//===----------------------------------------------------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // UNSUPPORTED: no-localization // UNSUPPORTED: c++03, c++11, c++14 // UNSUPPORTED: availability-filesystem-missing // ADDITIONAL_COMPILE_FLAGS: -D_LIBCPP_DISABLE_DEPRECATION_WARNINGS // // class path // Test constructors, accessors and modifiers that convert from/to various // character encodings. Constructors and modifiers (append, concat, // operator/=, operator+=) accept inputs with various character encodings, // and accessors (*string(), string<>(), u8string()) export the string with // various encodings. // // Some encodings are standardized; char16_t, char32_t and the u8string // accessor and u8path constructor (and normal functions taking char8_t in // C++20) convert from/to UTF-16, UTF-32 and UTF-8. wchar_t can be either // UTF-16 or UTF-32 depending on the size of the wchar_t type, or can be // left unimplemented. // // Plain char is implicitly UTF-8 on posix systems. On Windows, plain char // is supposed to be in the same encoding as the platform's native file // system APIs consumes in the functions that take narrow strings as path // names. #include #include #include #include "test_macros.h" #ifdef _WIN32 # include // SetFileApisToANSI & friends #endif namespace fs = std::filesystem; // Test conversion with strings that fit within the latin1 charset, that fit // within one code point in UTF-16, and that can be expressible in certain // one-byte code pages. static void test_latin_unicode() { const char16_t u16str[] = { 0xe5, 0xe4, 0xf6, 0x00 }; const char32_t u32str[] = { 0xe5, 0xe4, 0xf6, 0x00 }; const char str[] = { char(0xc3), char(0xa5), char(0xc3), char(0xa4), char(0xc3), char(0xb6), 0x00 }; // UTF8, in a regular char string #if TEST_STD_VER > 17 && defined(__cpp_lib_char8_t) const char8_t u8str[] = { 0xc3, 0xa5, 0xc3, 0xa4, 0xc3, 0xb6, 0x00 }; #else const char u8str[] = { char(0xc3), char(0xa5), char(0xc3), char(0xa4), char(0xc3), char(0xb6), 0x00 }; #endif #ifndef TEST_HAS_NO_WIDE_CHARACTERS const wchar_t wstr[] = { 0xe5, 0xe4, 0xf6, 0x00 }; #endif // Test well-defined conversion between UTF-8, UTF-16 and UTF-32 { const fs::path p(u16str); assert(p.u8string() == u8str); assert(p.u16string() == u16str); assert(p.u32string() == u32str); assert(p.string() == u16str); assert(p.string() == u32str); } { const fs::path p(u32str); assert(p.u8string() == u8str); assert(p.u16string() == u16str); assert(p.u32string() == u32str); assert(p.string() == u16str); assert(p.string() == u32str); } { const fs::path p = fs::u8path(str); assert(p.u8string() == u8str); assert(p.u16string() == u16str); assert(p.u32string() == u32str); assert(p.string() == u16str); assert(p.string() == u32str); } #if TEST_STD_VER > 17 && defined(__cpp_lib_char8_t) { // In C++20, the path constructor can unambiguously handle UTF-8 input, // even if the plain char constructor would treat it as something else. const fs::path p(u8str); assert(p.u8string() == u8str); assert(p.u16string() == u16str); assert(p.u32string() == u32str); assert(p.string() == u8str); assert(p.string() == u16str); assert(p.string() == u32str); } // Check reading various inputs with string() { const fs::path p(u16str); assert(p.string() == u8str); } { const fs::path p(u32str); assert(p.string() == u8str); } { const fs::path p = fs::u8path(str); assert(p.string() == u8str); } #endif #ifndef TEST_HAS_NO_WIDE_CHARACTERS // Test conversion to/from wchar_t. { const fs::path p(u16str); assert(p.wstring() == wstr); assert(p.string() == wstr); } { const fs::path p = fs::u8path(str); assert(p.wstring() == wstr); assert(p.string() == wstr); } { const fs::path p(wstr); assert(p.wstring() == wstr); assert(p.u8string() == u8str); assert(p.u16string() == u16str); assert(p.u32string() == u32str); assert(p.string() == wstr); } #endif // TEST_HAS_NO_WIDE_CHARACTERS #ifndef _WIN32 // Test conversion to/from regular char-based string. On POSIX, this // is implied to convert to/from UTF-8. { const fs::path p(str); assert(p.string() == str); assert(p.u16string() == u16str); assert(p.string() == str); } { const fs::path p(u16str); assert(p.string() == str); assert(p.string() == str); } #else // On windows, the narrow char-based input/output is supposed to be // in the charset that narrow file IO APIs use. This can either be the // current active code page (ACP) or the OEM code page, exposed by // the AreFileApisANSI() function, and settable with SetFileApisToANSI() and // SetFileApisToOEM(). We can't set which codepage is active within // the process, but for some specific known ones, we can check if they // behave as expected. SetFileApisToANSI(); if (GetACP() == 1252) { const char latin1[] = { char(0xe5), char(0xe4), char(0xf6), 0x00 }; { const fs::path p(wstr); assert(p.string() == latin1); assert(p.string() == latin1); } { const fs::path p(latin1); assert(p.string() == latin1); assert(p.wstring() == wstr); assert(p.u8string() == u8str); assert(p.u16string() == u16str); assert(p.string() == latin1); assert(p.string() == wstr); } } SetFileApisToOEM(); if (GetOEMCP() == 850 || GetOEMCP() == 437) { // These chars are identical in both CP 850 and 437 const char cp850[] = { char(0x86), char(0x84), char(0x94), 0x00 }; { const fs::path p(wstr); assert(p.string() == cp850); assert(p.string() == cp850); } { const fs::path p(cp850); assert(p.string() == cp850); assert(p.wstring() == wstr); assert(p.u8string() == u8str); assert(p.u16string() == u16str); assert(p.string() == cp850); assert(p.string() == wstr); } } #endif } // Test conversion with strings that don't fit within one UTF-16 code point. // Here, wchar_t can be either UTF-16 or UTF-32 depending on the size on the // particular platform. static void test_wide_unicode() { const char16_t u16str[] = { 0xd801, 0xdc37, 0x00 }; const char32_t u32str[] = { 0x10437, 0x00 }; #if TEST_STD_VER > 17 && defined(__cpp_lib_char8_t) const char8_t u8str[] = { 0xf0, 0x90, 0x90, 0xb7, 0x00 }; #else const char u8str[] = { char(0xf0), char(0x90), char(0x90), char(0xb7), 0x00 }; #endif const char str[] = { char(0xf0), char(0x90), char(0x90), char(0xb7), 0x00 }; { const fs::path p = fs::u8path(str); assert(p.u8string() == u8str); assert(p.u16string() == u16str); assert(p.u32string() == u32str); } { const fs::path p(u16str); assert(p.u8string() == u8str); assert(p.u16string() == u16str); assert(p.u32string() == u32str); } { const fs::path p(u32str); assert(p.u8string() == u8str); assert(p.u16string() == u16str); assert(p.u32string() == u32str); } #if !defined(TEST_HAS_NO_WIDE_CHARACTERS) && defined(__SIZEOF_WCHAR_T__) # if __SIZEOF_WCHAR_T__ == 2 const wchar_t wstr[] = { 0xd801, 0xdc37, 0x00 }; # else const wchar_t wstr[] = { 0x10437, 0x00 }; # endif // Test conversion to/from wchar_t. { const fs::path p = fs::u8path(str); assert(p.wstring() == wstr); } { const fs::path p(u16str); assert(p.wstring() == wstr); } { const fs::path p(u32str); assert(p.wstring() == wstr); } { const fs::path p(wstr); assert(p.u8string() == u8str); assert(p.u16string() == u16str); assert(p.u32string() == u32str); assert(p.wstring() == wstr); } #endif // !defined(TEST_HAS_NO_WIDE_CHARACTERS) && defined(__SIZEOF_WCHAR_T__) } // Test appending paths in different encodings. static void test_append() { const char16_t u16str[] = { 0xd801, 0xdc37, 0x00 }; const char32_t u32str[] = { 0x10437, 0x00 }; const char32_t u32ref[] = { 0x10437, fs::path::preferred_separator, 0x10437, fs::path::preferred_separator, 0x10437, 0x00 }; const char str[] = { char(0xf0), char(0x90), char(0x90), char(0xb7), 0x00 }; { fs::path p = fs::u8path(str) / u16str / u32str; assert(p.u32string() == u32ref); p = fs::u8path(str).append(u16str).append(u32str); assert(p.u32string() == u32ref); p = fs::u8path(str); p /= u16str; p /= u32str; assert(p.u32string() == u32ref); } #if !defined(TEST_HAS_NO_WIDE_CHARACTERS) && defined(__SIZEOF_WCHAR_T__) # if __SIZEOF_WCHAR_T__ == 2 const wchar_t wstr[] = { 0xd801, 0xdc37, 0x00 }; # else const wchar_t wstr[] = { 0x10437, 0x00 }; # endif // Test conversion from wchar_t. { fs::path p = fs::path(u16str) / wstr / u32str; assert(p.u32string() == u32ref); p = fs::path(u16str).append(wstr).append(u32str); assert(p.u32string() == u32ref); p = fs::path(u16str); p /= wstr; p /= u32str; assert(p.u32string() == u32ref); } #endif // !defined(TEST_HAS_NO_WIDE_CHARACTERS) && defined(__SIZEOF_WCHAR_T__) } static void test_concat() { const char16_t u16str[] = { 0xd801, 0xdc37, 0x00 }; const char32_t u32str[] = { 0x10437, 0x00 }; const char32_t u32ref[] = { 0x10437, 0x10437, 0x10437, 0x00 }; const char str[] = { char(0xf0), char(0x90), char(0x90), char(0xb7), 0x00 }; { fs::path p = fs::u8path(str); p += u16str; p += u32str; assert(p.u32string() == u32ref); p = fs::u8path(str).concat(u16str).concat(u32str); assert(p.u32string() == u32ref); } #if !defined(TEST_HAS_NO_WIDE_CHARACTERS) && defined(__SIZEOF_WCHAR_T__) # if __SIZEOF_WCHAR_T__ == 2 const wchar_t wstr[] = { 0xd801, 0xdc37, 0x00 }; # else const wchar_t wstr[] = { 0x10437, 0x00 }; # endif // Test conversion from wchar_t. { fs::path p = fs::path(u16str); p += wstr; p += u32str; assert(p.u32string() == u32ref); p = fs::path(u16str).concat(wstr).concat(u32str); assert(p.u32string() == u32ref); } #endif // !defined(TEST_HAS_NO_WIDE_CHARACTERS) && defined(__SIZEOF_WCHAR_T__) } static void test_append_concat_narrow() { const char16_t u16str[] = { 0xe5, 0x00 }; const char32_t u32ref_append[] = { 0xe5, fs::path::preferred_separator, 0xe5, 0x00 }; const char32_t u32ref_concat[] = { 0xe5, 0xe5, 0x00 }; #if TEST_STD_VER > 17 && defined(__cpp_lib_char8_t) { const char8_t u8str[] = { 0xc3, 0xa5, 0x00 }; // In C++20, appends of a char8_t string is unambiguously treated as // UTF-8. fs::path p = fs::path(u16str) / u8str; assert(p.u32string() == u32ref_append); p = fs::path(u16str).append(u8str); assert(p.u32string() == u32ref_append); p = fs::path(u16str); p /= u8str; assert(p.u32string() == u32ref_append); p = fs::path(u16str).concat(u8str); assert(p.u32string() == u32ref_concat); p = fs::path(u16str); p += u8str; assert(p.u32string() == u32ref_concat); } #endif #ifndef _WIN32 // Test appending a regular char-based string. On POSIX, this // is implied to convert to/from UTF-8. { const char str[] = { char(0xc3), char(0xa5), 0x00 }; // UTF8, in a regular char string fs::path p = fs::path(u16str) / str; assert(p.u32string() == u32ref_append); p = fs::path(u16str).append(str); assert(p.u32string() == u32ref_append); p = fs::path(u16str); p /= str; assert(p.u32string() == u32ref_append); p = fs::path(u16str).concat(str); assert(p.u32string() == u32ref_concat); p = fs::path(u16str); p += str; assert(p.u32string() == u32ref_concat); } #else SetFileApisToANSI(); if (GetACP() == 1252) { const char latin1[] = { char(0xe5), 0x00 }; fs::path p = fs::path(u16str) / latin1; assert(p.u32string() == u32ref_append); p = fs::path(u16str).append(latin1); assert(p.u32string() == u32ref_append); p = fs::path(u16str); p /= latin1; assert(p.u32string() == u32ref_append); p = fs::path(u16str).concat(latin1); assert(p.u32string() == u32ref_concat); p = fs::path(u16str); p += latin1; assert(p.u32string() == u32ref_concat); } SetFileApisToOEM(); if (GetOEMCP() == 850 || GetOEMCP() == 437) { // This chars is identical in both CP 850 and 437 const char cp850[] = { char(0x86), 0x00 }; fs::path p = fs::path(u16str) / cp850; assert(p.u32string() == u32ref_append); p = fs::path(u16str).append(cp850); assert(p.u32string() == u32ref_append); p = fs::path(u16str); p /= cp850; assert(p.u32string() == u32ref_append); p = fs::path(u16str).concat(cp850); assert(p.u32string() == u32ref_concat); p = fs::path(u16str); p += cp850; assert(p.u32string() == u32ref_concat); } #endif } int main(int, char**) { test_latin_unicode(); test_wide_unicode(); test_append(); test_concat(); test_append_concat_narrow(); return 0; }