//===----------------------------------------------------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // UNSUPPORTED: c++03, c++11, c++14, c++17 // // template // requires indirectly_writable, Proj1>, // projected, Proj2>>> // constexpr ranges::binary_transform_result, borrowed_iterator_t, O> // ranges::transform(R1&& r1, R2&& r2, O result, // F binary_op, Proj1 proj1 = {}, Proj2 proj2 = {}); // The iterator overloads are tested in ranges.transform.binary.iterator.pass.cpp. #include #include #include #include #include #include "test_iterators.h" #include "almost_satisfies_types.h" struct BinaryFunc { int operator()(int, int); }; template concept HasTransformR = requires(Range r, int* out) { std::ranges::transform(r, r, out, BinaryFunc{}); }; static_assert(HasTransformR>); static_assert(!HasTransformR); static_assert(!HasTransformR); static_assert(!HasTransformR); static_assert(!HasTransformR); static_assert(!HasTransformR); static_assert(!HasTransformR); template concept HasTransformOut = requires(int* it, int* sent, It out, std::array range) { std::ranges::transform(range, range, out, BinaryFunc{}); }; static_assert(HasTransformOut); static_assert(!HasTransformOut); // check indirectly_readable static_assert(HasTransformOut); static_assert(!HasTransformOut); struct MoveOnlyFunctor { MoveOnlyFunctor(const MoveOnlyFunctor&) = delete; MoveOnlyFunctor(MoveOnlyFunctor&&) = default; int operator()(int, int); }; template concept HasTransformFuncBinary = requires(int* it, int* sent, int* out, std::array range, Func func) { std::ranges::transform(range, range, out, func); }; static_assert(HasTransformFuncBinary); static_assert(!HasTransformFuncBinary); static_assert(std::is_same_v, std::ranges::in_in_out_result>); // clang-format off template constexpr bool test_iterators() { { // simple int a[] = {1, 2, 3, 4, 5}; int b[] = {5, 4, 3, 2, 1}; int c[5]; auto range1 = std::ranges::subrange(In1(a), Sent1(In1(a + 5))); auto range2 = std::ranges::subrange(In2(b), Sent2(In2(b + 5))); std::same_as> decltype(auto) ret = std::ranges::transform( range1, range2, Out(c), [](int i, int j) { return i + j; }); assert((std::to_array(c) == std::array{6, 6, 6, 6, 6})); assert(base(ret.in1) == a + 5); assert(base(ret.in2) == b + 5); assert(base(ret.out) == c + 5); } { // first range empty std::array a = {}; int b[] = {5, 4, 3, 2, 1}; int c[5]; auto range1 = std::ranges::subrange(In1(a.data()), Sent1(In1(a.data()))); auto range2 = std::ranges::subrange(In2(b), Sent2(In2(b + 5))); auto ret = std::ranges::transform(range1, range2, Out(c), [](int i, int j) { return i + j; }); assert(base(ret.in1) == a.data()); assert(base(ret.in2) == b); assert(base(ret.out) == c); } { // second range empty int a[] = {5, 4, 3, 2, 1}; std::array b = {}; int c[5]; auto range1 = std::ranges::subrange(In1(a), Sent1(In1(a + 5))); auto range2 = std::ranges::subrange(In2(b.data()), Sent2(In2(b.data()))); auto ret = std::ranges::transform(range1, range2, Out(c), [](int i, int j) { return i + j; }); assert(base(ret.in1) == a); assert(base(ret.in2) == b.data()); assert(base(ret.out) == c); } { // both ranges empty std::array a = {}; std::array b = {}; int c[5]; auto range1 = std::ranges::subrange(In1(a.data()), Sent1(In1(a.data()))); auto range2 = std::ranges::subrange(In2(b.data()), Sent2(In2(b.data()))); auto ret = std::ranges::transform(range1, range2, Out(c), [](int i, int j) { return i + j; }); assert(base(ret.in1) == a.data()); assert(base(ret.in2) == b.data()); assert(base(ret.out) == c); } { // first range one element int a[] = {2}; int b[] = {5, 4, 3, 2, 1}; int c[5]; auto range1 = std::ranges::subrange(In1(a), Sent1(In1(a + 1))); auto range2 = std::ranges::subrange(In2(b), Sent2(In2(b + 5))); auto ret = std::ranges::transform(range1, range2, Out(c), [](int i, int j) { return i + j; }); assert(c[0] == 7); assert(base(ret.in1) == a + 1); assert(base(ret.in2) == b + 1); assert(base(ret.out) == c + 1); } { // second range contains one element int a[] = {5, 4, 3, 2, 1}; int b[] = {4}; int c[5]; auto range1 = std::ranges::subrange(In1(a), Sent1(In1(a + 5))); auto range2 = std::ranges::subrange(In2(b), Sent2(In2(b + 1))); auto ret = std::ranges::transform(range1, range2, Out(c), [](int i, int j) { return i + j; }); assert(c[0] == 9); assert(base(ret.in1) == a + 1); assert(base(ret.in2) == b + 1); assert(base(ret.out) == c + 1); } { // check that the transform function and projection call counts are correct int predCount = 0; int proj1Count = 0; int proj2Count = 0; auto pred = [&](int, int) { ++predCount; return 1; }; auto proj1 = [&](int) { ++proj1Count; return 0; }; auto proj2 = [&](int) { ++proj2Count; return 0; }; int a[] = {1, 2, 3, 4}; int b[] = {1, 2, 3, 4}; std::array c; auto range1 = std::ranges::subrange(In1(a), Sent1(In1(a + 4))); auto range2 = std::ranges::subrange(In2(b), Sent2(In2(b + 4))); std::ranges::transform(range1, range2, Out(c.data()), pred, proj1, proj2); assert(predCount == 4); assert(proj1Count == 4); assert(proj2Count == 4); assert((c == std::array{1, 1, 1, 1})); } return true; } // clang-format on template constexpr void test_iterator_in1() { test_iterators, In2, Out, sentinel_wrapper>, Sent2>(); test_iterators, In2, Out, sentinel_wrapper>, Sent2>(); test_iterators, In2, Out, forward_iterator, Sent2>(); test_iterators, In2, Out, bidirectional_iterator, Sent2>(); test_iterators, In2, Out, random_access_iterator, Sent2>(); test_iterators, In2, Out, contiguous_iterator, Sent2>(); test_iterators(); // static_asserting here to avoid hitting the constant evaluation step limit static_assert(test_iterators, In2, Out, sentinel_wrapper>, Sent2>()); static_assert(test_iterators, In2, Out, sentinel_wrapper>, Sent2>()); static_assert(test_iterators, In2, Out, forward_iterator, Sent2>()); static_assert(test_iterators, In2, Out, bidirectional_iterator, Sent2>()); static_assert(test_iterators, In2, Out, random_access_iterator, Sent2>()); static_assert(test_iterators, In2, Out, contiguous_iterator, Sent2>()); static_assert(test_iterators()); } template constexpr void test_iterators_in1_in2() { test_iterator_in1, Out, sentinel_wrapper>>(); test_iterator_in1, Out, sentinel_wrapper>>(); test_iterator_in1, Out>(); test_iterator_in1, Out>(); test_iterator_in1, Out>(); test_iterator_in1, Out>(); test_iterator_in1(); } constexpr bool test() { test_iterators_in1_in2>(); test_iterators_in1_in2>(); test_iterators_in1_in2>(); test_iterators_in1_in2>(); test_iterators_in1_in2>(); test_iterators_in1_in2>(); test_iterators_in1_in2(); { // check that std::ranges::dangling is returned properly { int b[] = {2, 5, 4, 3, 1}; std::array c; std::same_as> auto ret = std::ranges::transform(std::array{1, 2, 3, 5, 4}, b, c.data(), [](int i, int j) { return i * j; }); assert((c == std::array{2, 10, 12, 15, 4})); assert(ret.in2 == b + 5); assert(ret.out == c.data() + c.size()); } { int a[] = {2, 5, 4, 3, 1, 4, 5, 6}; std::array c; std::same_as> auto ret = std::ranges::transform(a, std::array{1, 2, 3, 5, 4, 5, 6, 7}, c.data(), [](int i, int j) { return i * j; }); assert((c == std::array{2, 10, 12, 15, 4, 20, 30, 42})); assert(ret.in1 == a + 8); assert(ret.out == c.data() + c.size()); } { std::array c; std::same_as> auto ret = std::ranges::transform(std::array{4, 4, 4}, std::array{4, 4, 4}, c.data(), [](int i, int j) { return i * j; }); assert((c == std::array{16, 16, 16})); assert(ret.out == c.data() + c.size()); } } { // check that returning another type from the projection works struct S { int i; int other; }; S a[] = { S{0, 0}, S{1, 0}, S{3, 0}, S{10, 0} }; S b[] = { S{0, 10}, S{1, 20}, S{3, 30}, S{10, 40} }; std::array c; std::ranges::transform(a, b, c.begin(), [](S s1, S s2) { return s1.i + s2.other; }); assert((c == std::array{10, 21, 33, 50})); } { // check that std::invoke is used struct S { int i; }; S a[] = { S{1}, S{3}, S{2} }; S b[] = { S{2}, S{5}, S{3} }; std::array c; auto ret = std::ranges::transform(a, b, c.data(), [](int i, int j) { return i + j + 2; }, &S::i, &S::i); assert((c == std::array{5, 10, 7})); assert(ret.out == c.data() + 3); } return true; } int main(int, char**) { test(); static_assert(test()); return 0; }