{}, Elem<2>{}, Elem<3>{}); assert(f() == std::make_tuple(Elem<1>{}, Elem<2>{}, Elem<3>{})); } } { // Bind no arguments, call with arguments { auto f = std::bind_back(MakeTuple{}); assert(f(Elem<1>{}) == std::make_tuple(Elem<1>{})); } { auto f = std::bind_back(MakeTuple{}); assert(f(Elem<1>{}, Elem<2>{}) == std::make_tuple(Elem<1>{}, Elem<2>{})); } { auto f = std::bind_back(MakeTuple{}); assert(f(Elem<1>{}, Elem<2>{}, Elem<3>{}) == std::make_tuple(Elem<1>{}, Elem<2>{}, Elem<3>{})); } } { // Bind arguments, call with arguments { auto f = std::bind_back(MakeTuple{}, Elem<1>{}); assert(f(Elem<10>{}) == std::make_tuple(Elem<10>{}, Elem<1>{})); } { auto f = std::bind_back(MakeTuple{}, Elem<1>{}, Elem<2>{}); assert(f(Elem<10>{}) == std::make_tuple(Elem<10>{}, Elem<1>{}, Elem<2>{})); } { auto f = std::bind_back(MakeTuple{}, Elem<1>{}, Elem<2>{}, Elem<3>{}); assert(f(Elem<10>{}) == std::make_tuple(Elem<10>{}, Elem<1>{}, Elem<2>{}, Elem<3>{})); } { auto f = std::bind_back(MakeTuple{}, Elem<1>{}); assert(f(Elem<10>{}, Elem<11>{}) == std::make_tuple(Elem<10>{}, Elem<11>{}, Elem<1>{})); } { auto f = std::bind_back(MakeTuple{}, Elem<1>{}, Elem<2>{}); assert(f(Elem<10>{}, Elem<11>{}) == std::make_tuple(Elem<10>{}, Elem<11>{}, Elem<1>{}, Elem<2>{})); } { auto f = std::bind_back(MakeTuple{}, Elem<1>{}, Elem<2>{}, Elem<3>{}); assert(f(Elem<10>{}, Elem<11>{}) == std::make_tuple(Elem<10>{}, Elem<11>{}, Elem<1>{}, Elem<2>{}, Elem<3>{})); } { auto f = std::bind_back(MakeTuple{}, Elem<1>{}, Elem<2>{}, Elem<3>{}); assert(f(Elem<10>{}, Elem<11>{}, Elem<12>{}) == std::make_tuple(Elem<10>{}, Elem<11>{}, Elem<12>{}, Elem<1>{}, Elem<2>{}, Elem<3>{})); } } { // Basic tests with fundamental types int n = 2; int m = 1; int sum = 0; auto add = [](int x, int y) { return x + y; }; auto add_n = [](int a, int b, int c, int d, int e, int f) { return a + b + c + d + e + f; }; auto add_ref = [&](int x, int y) -> int& { return sum = x + y; }; auto add_rref = [&](int x, int y) -> int&& { return std::move(sum = x + y); }; auto a = std::bind_back(add, m, n); assert(a() == 3); auto b = std::bind_back(add_n, m, n, m, m, m, m); assert(b() == 7); auto c = std::bind_back(add_n, n, m); assert(c(1, 1, 1, 1) == 7); auto d = std::bind_back(add_ref, n, m); std::same_as decltype(auto) dresult(d()); assert(dresult == 3); auto e = std::bind_back(add_rref, n, m); std::same_as decltype(auto) eresult(e()); assert(eresult == 3); auto f = std::bind_back(add, n); assert(f(3) == 5); auto g = std::bind_back(add, n, 1); assert(g() == 3); auto h = std::bind_back(add_n, 1, 1, 1); assert(h(2, 2, 2) == 9); auto i = std::bind_back(add_ref, n); std::same_as decltype(auto) iresult(i(5)); assert(iresult == 7); auto j = std::bind_back(add_rref, m); std::same_as decltype(auto) jresult(j(4)); assert(jresult == 5); } } constexpr void test_edge_cases() { { // Make sure we don't treat std::reference_wrapper specially. auto sub = [](std::reference_wrapper a, std::reference_wrapper b) { return a.get() - b.get(); }; int i = 1; int j = 2; auto f = std::bind_back(sub, std::ref(i)); assert(f(std::ref(j)) == 1); } { // Make sure we can call a function that's a pointer to a member function. struct MemberFunction { constexpr int foo(int x, int y) { return x * y; } }; MemberFunction value; auto fn = std::bind_back(&MemberFunction::foo, 2, 3); assert(fn(value) == 6); } { // Make sure we can call a function that's a pointer to a member object. struct MemberObject { int obj; }; MemberObject value{.obj = 3}; auto fn = std::bind_back(&MemberObject::obj); assert(fn(value) == 3); } } constexpr void test_passing_arguments() { { // Make sure that we copy the bound arguments into the unspecified-type. auto add = [](int x, int y) { return x + y; }; int n = 2; auto f = std::bind_back(add, n, 1); n = 100; assert(f() == 3); } { // Make sure we pass the bound arguments to the function object // with the right value category. { auto was_copied = [](CopyMoveInfo info) { return info.copy_kind == CopyMoveInfo::copy; }; CopyMoveInfo info; auto f = std::bind_back(was_copied, info); assert(f()); } { auto was_moved = [](CopyMoveInfo info) { return info.copy_kind == CopyMoveInfo::move; }; CopyMoveInfo info; auto f = std::bind_back(was_moved, info); assert(std::move(f)()); } } } constexpr void test_function_objects() { { // Make sure we call the correctly cv-ref qualified operator() // based on the value category of the bind_back unspecified-type. struct X { constexpr int operator()() & { return 1; } constexpr int operator()() const& { return 2; } constexpr int operator()() && { return 3; } constexpr int operator()() const&& { return 4; } }; auto f = std::bind_back(X{}); using F = decltype(f); assert(static_cast(f)() == 1); assert(static_cast(f)() == 2); assert(static_cast(f)() == 3); assert(static_cast(f)() == 4); } // Make sure the `bind_back` unspecified-type does not model invocable // when the call would select a differently-qualified operator(). // // For example, if the call to `operator()() &` is ill-formed, the call to the unspecified-type // should be ill-formed and not fall back to the `operator()() const&` overload. { // Make sure we delete the & overload when the underlying call isn't valid. { struct X { void operator()() & = delete; void operator()() const&; void operator()() &&; void operator()() const&&; }; using F = decltype(std::bind_back(X{})); static_assert(!std::invocable); static_assert(std::invocable); static_assert(std::invocable); static_assert(std::invocable); } // There's no way to make sure we delete the const& overload when the underlying call isn't valid, // so we can't check this one. { // Make sure we delete the && overload when the underlying call isn't valid. struct X { void operator()() &; void operator()() const&; void operator()() && = delete; void operator()() const&&; }; using F = decltype(std::bind_back(X{})); static_assert(std::invocable); static_assert(std::invocable); static_assert(!std::invocable); static_assert(std::invocable); } { // Make sure we delete the const&& overload when the underlying call isn't valid. struct X { void operator()() &; void operator()() const&; void operator()() &&; void operator()() const&& = delete; }; using F = decltype(std::bind_back(X{})); static_assert(std::invocable); static_assert(std::invocable); static_assert(std::invocable); static_assert(!std::invocable); } } { // Extra value category tests struct X {}; { struct Y { void operator()(X&&) const&; void operator()(X&&) && = delete; }; using F = decltype(std::bind_back(Y{})); static_assert(std::invocable); static_assert(!std::invocable); } { struct Y { void operator()(const X&) const; void operator()(X&&) const = delete; }; using F = decltype(std::bind_back(Y{}, X{})); static_assert(std::invocable); static_assert(!std::invocable); } } } constexpr void test_return_type() { { // Test properties of the constructor of the unspecified-type returned by bind_back. { // Test move constructor when function is move only. MoveOnlyCallable value(true); auto f = std::bind_back(std::move(value), 1); assert(f()); assert(f(1, 2, 3)); auto f1 = std::move(f); assert(!f()); assert(f1()); assert(f1(1, 2, 3)); using F = decltype(f); static_assert(std::is_move_constructible::value); static_assert(!std::is_copy_constructible::value); static_assert(!std::is_move_assignable::value); static_assert(!std::is_copy_assignable::value); } { // Test move constructor when function is copyable but not assignable. CopyCallable value(true); auto f = std::bind_back(value, 1); assert(f()); assert(f(1, 2, 3)); auto f1 = std::move(f); assert(!f()); assert(f1()); assert(f1(1, 2, 3)); auto f2 = std::bind_back(std::move(value), 1); assert(f1()); assert(f2()); assert(f2(1, 2, 3)); using F = decltype(f); static_assert(std::is_move_constructible::value); static_assert(std::is_copy_constructible::value); static_assert(!std::is_move_assignable::value); static_assert(!std::is_copy_assignable::value); } { // Test constructors when function is copy assignable. using F = decltype(std::bind_back(std::declval(), 1)); static_assert(std::is_move_constructible::value); static_assert(std::is_copy_constructible::value); static_assert(std::is_move_assignable::value); static_assert(std::is_copy_assignable::value); } { // Test constructors when function is move assignable only. using F = decltype(std::bind_back(std::declval(), 1)); static_assert(std::is_move_constructible::value); static_assert(!std::is_copy_constructible::value); static_assert(std::is_move_assignable::value); static_assert(!std::is_copy_assignable::value); } } { // Make sure bind_back's unspecified type's operator() is SFINAE-friendly. using F = decltype(std::bind_back(std::declval(), 1)); static_assert(!std::is_invocable::value); static_assert(std::is_invocable::value); static_assert(!std::is_invocable::value); static_assert(!std::is_invocable::value); } } constexpr bool test() { test_basic_bindings(); test_edge_cases(); test_passing_arguments(); test_function_objects(); test_return_type(); return true; } int main(int, char**) { test(); static_assert(test()); return 0; }