// -*- C++ -*- //===----------------------------------------------------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #ifndef _LIBCPP___MEMORY_UNIQUE_PTR_H #define _LIBCPP___MEMORY_UNIQUE_PTR_H #include <__assert> #include <__compare/compare_three_way.h> #include <__compare/compare_three_way_result.h> #include <__compare/three_way_comparable.h> #include <__config> #include <__cstddef/nullptr_t.h> #include <__cstddef/size_t.h> #include <__functional/hash.h> #include <__functional/operations.h> #include <__memory/allocator_traits.h> // __pointer #include <__memory/array_cookie.h> #include <__memory/auto_ptr.h> #include <__memory/compressed_pair.h> #include <__memory/pointer_traits.h> #include <__type_traits/add_lvalue_reference.h> #include <__type_traits/common_type.h> #include <__type_traits/conditional.h> #include <__type_traits/dependent_type.h> #include <__type_traits/enable_if.h> #include <__type_traits/integral_constant.h> #include <__type_traits/is_array.h> #include <__type_traits/is_assignable.h> #include <__type_traits/is_bounded_array.h> #include <__type_traits/is_constant_evaluated.h> #include <__type_traits/is_constructible.h> #include <__type_traits/is_convertible.h> #include <__type_traits/is_function.h> #include <__type_traits/is_pointer.h> #include <__type_traits/is_reference.h> #include <__type_traits/is_same.h> #include <__type_traits/is_swappable.h> #include <__type_traits/is_trivially_relocatable.h> #include <__type_traits/is_unbounded_array.h> #include <__type_traits/is_void.h> #include <__type_traits/remove_extent.h> #include <__type_traits/type_identity.h> #include <__utility/declval.h> #include <__utility/forward.h> #include <__utility/move.h> #include <__utility/private_constructor_tag.h> #include #if !defined(_LIBCPP_HAS_NO_PRAGMA_SYSTEM_HEADER) # pragma GCC system_header #endif _LIBCPP_PUSH_MACROS #include <__undef_macros> _LIBCPP_BEGIN_NAMESPACE_STD template struct _LIBCPP_TEMPLATE_VIS default_delete { static_assert(!is_function<_Tp>::value, "default_delete cannot be instantiated for function types"); #ifndef _LIBCPP_CXX03_LANG _LIBCPP_HIDE_FROM_ABI constexpr default_delete() _NOEXCEPT = default; #else _LIBCPP_HIDE_FROM_ABI default_delete() {} #endif template ::value, int> = 0> _LIBCPP_HIDE_FROM_ABI _LIBCPP_CONSTEXPR_SINCE_CXX23 default_delete(const default_delete<_Up>&) _NOEXCEPT {} _LIBCPP_HIDE_FROM_ABI _LIBCPP_CONSTEXPR_SINCE_CXX23 void operator()(_Tp* __ptr) const _NOEXCEPT { static_assert(sizeof(_Tp) >= 0, "cannot delete an incomplete type"); static_assert(!is_void<_Tp>::value, "cannot delete an incomplete type"); delete __ptr; } }; template struct _LIBCPP_TEMPLATE_VIS default_delete<_Tp[]> { private: template struct _EnableIfConvertible : enable_if::value> {}; public: #ifndef _LIBCPP_CXX03_LANG _LIBCPP_HIDE_FROM_ABI constexpr default_delete() _NOEXCEPT = default; #else _LIBCPP_HIDE_FROM_ABI default_delete() {} #endif template _LIBCPP_HIDE_FROM_ABI _LIBCPP_CONSTEXPR_SINCE_CXX23 default_delete(const default_delete<_Up[]>&, typename _EnableIfConvertible<_Up>::type* = 0) _NOEXCEPT {} template _LIBCPP_HIDE_FROM_ABI _LIBCPP_CONSTEXPR_SINCE_CXX23 typename _EnableIfConvertible<_Up>::type operator()(_Up* __ptr) const _NOEXCEPT { static_assert(sizeof(_Up) >= 0, "cannot delete an incomplete type"); delete[] __ptr; } }; template struct __is_default_deleter : false_type {}; template struct __is_default_deleter > : true_type {}; template struct __unique_ptr_deleter_sfinae { static_assert(!is_reference<_Deleter>::value, "incorrect specialization"); typedef const _Deleter& __lval_ref_type; typedef _Deleter&& __good_rval_ref_type; typedef true_type __enable_rval_overload; }; template struct __unique_ptr_deleter_sfinae<_Deleter const&> { typedef const _Deleter& __lval_ref_type; typedef const _Deleter&& __bad_rval_ref_type; typedef false_type __enable_rval_overload; }; template struct __unique_ptr_deleter_sfinae<_Deleter&> { typedef _Deleter& __lval_ref_type; typedef _Deleter&& __bad_rval_ref_type; typedef false_type __enable_rval_overload; }; #if defined(_LIBCPP_ABI_ENABLE_UNIQUE_PTR_TRIVIAL_ABI) # define _LIBCPP_UNIQUE_PTR_TRIVIAL_ABI __attribute__((__trivial_abi__)) #else # define _LIBCPP_UNIQUE_PTR_TRIVIAL_ABI #endif template > class _LIBCPP_UNIQUE_PTR_TRIVIAL_ABI _LIBCPP_TEMPLATE_VIS unique_ptr { public: typedef _Tp element_type; typedef _Dp deleter_type; using pointer _LIBCPP_NODEBUG = __pointer<_Tp, deleter_type>; static_assert(!is_rvalue_reference::value, "the specified deleter type cannot be an rvalue reference"); // A unique_ptr contains the following members which may be trivially relocatable: // - pointer : this may be trivially relocatable, so it's checked // - deleter_type: this may be trivially relocatable, so it's checked // // This unique_ptr implementation only contains a pointer to the unique object and a deleter, so there are no // references to itself. This means that the entire structure is trivially relocatable if its members are. using __trivially_relocatable _LIBCPP_NODEBUG = __conditional_t< __libcpp_is_trivially_relocatable::value && __libcpp_is_trivially_relocatable::value, unique_ptr, void>; private: _LIBCPP_COMPRESSED_PAIR(pointer, __ptr_, deleter_type, __deleter_); using _DeleterSFINAE _LIBCPP_NODEBUG = __unique_ptr_deleter_sfinae<_Dp>; template using _LValRefType _LIBCPP_NODEBUG = typename __dependent_type<_DeleterSFINAE, _Dummy>::__lval_ref_type; template using _GoodRValRefType _LIBCPP_NODEBUG = typename __dependent_type<_DeleterSFINAE, _Dummy>::__good_rval_ref_type; template using _BadRValRefType _LIBCPP_NODEBUG = typename __dependent_type<_DeleterSFINAE, _Dummy>::__bad_rval_ref_type; template , _Dummy>::type> using _EnableIfDeleterDefaultConstructible _LIBCPP_NODEBUG = __enable_if_t::value && !is_pointer<_Deleter>::value>; template using _EnableIfDeleterConstructible _LIBCPP_NODEBUG = __enable_if_t::value>; template using _EnableIfMoveConvertible _LIBCPP_NODEBUG = __enable_if_t< is_convertible::value && !is_array<_Up>::value >; template using _EnableIfDeleterConvertible _LIBCPP_NODEBUG = __enable_if_t< (is_reference<_Dp>::value && is_same<_Dp, _UDel>::value) || (!is_reference<_Dp>::value && is_convertible<_UDel, _Dp>::value) >; template using _EnableIfDeleterAssignable _LIBCPP_NODEBUG = __enable_if_t< is_assignable<_Dp&, _UDel&&>::value >; public: template > _LIBCPP_HIDE_FROM_ABI _LIBCPP_CONSTEXPR unique_ptr() _NOEXCEPT : __ptr_(), __deleter_() {} template > _LIBCPP_HIDE_FROM_ABI _LIBCPP_CONSTEXPR unique_ptr(nullptr_t) _NOEXCEPT : __ptr_(), __deleter_() {} template > _LIBCPP_HIDE_FROM_ABI _LIBCPP_CONSTEXPR_SINCE_CXX23 explicit unique_ptr(pointer __p) _NOEXCEPT : __ptr_(__p), __deleter_() {} template > > _LIBCPP_HIDE_FROM_ABI _LIBCPP_CONSTEXPR_SINCE_CXX23 unique_ptr(pointer __p, _LValRefType<_Dummy> __d) _NOEXCEPT : __ptr_(__p), __deleter_(__d) {} template > > _LIBCPP_HIDE_FROM_ABI _LIBCPP_CONSTEXPR_SINCE_CXX23 unique_ptr(pointer __p, _GoodRValRefType<_Dummy> __d) _NOEXCEPT : __ptr_(__p), __deleter_(std::move(__d)) { static_assert(!is_reference::value, "rvalue deleter bound to reference"); } template > > _LIBCPP_HIDE_FROM_ABI unique_ptr(pointer __p, _BadRValRefType<_Dummy> __d) = delete; _LIBCPP_HIDE_FROM_ABI _LIBCPP_CONSTEXPR_SINCE_CXX23 unique_ptr(unique_ptr&& __u) _NOEXCEPT : __ptr_(__u.release()), __deleter_(std::forward(__u.get_deleter())) {} template , _Up>, class = _EnableIfDeleterConvertible<_Ep> > _LIBCPP_HIDE_FROM_ABI _LIBCPP_CONSTEXPR_SINCE_CXX23 unique_ptr(unique_ptr<_Up, _Ep>&& __u) _NOEXCEPT : __ptr_(__u.release()), __deleter_(std::forward<_Ep>(__u.get_deleter())) {} #if _LIBCPP_STD_VER <= 14 || defined(_LIBCPP_ENABLE_CXX17_REMOVED_AUTO_PTR) template ::value && is_same<_Dp, default_delete<_Tp> >::value, int> = 0> _LIBCPP_HIDE_FROM_ABI unique_ptr(auto_ptr<_Up>&& __p) _NOEXCEPT : __ptr_(__p.release()), __deleter_() {} #endif _LIBCPP_HIDE_FROM_ABI _LIBCPP_CONSTEXPR_SINCE_CXX23 unique_ptr& operator=(unique_ptr&& __u) _NOEXCEPT { reset(__u.release()); __deleter_ = std::forward(__u.get_deleter()); return *this; } template , _Up>, class = _EnableIfDeleterAssignable<_Ep> > _LIBCPP_HIDE_FROM_ABI _LIBCPP_CONSTEXPR_SINCE_CXX23 unique_ptr& operator=(unique_ptr<_Up, _Ep>&& __u) _NOEXCEPT { reset(__u.release()); __deleter_ = std::forward<_Ep>(__u.get_deleter()); return *this; } #if _LIBCPP_STD_VER <= 14 || defined(_LIBCPP_ENABLE_CXX17_REMOVED_AUTO_PTR) template ::value && is_same<_Dp, default_delete<_Tp> >::value, int> = 0> _LIBCPP_HIDE_FROM_ABI unique_ptr& operator=(auto_ptr<_Up> __p) { reset(__p.release()); return *this; } #endif #ifdef _LIBCPP_CXX03_LANG unique_ptr(unique_ptr const&) = delete; unique_ptr& operator=(unique_ptr const&) = delete; #endif _LIBCPP_HIDE_FROM_ABI _LIBCPP_CONSTEXPR_SINCE_CXX23 ~unique_ptr() { reset(); } _LIBCPP_HIDE_FROM_ABI _LIBCPP_CONSTEXPR_SINCE_CXX23 unique_ptr& operator=(nullptr_t) _NOEXCEPT { reset(); return *this; } _LIBCPP_HIDE_FROM_ABI _LIBCPP_CONSTEXPR_SINCE_CXX23 __add_lvalue_reference_t<_Tp> operator*() const _NOEXCEPT_(_NOEXCEPT_(*std::declval())) { return *__ptr_; } _LIBCPP_HIDE_FROM_ABI _LIBCPP_CONSTEXPR_SINCE_CXX23 pointer operator->() const _NOEXCEPT { return __ptr_; } _LIBCPP_HIDE_FROM_ABI _LIBCPP_CONSTEXPR_SINCE_CXX23 pointer get() const _NOEXCEPT { return __ptr_; } _LIBCPP_HIDE_FROM_ABI _LIBCPP_CONSTEXPR_SINCE_CXX23 deleter_type& get_deleter() _NOEXCEPT { return __deleter_; } _LIBCPP_HIDE_FROM_ABI _LIBCPP_CONSTEXPR_SINCE_CXX23 const deleter_type& get_deleter() const _NOEXCEPT { return __deleter_; } _LIBCPP_HIDE_FROM_ABI _LIBCPP_CONSTEXPR_SINCE_CXX23 explicit operator bool() const _NOEXCEPT { return __ptr_ != nullptr; } _LIBCPP_HIDE_FROM_ABI _LIBCPP_CONSTEXPR_SINCE_CXX23 pointer release() _NOEXCEPT { pointer __t = __ptr_; __ptr_ = pointer(); return __t; } _LIBCPP_HIDE_FROM_ABI _LIBCPP_CONSTEXPR_SINCE_CXX23 void reset(pointer __p = pointer()) _NOEXCEPT { pointer __tmp = __ptr_; __ptr_ = __p; if (__tmp) __deleter_(__tmp); } _LIBCPP_HIDE_FROM_ABI _LIBCPP_CONSTEXPR_SINCE_CXX23 void swap(unique_ptr& __u) _NOEXCEPT { using std::swap; swap(__ptr_, __u.__ptr_); swap(__deleter_, __u.__deleter_); } }; // Bounds checking in unique_ptr // ================================== // // We provide some helper classes that allow bounds checking when accessing a unique_ptr. // There are a few cases where bounds checking can be implemented: // // 1. When an array cookie (see [1]) exists at the beginning of the array allocation, we are // able to reuse that cookie to extract the size of the array and perform bounds checking. // An array cookie is a size inserted at the beginning of the allocation by the compiler. // That size is inserted implicitly when doing `new T[n]` in some cases (as of writing this // exactly when the array elements are not trivially destructible), and its main purpose is // to allow the runtime to destroy the `n` array elements when doing `delete[] array`. // When we are able to use array cookies, we reuse information already available in the // current runtime, so bounds checking does not require changing libc++'s ABI. // // However, note that we cannot assume the presence of an array cookie when a custom deleter // is used, because the unique_ptr could have been created from an allocation that wasn't // obtained via `new T[n]` (since it may not be deleted with `delete[] arr`). // // 2. When the "bounded unique_ptr" ABI configuration (controlled by `_LIBCPP_ABI_BOUNDED_UNIQUE_PTR`) // is enabled, we store the size of the allocation (when it is known) so we can check it when // indexing into the `unique_ptr`. That changes the layout of `std::unique_ptr`, which is // an ABI break from the default configuration. // // Note that even under this ABI configuration, we can't always know the size of the unique_ptr. // Indeed, the size of the allocation can only be known when the unique_ptr is created via // make_unique or a similar API. For example, it can't be known when constructed from an arbitrary // pointer, in which case we are not able to check the bounds on access: // // unique_ptr ptr(new T[3]); // // When we don't know the size of the allocation via the API used to create the unique_ptr, we // try to fall back to using an array cookie when available. // // Finally, note that when this ABI configuration is enabled, we have no choice but to always // make space for the size to be stored in the unique_ptr. Indeed, while we might want to avoid // storing the size when an array cookie is available, knowing whether an array cookie is available // requires the type stored in the unique_ptr to be complete, while unique_ptr can normally // accommodate incomplete types. // // (1) Implementation where we rely on the array cookie to know the size of the allocation, if // an array cookie exists. struct __unique_ptr_array_bounds_stateless { __unique_ptr_array_bounds_stateless() = default; _LIBCPP_HIDE_FROM_ABI _LIBCPP_CONSTEXPR explicit __unique_ptr_array_bounds_stateless(size_t) {} template ::value && __has_array_cookie<_Tp>::value, int> = 0> _LIBCPP_HIDE_FROM_ABI _LIBCPP_CONSTEXPR bool __in_bounds(_Tp* __ptr, size_t __index) const { // In constant expressions, we can't check the array cookie so we just pretend that the index // is in-bounds. The compiler catches invalid accesses anyway. if (__libcpp_is_constant_evaluated()) return true; size_t __cookie = std::__get_array_cookie(__ptr); return __index < __cookie; } template ::value || !__has_array_cookie<_Tp>::value, int> = 0> _LIBCPP_HIDE_FROM_ABI _LIBCPP_CONSTEXPR bool __in_bounds(_Tp*, size_t) const { return true; // If we don't have an array cookie, we assume the access is in-bounds } }; // (2) Implementation where we store the size in the class whenever we have it. // // Semantically, we'd need to store the size as an optional. However, since that // is really heavy weight, we instead store a size_t and use SIZE_MAX as a magic value // meaning that we don't know the size. struct __unique_ptr_array_bounds_stored { _LIBCPP_HIDE_FROM_ABI _LIBCPP_CONSTEXPR __unique_ptr_array_bounds_stored() : __size_(SIZE_MAX) {} _LIBCPP_HIDE_FROM_ABI _LIBCPP_CONSTEXPR explicit __unique_ptr_array_bounds_stored(size_t __size) : __size_(__size) {} // Use the array cookie if there's one template ::value && __has_array_cookie<_Tp>::value, int> = 0> _LIBCPP_HIDE_FROM_ABI _LIBCPP_CONSTEXPR bool __in_bounds(_Tp* __ptr, size_t __index) const { if (__libcpp_is_constant_evaluated()) return true; size_t __cookie = std::__get_array_cookie(__ptr); return __index < __cookie; } // Otherwise, fall back on the stored size (if any) template ::value || !__has_array_cookie<_Tp>::value, int> = 0> _LIBCPP_HIDE_FROM_ABI _LIBCPP_CONSTEXPR bool __in_bounds(_Tp*, size_t __index) const { return __index < __size_; } private: size_t __size_; }; template class _LIBCPP_UNIQUE_PTR_TRIVIAL_ABI _LIBCPP_TEMPLATE_VIS unique_ptr<_Tp[], _Dp> { public: typedef _Tp element_type; typedef _Dp deleter_type; using pointer = __pointer<_Tp, deleter_type>; // A unique_ptr contains the following members which may be trivially relocatable: // - pointer: this may be trivially relocatable, so it's checked // - deleter_type: this may be trivially relocatable, so it's checked // - (optionally) size: this is trivially relocatable // // This unique_ptr implementation only contains a pointer to the unique object and a deleter, so there are no // references to itself. This means that the entire structure is trivially relocatable if its members are. using __trivially_relocatable _LIBCPP_NODEBUG = __conditional_t< __libcpp_is_trivially_relocatable::value && __libcpp_is_trivially_relocatable::value, unique_ptr, void>; private: template friend class unique_ptr; _LIBCPP_COMPRESSED_PAIR(pointer, __ptr_, deleter_type, __deleter_); #ifdef _LIBCPP_ABI_BOUNDED_UNIQUE_PTR using _BoundsChecker _LIBCPP_NODEBUG = __unique_ptr_array_bounds_stored; #else using _BoundsChecker _LIBCPP_NODEBUG = __unique_ptr_array_bounds_stateless; #endif _LIBCPP_NO_UNIQUE_ADDRESS _BoundsChecker __checker_; template struct _CheckArrayPointerConversion : is_same<_From, pointer> {}; template struct _CheckArrayPointerConversion<_FromElem*> : integral_constant::value || (is_same::value && is_convertible<_FromElem (*)[], element_type (*)[]>::value) > {}; typedef __unique_ptr_deleter_sfinae<_Dp> _DeleterSFINAE; template using _LValRefType _LIBCPP_NODEBUG = typename __dependent_type<_DeleterSFINAE, _Dummy>::__lval_ref_type; template using _GoodRValRefType _LIBCPP_NODEBUG = typename __dependent_type<_DeleterSFINAE, _Dummy>::__good_rval_ref_type; template using _BadRValRefType _LIBCPP_NODEBUG = typename __dependent_type<_DeleterSFINAE, _Dummy>::__bad_rval_ref_type; template , _Dummy>::type> using _EnableIfDeleterDefaultConstructible _LIBCPP_NODEBUG = __enable_if_t::value && !is_pointer<_Deleter>::value>; template using _EnableIfDeleterConstructible _LIBCPP_NODEBUG = __enable_if_t::value>; template using _EnableIfPointerConvertible _LIBCPP_NODEBUG = __enable_if_t< _CheckArrayPointerConversion<_Pp>::value >; template using _EnableIfMoveConvertible _LIBCPP_NODEBUG = __enable_if_t< is_array<_Up>::value && is_same::value && is_same::value && is_convertible<_ElemT (*)[], element_type (*)[]>::value >; template using _EnableIfDeleterConvertible _LIBCPP_NODEBUG = __enable_if_t< (is_reference<_Dp>::value && is_same<_Dp, _UDel>::value) || (!is_reference<_Dp>::value && is_convertible<_UDel, _Dp>::value) >; template using _EnableIfDeleterAssignable _LIBCPP_NODEBUG = __enable_if_t< is_assignable<_Dp&, _UDel&&>::value >; public: template > _LIBCPP_HIDE_FROM_ABI _LIBCPP_CONSTEXPR unique_ptr() _NOEXCEPT : __ptr_(), __deleter_() {} template > _LIBCPP_HIDE_FROM_ABI _LIBCPP_CONSTEXPR unique_ptr(nullptr_t) _NOEXCEPT : __ptr_(), __deleter_() {} template , class = _EnableIfPointerConvertible<_Pp> > _LIBCPP_HIDE_FROM_ABI _LIBCPP_CONSTEXPR_SINCE_CXX23 explicit unique_ptr(_Pp __ptr) _NOEXCEPT : __ptr_(__ptr), __deleter_() {} // Private constructor used by make_unique & friends to pass the size that was allocated template ::value, int> = 0> _LIBCPP_HIDE_FROM_ABI _LIBCPP_CONSTEXPR_SINCE_CXX23 explicit unique_ptr(_Tag, _Ptr __ptr, size_t __size) _NOEXCEPT : __ptr_(__ptr), __checker_(__size) {} template >, class = _EnableIfPointerConvertible<_Pp> > _LIBCPP_HIDE_FROM_ABI _LIBCPP_CONSTEXPR_SINCE_CXX23 unique_ptr(_Pp __ptr, _LValRefType<_Dummy> __deleter) _NOEXCEPT : __ptr_(__ptr), __deleter_(__deleter) {} template > > _LIBCPP_HIDE_FROM_ABI _LIBCPP_CONSTEXPR_SINCE_CXX23 unique_ptr(nullptr_t, _LValRefType<_Dummy> __deleter) _NOEXCEPT : __ptr_(nullptr), __deleter_(__deleter) {} template >, class = _EnableIfPointerConvertible<_Pp> > _LIBCPP_HIDE_FROM_ABI _LIBCPP_CONSTEXPR_SINCE_CXX23 unique_ptr(_Pp __ptr, _GoodRValRefType<_Dummy> __deleter) _NOEXCEPT : __ptr_(__ptr), __deleter_(std::move(__deleter)) { static_assert(!is_reference::value, "rvalue deleter bound to reference"); } template > > _LIBCPP_HIDE_FROM_ABI _LIBCPP_CONSTEXPR_SINCE_CXX23 unique_ptr(nullptr_t, _GoodRValRefType<_Dummy> __deleter) _NOEXCEPT : __ptr_(nullptr), __deleter_(std::move(__deleter)) { static_assert(!is_reference::value, "rvalue deleter bound to reference"); } template >, class = _EnableIfPointerConvertible<_Pp> > _LIBCPP_HIDE_FROM_ABI unique_ptr(_Pp __ptr, _BadRValRefType<_Dummy> __deleter) = delete; _LIBCPP_HIDE_FROM_ABI _LIBCPP_CONSTEXPR_SINCE_CXX23 unique_ptr(unique_ptr&& __u) _NOEXCEPT : __ptr_(__u.release()), __deleter_(std::forward(__u.get_deleter())), __checker_(std::move(__u.__checker_)) {} _LIBCPP_HIDE_FROM_ABI _LIBCPP_CONSTEXPR_SINCE_CXX23 unique_ptr& operator=(unique_ptr&& __u) _NOEXCEPT { reset(__u.release()); __deleter_ = std::forward(__u.get_deleter()); __checker_ = std::move(__u.__checker_); return *this; } template , _Up>, class = _EnableIfDeleterConvertible<_Ep> > _LIBCPP_HIDE_FROM_ABI _LIBCPP_CONSTEXPR_SINCE_CXX23 unique_ptr(unique_ptr<_Up, _Ep>&& __u) _NOEXCEPT : __ptr_(__u.release()), __deleter_(std::forward<_Ep>(__u.get_deleter())), __checker_(std::move(__u.__checker_)) {} template , _Up>, class = _EnableIfDeleterAssignable<_Ep> > _LIBCPP_HIDE_FROM_ABI _LIBCPP_CONSTEXPR_SINCE_CXX23 unique_ptr& operator=(unique_ptr<_Up, _Ep>&& __u) _NOEXCEPT { reset(__u.release()); __deleter_ = std::forward<_Ep>(__u.get_deleter()); __checker_ = std::move(__u.__checker_); return *this; } #ifdef _LIBCPP_CXX03_LANG unique_ptr(unique_ptr const&) = delete; unique_ptr& operator=(unique_ptr const&) = delete; #endif public: _LIBCPP_HIDE_FROM_ABI _LIBCPP_CONSTEXPR_SINCE_CXX23 ~unique_ptr() { reset(); } _LIBCPP_HIDE_FROM_ABI _LIBCPP_CONSTEXPR_SINCE_CXX23 unique_ptr& operator=(nullptr_t) _NOEXCEPT { reset(); return *this; } _LIBCPP_HIDE_FROM_ABI _LIBCPP_CONSTEXPR_SINCE_CXX23 __add_lvalue_reference_t<_Tp> operator[](size_t __i) const { _LIBCPP_ASSERT_VALID_ELEMENT_ACCESS(__checker_.__in_bounds(std::__to_address(__ptr_), __i), "unique_ptr::operator[](index): index out of range"); return __ptr_[__i]; } _LIBCPP_HIDE_FROM_ABI _LIBCPP_CONSTEXPR_SINCE_CXX23 pointer get() const _NOEXCEPT { return __ptr_; } _LIBCPP_HIDE_FROM_ABI _LIBCPP_CONSTEXPR_SINCE_CXX23 deleter_type& get_deleter() _NOEXCEPT { return __deleter_; } _LIBCPP_HIDE_FROM_ABI _LIBCPP_CONSTEXPR_SINCE_CXX23 const deleter_type& get_deleter() const _NOEXCEPT { return __deleter_; } _LIBCPP_HIDE_FROM_ABI _LIBCPP_CONSTEXPR_SINCE_CXX23 explicit operator bool() const _NOEXCEPT { return __ptr_ != nullptr; } _LIBCPP_HIDE_FROM_ABI _LIBCPP_CONSTEXPR_SINCE_CXX23 pointer release() _NOEXCEPT { pointer __t = __ptr_; __ptr_ = pointer(); // The deleter and the optional bounds-checker are left unchanged. The bounds-checker // will be reinitialized appropriately when/if the unique_ptr gets assigned-to or reset. return __t; } template ::value, int> = 0> _LIBCPP_HIDE_FROM_ABI _LIBCPP_CONSTEXPR_SINCE_CXX23 void reset(_Pp __ptr) _NOEXCEPT { pointer __tmp = __ptr_; __ptr_ = __ptr; __checker_ = _BoundsChecker(); if (__tmp) __deleter_(__tmp); } _LIBCPP_HIDE_FROM_ABI _LIBCPP_CONSTEXPR_SINCE_CXX23 void reset(nullptr_t = nullptr) _NOEXCEPT { pointer __tmp = __ptr_; __ptr_ = nullptr; __checker_ = _BoundsChecker(); if (__tmp) __deleter_(__tmp); } _LIBCPP_HIDE_FROM_ABI _LIBCPP_CONSTEXPR_SINCE_CXX23 void swap(unique_ptr& __u) _NOEXCEPT { using std::swap; swap(__ptr_, __u.__ptr_); swap(__deleter_, __u.__deleter_); swap(__checker_, __u.__checker_); } }; template , int> = 0> inline _LIBCPP_HIDE_FROM_ABI _LIBCPP_CONSTEXPR_SINCE_CXX23 void swap(unique_ptr<_Tp, _Dp>& __x, unique_ptr<_Tp, _Dp>& __y) _NOEXCEPT { __x.swap(__y); } template inline _LIBCPP_HIDE_FROM_ABI _LIBCPP_CONSTEXPR_SINCE_CXX23 bool operator==(const unique_ptr<_T1, _D1>& __x, const unique_ptr<_T2, _D2>& __y) { return __x.get() == __y.get(); } #if _LIBCPP_STD_VER <= 17 template inline _LIBCPP_HIDE_FROM_ABI bool operator!=(const unique_ptr<_T1, _D1>& __x, const unique_ptr<_T2, _D2>& __y) { return !(__x == __y); } #endif template inline _LIBCPP_HIDE_FROM_ABI bool operator<(const unique_ptr<_T1, _D1>& __x, const unique_ptr<_T2, _D2>& __y) { typedef typename unique_ptr<_T1, _D1>::pointer _P1; typedef typename unique_ptr<_T2, _D2>::pointer _P2; typedef typename common_type<_P1, _P2>::type _Vp; return less<_Vp>()(__x.get(), __y.get()); } template inline _LIBCPP_HIDE_FROM_ABI bool operator>(const unique_ptr<_T1, _D1>& __x, const unique_ptr<_T2, _D2>& __y) { return __y < __x; } template inline _LIBCPP_HIDE_FROM_ABI bool operator<=(const unique_ptr<_T1, _D1>& __x, const unique_ptr<_T2, _D2>& __y) { return !(__y < __x); } template inline _LIBCPP_HIDE_FROM_ABI bool operator>=(const unique_ptr<_T1, _D1>& __x, const unique_ptr<_T2, _D2>& __y) { return !(__x < __y); } #if _LIBCPP_STD_VER >= 20 template requires three_way_comparable_with::pointer, typename unique_ptr<_T2, _D2>::pointer> _LIBCPP_HIDE_FROM_ABI compare_three_way_result_t::pointer, typename unique_ptr<_T2, _D2>::pointer> operator<=>(const unique_ptr<_T1, _D1>& __x, const unique_ptr<_T2, _D2>& __y) { return compare_three_way()(__x.get(), __y.get()); } #endif template inline _LIBCPP_HIDE_FROM_ABI _LIBCPP_CONSTEXPR_SINCE_CXX23 bool operator==(const unique_ptr<_T1, _D1>& __x, nullptr_t) _NOEXCEPT { return !__x; } #if _LIBCPP_STD_VER <= 17 template inline _LIBCPP_HIDE_FROM_ABI bool operator==(nullptr_t, const unique_ptr<_T1, _D1>& __x) _NOEXCEPT { return !__x; } template inline _LIBCPP_HIDE_FROM_ABI bool operator!=(const unique_ptr<_T1, _D1>& __x, nullptr_t) _NOEXCEPT { return static_cast(__x); } template inline _LIBCPP_HIDE_FROM_ABI bool operator!=(nullptr_t, const unique_ptr<_T1, _D1>& __x) _NOEXCEPT { return static_cast(__x); } #endif // _LIBCPP_STD_VER <= 17 template inline _LIBCPP_HIDE_FROM_ABI _LIBCPP_CONSTEXPR_SINCE_CXX23 bool operator<(const unique_ptr<_T1, _D1>& __x, nullptr_t) { typedef typename unique_ptr<_T1, _D1>::pointer _P1; return less<_P1>()(__x.get(), nullptr); } template inline _LIBCPP_HIDE_FROM_ABI _LIBCPP_CONSTEXPR_SINCE_CXX23 bool operator<(nullptr_t, const unique_ptr<_T1, _D1>& __x) { typedef typename unique_ptr<_T1, _D1>::pointer _P1; return less<_P1>()(nullptr, __x.get()); } template inline _LIBCPP_HIDE_FROM_ABI _LIBCPP_CONSTEXPR_SINCE_CXX23 bool operator>(const unique_ptr<_T1, _D1>& __x, nullptr_t) { return nullptr < __x; } template inline _LIBCPP_HIDE_FROM_ABI _LIBCPP_CONSTEXPR_SINCE_CXX23 bool operator>(nullptr_t, const unique_ptr<_T1, _D1>& __x) { return __x < nullptr; } template inline _LIBCPP_HIDE_FROM_ABI _LIBCPP_CONSTEXPR_SINCE_CXX23 bool operator<=(const unique_ptr<_T1, _D1>& __x, nullptr_t) { return !(nullptr < __x); } template inline _LIBCPP_HIDE_FROM_ABI _LIBCPP_CONSTEXPR_SINCE_CXX23 bool operator<=(nullptr_t, const unique_ptr<_T1, _D1>& __x) { return !(__x < nullptr); } template inline _LIBCPP_HIDE_FROM_ABI _LIBCPP_CONSTEXPR_SINCE_CXX23 bool operator>=(const unique_ptr<_T1, _D1>& __x, nullptr_t) { return !(__x < nullptr); } template inline _LIBCPP_HIDE_FROM_ABI _LIBCPP_CONSTEXPR_SINCE_CXX23 bool operator>=(nullptr_t, const unique_ptr<_T1, _D1>& __x) { return !(nullptr < __x); } #if _LIBCPP_STD_VER >= 20 template requires three_way_comparable< typename unique_ptr<_T1, _D1>::pointer> _LIBCPP_HIDE_FROM_ABI _LIBCPP_CONSTEXPR_SINCE_CXX23 compare_three_way_result_t::pointer> operator<=>(const unique_ptr<_T1, _D1>& __x, nullptr_t) { return compare_three_way()(__x.get(), static_cast::pointer>(nullptr)); } #endif #if _LIBCPP_STD_VER >= 14 template ::value, int> = 0> inline _LIBCPP_HIDE_FROM_ABI _LIBCPP_CONSTEXPR_SINCE_CXX23 unique_ptr<_Tp> make_unique(_Args&&... __args) { return unique_ptr<_Tp>(new _Tp(std::forward<_Args>(__args)...)); } template , int> = 0> inline _LIBCPP_HIDE_FROM_ABI _LIBCPP_CONSTEXPR_SINCE_CXX23 unique_ptr<_Tp> make_unique(size_t __n) { typedef __remove_extent_t<_Tp> _Up; return unique_ptr<_Tp>(__private_constructor_tag(), new _Up[__n](), __n); } template , int> = 0> void make_unique(_Args&&...) = delete; #endif // _LIBCPP_STD_VER >= 14 #if _LIBCPP_STD_VER >= 20 template , int> = 0> _LIBCPP_HIDE_FROM_ABI _LIBCPP_CONSTEXPR_SINCE_CXX23 unique_ptr<_Tp> make_unique_for_overwrite() { return unique_ptr<_Tp>(new _Tp); } template , int> = 0> _LIBCPP_HIDE_FROM_ABI _LIBCPP_CONSTEXPR_SINCE_CXX23 unique_ptr<_Tp> make_unique_for_overwrite(size_t __n) { return unique_ptr<_Tp>(__private_constructor_tag(), new __remove_extent_t<_Tp>[__n], __n); } template , int> = 0> void make_unique_for_overwrite(_Args&&...) = delete; #endif // _LIBCPP_STD_VER >= 20 template struct _LIBCPP_TEMPLATE_VIS hash; template #ifdef _LIBCPP_CXX03_LANG struct _LIBCPP_TEMPLATE_VIS hash > #else struct _LIBCPP_TEMPLATE_VIS hash<__enable_hash_helper< unique_ptr<_Tp, _Dp>, typename unique_ptr<_Tp, _Dp>::pointer> > #endif { #if _LIBCPP_STD_VER <= 17 || defined(_LIBCPP_ENABLE_CXX20_REMOVED_BINDER_TYPEDEFS) _LIBCPP_DEPRECATED_IN_CXX17 typedef unique_ptr<_Tp, _Dp> argument_type; _LIBCPP_DEPRECATED_IN_CXX17 typedef size_t result_type; #endif _LIBCPP_HIDE_FROM_ABI size_t operator()(const unique_ptr<_Tp, _Dp>& __ptr) const { typedef typename unique_ptr<_Tp, _Dp>::pointer pointer; return hash()(__ptr.get()); } }; _LIBCPP_END_NAMESPACE_STD _LIBCPP_POP_MACROS #endif // _LIBCPP___MEMORY_UNIQUE_PTR_H