//===-- Common header for fmod implementations ------------------*- C++ -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #ifndef LLVM_LIBC_SRC___SUPPORT_FPUTIL_GENERIC_FMOD_H #define LLVM_LIBC_SRC___SUPPORT_FPUTIL_GENERIC_FMOD_H #include "src/__support/CPP/bit.h" #include "src/__support/CPP/limits.h" #include "src/__support/CPP/type_traits.h" #include "src/__support/FPUtil/FEnvImpl.h" #include "src/__support/FPUtil/FPBits.h" #include "src/__support/macros/config.h" #include "src/__support/macros/optimization.h" // LIBC_UNLIKELY namespace LIBC_NAMESPACE_DECL { namespace fputil { namespace generic { // Objective: // The algorithm uses integer arithmetic (max uint64_t) for general case. // Some common cases, like abs(x) < abs(y) or abs(x) < 1000 * abs(y) are // treated specially to increase performance. The part of checking special // cases, numbers NaN, INF etc. treated separately. // // Objective: // 1) FMod definition (https://cplusplus.com/reference/cmath/fmod/): // fmod = numer - tquot * denom, where tquot is the truncated // (i.e., rounded towards zero) result of: numer/denom. // 2) FMod with negative x and/or y can be trivially converted to fmod for // positive x and y. Therefore the algorithm below works only with // positive numbers. // 3) All positive floating point numbers can be represented as m * 2^e, // where "m" is positive integer and "e" is signed. // 4) FMod function can be calculated in integer numbers (x > y): // fmod = m_x * 2^e_x - tquot * m_y * 2^e_y // = 2^e_y * (m_x * 2^(e_x - e^y) - tquot * m_y). // All variables in parentheses are unsigned integers. // // Mathematical background: // Input x,y in the algorithm is represented (mathematically) like m_x*2^e_x // and m_y*2^e_y. This is an ambiguous number representation. For example: // m * 2^e = (2 * m) * 2^(e-1) // The algorithm uses the facts that // r = a % b = (a % (N * b)) % b, // (a * c) % (b * c) = (a % b) * c // where N is positive integer number. a, b and c - positive. Let's adopt // the formula for representation above. // a = m_x * 2^e_x, b = m_y * 2^e_y, N = 2^k // r(k) = a % b = (m_x * 2^e_x) % (2^k * m_y * 2^e_y) // = 2^(e_y + k) * (m_x * 2^(e_x - e_y - k) % m_y) // r(k) = m_r * 2^e_r = (m_x % m_y) * 2^(m_y + k) // = (2^p * (m_x % m_y) * 2^(e_y + k - p)) // m_r = 2^p * (m_x % m_y), e_r = m_y + k - p // // Algorithm description: // First, let write x = m_x * 2^e_x and y = m_y * 2^e_y with m_x, m_y, e_x, e_y // are integers (m_x amd m_y positive). // Then the naive implementation of the fmod function with a simple // for/while loop: // while (e_x > e_y) { // m_x *= 2; --e_x; // m_x * 2^e_x == 2 * m_x * 2^(e_x - 1) // m_x %= m_y; // } // On the other hand, the algorithm exploits the fact that m_x, m_y are the // mantissas of floating point numbers, which use less bits than the storage // integers: 24 / 32 for floats and 53 / 64 for doubles, so if in each step of // the iteration, we can left shift m_x as many bits as the storage integer // type can hold, the exponent reduction per step will be at least 32 - 24 = 8 // for floats and 64 - 53 = 11 for doubles (double example below): // while (e_x > e_y) { // m_x <<= 11; e_x -= 11; // m_x * 2^e_x == 2^11 * m_x * 2^(e_x - 11) // m_x %= m_y; // } // Some extra improvements are done: // 1) Shift m_y maximum to the right, which can significantly improve // performance for small integer numbers (y = 3 for example). // The m_x shift in the loop can be 62 instead of 11 for double. // 2) For some architectures with very slow division, it can be better to // calculate inverse value ones, and after do multiplication in the loop. // 3) "likely" special cases are treated specially to improve performance. // // Simple example: // The examples below use byte for simplicity. // 1) Shift hy maximum to right without losing bits and increase iy value // m_y = 0b00101100 e_y = 20 after shift m_y = 0b00001011 e_y = 22. // 2) m_x = m_x % m_y. // 3) Move m_x maximum to left. Note that after (m_x = m_x % m_y) CLZ in m_x // is not lower than CLZ in m_y. m_x=0b00001001 e_x = 100, m_x=0b10010000, // e_x = 100-4 = 96. // 4) Repeat (2) until e_x == e_y. // // Complexity analysis (double): // Converting x,y to (m_x,e_x),(m_y, e_y): CTZ/shift/AND/OR/if. Loop count: // (m_x - m_y) / (64 - "length of m_y"). // max("length of m_y") = 53, // max(e_x - e_y) = 2048 // Maximum operation is 186. For rare "unrealistic" cases. // // Special cases (double): // Supposing that case where |y| > 1e-292 and |x/y|<2000 is very common // special processing is implemented. No m_y alignment, no loop: // result = (m_x * 2^(e_x - e_y)) % m_y. // When x and y are both subnormal (rare case but...) the // result = m_x % m_y. // Simplified conversion back to double. // Exceptional cases handler according to cppreference.com // https://en.cppreference.com/w/cpp/numeric/math/fmod // and POSIX standard described in Linux man // https://man7.org/linux/man-pages/man3/fmod.3p.html // C standard for the function is not full, so not by default (although it can // be implemented in another handler. // Signaling NaN converted to quiet NaN with FE_INVALID exception. // https://www.open-std.org/JTC1/SC22/WG14/www/docs/n1011.htm template struct FModDivisionSimpleHelper { LIBC_INLINE constexpr static T execute(int exp_diff, int sides_zeroes_count, T m_x, T m_y) { while (exp_diff > sides_zeroes_count) { exp_diff -= sides_zeroes_count; m_x <<= sides_zeroes_count; m_x %= m_y; } m_x <<= exp_diff; m_x %= m_y; return m_x; } }; template struct FModDivisionInvMultHelper { LIBC_INLINE constexpr static T execute(int exp_diff, int sides_zeroes_count, T m_x, T m_y) { constexpr int LENGTH = sizeof(T) * CHAR_BIT; if (exp_diff > sides_zeroes_count) { T inv_hy = (cpp::numeric_limits::max() / m_y); while (exp_diff > sides_zeroes_count) { exp_diff -= sides_zeroes_count; T hd = (m_x * inv_hy) >> (LENGTH - sides_zeroes_count); m_x <<= sides_zeroes_count; m_x -= hd * m_y; while (LIBC_UNLIKELY(m_x > m_y)) m_x -= m_y; } T hd = (m_x * inv_hy) >> (LENGTH - exp_diff); m_x <<= exp_diff; m_x -= hd * m_y; while (LIBC_UNLIKELY(m_x > m_y)) m_x -= m_y; } else { m_x <<= exp_diff; m_x %= m_y; } return m_x; } }; template ::StorageType, typename DivisionHelper = FModDivisionSimpleHelper> class FMod { static_assert(cpp::is_floating_point_v && is_unsigned_integral_or_big_int_v && (sizeof(U) * CHAR_BIT > FPBits::FRACTION_LEN), "FMod instantiated with invalid type."); private: using FPB = FPBits; using StorageType = typename FPB::StorageType; LIBC_INLINE static bool pre_check(T x, T y, T &out) { using FPB = fputil::FPBits; const T quiet_nan = FPB::quiet_nan().get_val(); FPB sx(x), sy(y); if (LIBC_LIKELY(!sy.is_zero() && !sy.is_inf_or_nan() && !sx.is_inf_or_nan())) return false; if (sx.is_nan() || sy.is_nan()) { if (sx.is_signaling_nan() || sy.is_signaling_nan()) fputil::raise_except_if_required(FE_INVALID); out = quiet_nan; return true; } if (sx.is_inf() || sy.is_zero()) { fputil::raise_except_if_required(FE_INVALID); fputil::set_errno_if_required(EDOM); out = quiet_nan; return true; } out = x; return true; } LIBC_INLINE static constexpr FPB eval_internal(FPB sx, FPB sy) { if (LIBC_LIKELY(sx.uintval() <= sy.uintval())) { if (sx.uintval() < sy.uintval()) return sx; // |x|<|y| return x return FPB::zero(); // |x|=|y| return 0.0 } int e_x = sx.get_biased_exponent(); int e_y = sy.get_biased_exponent(); // Most common case where |y| is "very normal" and |x/y| < 2^EXP_LEN if (LIBC_LIKELY(e_y > int(FPB::FRACTION_LEN) && e_x - e_y <= int(FPB::EXP_LEN))) { StorageType m_x = sx.get_explicit_mantissa(); StorageType m_y = sy.get_explicit_mantissa(); StorageType d = (e_x == e_y) ? (m_x - m_y) : static_cast(m_x << (e_x - e_y)) % m_y; if (d == 0) return FPB::zero(); // iy - 1 because of "zero power" for number with power 1 return FPB::make_value(d, e_y - 1); } // Both subnormal special case. if (LIBC_UNLIKELY(e_x == 0 && e_y == 0)) { FPB d; d.set_mantissa(sx.uintval() % sy.uintval()); return d; } // Note that hx is not subnormal by conditions above. U m_x = static_cast(sx.get_explicit_mantissa()); e_x--; U m_y = static_cast(sy.get_explicit_mantissa()); constexpr int DEFAULT_LEAD_ZEROS = sizeof(U) * CHAR_BIT - FPB::FRACTION_LEN - 1; int lead_zeros_m_y = DEFAULT_LEAD_ZEROS; if (LIBC_LIKELY(e_y > 0)) { e_y--; } else { m_y = static_cast(sy.get_mantissa()); lead_zeros_m_y = cpp::countl_zero(m_y); } // Assume hy != 0 int tail_zeros_m_y = cpp::countr_zero(m_y); int sides_zeroes_count = lead_zeros_m_y + tail_zeros_m_y; // n > 0 by conditions above int exp_diff = e_x - e_y; { // Shift hy right until the end or n = 0 int right_shift = exp_diff < tail_zeros_m_y ? exp_diff : tail_zeros_m_y; m_y >>= right_shift; exp_diff -= right_shift; e_y += right_shift; } { // Shift hx left until the end or n = 0 int left_shift = exp_diff < DEFAULT_LEAD_ZEROS ? exp_diff : DEFAULT_LEAD_ZEROS; m_x <<= left_shift; exp_diff -= left_shift; } m_x %= m_y; if (LIBC_UNLIKELY(m_x == 0)) return FPB::zero(); if (exp_diff == 0) return FPB::make_value(static_cast(m_x), e_y); // hx next can't be 0, because hx < hy, hy % 2 == 1 hx * 2^i % hy != 0 m_x = DivisionHelper::execute(exp_diff, sides_zeroes_count, m_x, m_y); return FPB::make_value(static_cast(m_x), e_y); } public: LIBC_INLINE static T eval(T x, T y) { if (T out; LIBC_UNLIKELY(pre_check(x, y, out))) return out; FPB sx(x), sy(y); Sign sign = sx.sign(); sx.set_sign(Sign::POS); sy.set_sign(Sign::POS); FPB result = eval_internal(sx, sy); result.set_sign(sign); return result.get_val(); } }; } // namespace generic } // namespace fputil } // namespace LIBC_NAMESPACE_DECL #endif // LLVM_LIBC_SRC___SUPPORT_FPUTIL_GENERIC_FMOD_H