//===-- Double-precision cos function -------------------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #include "src/math/cos.h" #include "hdr/errno_macros.h" #include "src/__support/FPUtil/FEnvImpl.h" #include "src/__support/FPUtil/FPBits.h" #include "src/__support/FPUtil/double_double.h" #include "src/__support/FPUtil/dyadic_float.h" #include "src/__support/FPUtil/except_value_utils.h" #include "src/__support/common.h" #include "src/__support/macros/config.h" #include "src/__support/macros/optimization.h" // LIBC_UNLIKELY #include "src/__support/macros/properties/cpu_features.h" // LIBC_TARGET_CPU_HAS_FMA #include "src/math/generic/sincos_eval.h" #ifdef LIBC_TARGET_CPU_HAS_FMA #include "range_reduction_double_fma.h" using LIBC_NAMESPACE::fma::FAST_PASS_EXPONENT; using LIBC_NAMESPACE::fma::ONE_TWENTY_EIGHT_OVER_PI; using LIBC_NAMESPACE::fma::range_reduction_small; using LIBC_NAMESPACE::fma::SIN_K_PI_OVER_128; LIBC_INLINE constexpr bool NO_FMA = false; #else #include "range_reduction_double_nofma.h" using LIBC_NAMESPACE::nofma::FAST_PASS_EXPONENT; using LIBC_NAMESPACE::nofma::ONE_TWENTY_EIGHT_OVER_PI; using LIBC_NAMESPACE::nofma::range_reduction_small; using LIBC_NAMESPACE::nofma::SIN_K_PI_OVER_128; LIBC_INLINE constexpr bool NO_FMA = true; #endif // LIBC_TARGET_CPU_HAS_FMA // TODO: We might be able to improve the performance of large range reduction of // non-FMA targets further by operating directly on 25-bit chunks of 128/pi and // pre-split SIN_K_PI_OVER_128, but that might double the memory footprint of // those lookup table. #include "range_reduction_double_common.h" #if ((LIBC_MATH & LIBC_MATH_SKIP_ACCURATE_PASS) != 0) #define LIBC_MATH_COS_SKIP_ACCURATE_PASS #endif namespace LIBC_NAMESPACE_DECL { using DoubleDouble = fputil::DoubleDouble; using Float128 = typename fputil::DyadicFloat<128>; LLVM_LIBC_FUNCTION(double, cos, (double x)) { using FPBits = typename fputil::FPBits; FPBits xbits(x); uint16_t x_e = xbits.get_biased_exponent(); DoubleDouble y; unsigned k; generic::LargeRangeReduction range_reduction_large{}; // |x| < 2^32 (with FMA) or |x| < 2^23 (w/o FMA) if (LIBC_LIKELY(x_e < FPBits::EXP_BIAS + FAST_PASS_EXPONENT)) { // |x| < 2^-27 if (LIBC_UNLIKELY(x_e < FPBits::EXP_BIAS - 27)) { // Signed zeros. if (LIBC_UNLIKELY(x == 0.0)) return 1.0; // For |x| < 2^-27, |cos(x) - 1| < |x|^2/2 < 2^-54 = ulp(1 - 2^-53)/2. return fputil::round_result_slightly_down(1.0); } // // Small range reduction. k = range_reduction_small(x, y); } else { // Inf or NaN if (LIBC_UNLIKELY(x_e > 2 * FPBits::EXP_BIAS)) { // sin(+-Inf) = NaN if (xbits.get_mantissa() == 0) { fputil::set_errno_if_required(EDOM); fputil::raise_except_if_required(FE_INVALID); } return x + FPBits::quiet_nan().get_val(); } // Large range reduction. k = range_reduction_large.compute_high_part(x); y = range_reduction_large.fast(); } DoubleDouble sin_y, cos_y; generic::sincos_eval(y, sin_y, cos_y); // Look up sin(k * pi/128) and cos(k * pi/128) // Memory saving versions: // Use 128-entry table instead: // DoubleDouble sin_k = SIN_K_PI_OVER_128[k & 127]; // uint64_t sin_s = static_cast((k + 128) & 128) << (63 - 7); // sin_k.hi = FPBits(FPBits(sin_k.hi).uintval() ^ sin_s).get_val(); // sin_k.lo = FPBits(FPBits(sin_k.hi).uintval() ^ sin_s).get_val(); // DoubleDouble cos_k = SIN_K_PI_OVER_128[(k + 64) & 127]; // uint64_t cos_s = static_cast((k + 64) & 128) << (63 - 7); // cos_k.hi = FPBits(FPBits(cos_k.hi).uintval() ^ cos_s).get_val(); // cos_k.lo = FPBits(FPBits(cos_k.hi).uintval() ^ cos_s).get_val(); // Use 64-entry table instead: // auto get_idx_dd = [](unsigned kk) -> DoubleDouble { // unsigned idx = (kk & 64) ? 64 - (kk & 63) : (kk & 63); // DoubleDouble ans = SIN_K_PI_OVER_128[idx]; // if (kk & 128) { // ans.hi = -ans.hi; // ans.lo = -ans.lo; // } // return ans; // }; // DoubleDouble sin_k = get_idx_dd(k + 128); // DoubleDouble cos_k = get_idx_dd(k + 64); // Fast look up version, but needs 256-entry table. // -sin(k * pi/128) = sin((k + 128) * pi/128) // cos(k * pi/128) = sin(k * pi/128 + pi/2) = sin((k + 64) * pi/128). DoubleDouble msin_k = SIN_K_PI_OVER_128[(k + 128) & 255]; DoubleDouble cos_k = SIN_K_PI_OVER_128[(k + 64) & 255]; // After range reduction, k = round(x * 128 / pi) and y = x - k * (pi / 128). // So k is an integer and -pi / 256 <= y <= pi / 256. // Then cos(x) = cos((k * pi/128 + y) // = cos(y) * cos(k*pi/128) - sin(y) * sin(k*pi/128) DoubleDouble cos_k_cos_y = fputil::quick_mult(cos_y, cos_k); DoubleDouble msin_k_sin_y = fputil::quick_mult(sin_y, msin_k); DoubleDouble rr = fputil::exact_add(cos_k_cos_y.hi, msin_k_sin_y.hi); rr.lo += msin_k_sin_y.lo + cos_k_cos_y.lo; #ifdef LIBC_MATH_COS_SKIP_ACCURATE_PASS return rr.hi + rr.lo; #else // Accurate test and pass for correctly rounded implementation. #ifdef LIBC_TARGET_CPU_HAS_FMA constexpr double ERR = 0x1.0p-70; #else // TODO: Improve non-FMA fast pass accuracy. constexpr double ERR = 0x1.0p-66; #endif // LIBC_TARGET_CPU_HAS_FMA double rlp = rr.lo + ERR; double rlm = rr.lo - ERR; double r_upper = rr.hi + rlp; // (rr.lo + ERR); double r_lower = rr.hi + rlm; // (rr.lo - ERR); // Ziv's rounding test. if (LIBC_LIKELY(r_upper == r_lower)) return r_upper; Float128 u_f128, sin_u, cos_u; if (LIBC_LIKELY(x_e < FPBits::EXP_BIAS + FAST_PASS_EXPONENT)) u_f128 = generic::range_reduction_small_f128(x); else u_f128 = range_reduction_large.accurate(); generic::sincos_eval(u_f128, sin_u, cos_u); auto get_sin_k = [](unsigned kk) -> Float128 { unsigned idx = (kk & 64) ? 64 - (kk & 63) : (kk & 63); Float128 ans = generic::SIN_K_PI_OVER_128_F128[idx]; if (kk & 128) ans.sign = Sign::NEG; return ans; }; // -sin(k * pi/128) = sin((k + 128) * pi/128) // cos(k * pi/128) = sin(k * pi/128 + pi/2) = sin((k + 64) * pi/128). Float128 msin_k_f128 = get_sin_k(k + 128); Float128 cos_k_f128 = get_sin_k(k + 64); // cos(x) = cos((k * pi/128 + u) // = cos(u) * cos(k*pi/128) - sin(u) * sin(k*pi/128) Float128 r = fputil::quick_add(fputil::quick_mul(cos_k_f128, cos_u), fputil::quick_mul(msin_k_f128, sin_u)); // TODO: Add assertion if Ziv's accuracy tests fail in debug mode. // https://github.com/llvm/llvm-project/issues/96452. return static_cast(r); #endif // !LIBC_MATH_COS_SKIP_ACCURATE_PASS } } // namespace LIBC_NAMESPACE_DECL