//===-- A class to store a normalized floating point number -----*- C++ -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #ifndef LLVM_LIBC_SRC___SUPPORT_FPUTIL_NORMALFLOAT_H #define LLVM_LIBC_SRC___SUPPORT_FPUTIL_NORMALFLOAT_H #include "FPBits.h" #include "src/__support/CPP/type_traits.h" #include "src/__support/common.h" #include "src/__support/macros/config.h" #include namespace LIBC_NAMESPACE_DECL { namespace fputil { // A class which stores the normalized form of a floating point value. // The special IEEE-754 bits patterns of Zero, infinity and NaNs are // are not handled by this class. // // A normalized floating point number is of this form: // (-1)*sign * 2^exponent * // where is of the form 1.<...>. template struct NormalFloat { static_assert( cpp::is_floating_point_v, "NormalFloat template parameter has to be a floating point type."); using StorageType = typename FPBits::StorageType; static constexpr StorageType ONE = (StorageType(1) << FPBits::FRACTION_LEN); // Unbiased exponent value. int32_t exponent; StorageType mantissa; // We want |StorageType| to have atleast one bit more than the actual mantissa // bit width to accommodate the implicit 1 value. static_assert(sizeof(StorageType) * 8 >= FPBits::FRACTION_LEN + 1, "Bad type for mantissa in NormalFloat."); Sign sign = Sign::POS; LIBC_INLINE NormalFloat(Sign s, int32_t e, StorageType m) : exponent(e), mantissa(m), sign(s) { if (mantissa >= ONE) return; unsigned normalization_shift = evaluate_normalization_shift(mantissa); mantissa <<= normalization_shift; exponent -= normalization_shift; } LIBC_INLINE explicit NormalFloat(T x) { init_from_bits(FPBits(x)); } LIBC_INLINE explicit NormalFloat(FPBits bits) { init_from_bits(bits); } // Compares this normalized number with another normalized number. // Returns -1 is this number is less than |other|, 0 if this number is equal // to |other|, and 1 if this number is greater than |other|. LIBC_INLINE int cmp(const NormalFloat &other) const { const int result = sign.is_neg() ? -1 : 1; if (sign != other.sign) return result; if (exponent > other.exponent) { return result; } else if (exponent == other.exponent) { if (mantissa > other.mantissa) return result; else if (mantissa == other.mantissa) return 0; else return -result; } else { return -result; } } // Returns a new normalized floating point number which is equal in value // to this number multiplied by 2^e. That is: // new = this * 2^e LIBC_INLINE NormalFloat mul2(int e) const { NormalFloat result = *this; result.exponent += e; return result; } LIBC_INLINE operator T() const { int biased_exponent = exponent + FPBits::EXP_BIAS; // Max exponent is of the form 0xFF...E. That is why -2 and not -1. constexpr int MAX_EXPONENT_VALUE = (1 << FPBits::EXP_LEN) - 2; if (biased_exponent > MAX_EXPONENT_VALUE) { return FPBits::inf(sign).get_val(); } FPBits result(T(0.0)); result.set_sign(sign); constexpr int SUBNORMAL_EXPONENT = -FPBits::EXP_BIAS + 1; if (exponent < SUBNORMAL_EXPONENT) { unsigned shift = SUBNORMAL_EXPONENT - exponent; // Since exponent > subnormalExponent, shift is strictly greater than // zero. if (shift <= FPBits::FRACTION_LEN + 1) { // Generate a subnormal number. Might lead to loss of precision. // We round to nearest and round halfway cases to even. const StorageType shift_out_mask = static_cast(StorageType(1) << shift) - 1; const StorageType shift_out_value = mantissa & shift_out_mask; const StorageType halfway_value = static_cast(StorageType(1) << (shift - 1)); result.set_biased_exponent(0); result.set_mantissa(mantissa >> shift); StorageType new_mantissa = result.get_mantissa(); if (shift_out_value > halfway_value) { new_mantissa += 1; } else if (shift_out_value == halfway_value) { // Round to even. if (result.get_mantissa() & 0x1) new_mantissa += 1; } result.set_mantissa(new_mantissa); // Adding 1 to mantissa can lead to overflow. This can only happen if // mantissa was all ones (0b111..11). For such a case, we will carry // the overflow into the exponent. if (new_mantissa == ONE) result.set_biased_exponent(1); return result.get_val(); } else { return result.get_val(); } } result.set_biased_exponent( static_cast(exponent + FPBits::EXP_BIAS)); result.set_mantissa(mantissa); return result.get_val(); } private: LIBC_INLINE void init_from_bits(FPBits bits) { sign = bits.sign(); if (bits.is_inf_or_nan() || bits.is_zero()) { // Ignore special bit patterns. Implementations deal with them separately // anyway so this should not be a problem. exponent = 0; mantissa = 0; return; } // Normalize subnormal numbers. if (bits.is_subnormal()) { unsigned shift = evaluate_normalization_shift(bits.get_mantissa()); mantissa = static_cast(bits.get_mantissa() << shift); exponent = 1 - FPBits::EXP_BIAS - shift; } else { exponent = bits.get_biased_exponent() - FPBits::EXP_BIAS; mantissa = ONE | bits.get_mantissa(); } } LIBC_INLINE unsigned evaluate_normalization_shift(StorageType m) { unsigned shift = 0; for (; (ONE & m) == 0 && (shift < FPBits::FRACTION_LEN); m <<= 1, ++shift) ; return shift; } }; #ifdef LIBC_TYPES_LONG_DOUBLE_IS_X86_FLOAT80 template <> LIBC_INLINE void NormalFloat::init_from_bits(FPBits bits) { sign = bits.sign(); if (bits.is_inf_or_nan() || bits.is_zero()) { // Ignore special bit patterns. Implementations deal with them separately // anyway so this should not be a problem. exponent = 0; mantissa = 0; return; } if (bits.is_subnormal()) { if (bits.get_implicit_bit() == 0) { // Since we ignore zero value, the mantissa in this case is non-zero. int normalization_shift = evaluate_normalization_shift(bits.get_mantissa()); exponent = -16382 - normalization_shift; mantissa = (bits.get_mantissa() << normalization_shift); } else { exponent = -16382; mantissa = ONE | bits.get_mantissa(); } } else { if (bits.get_implicit_bit() == 0) { // Invalid number so just store 0 similar to a NaN. exponent = 0; mantissa = 0; } else { exponent = bits.get_biased_exponent() - 16383; mantissa = ONE | bits.get_mantissa(); } } } template <> LIBC_INLINE NormalFloat::operator long double() const { using LDBits = FPBits; int biased_exponent = exponent + LDBits::EXP_BIAS; // Max exponent is of the form 0xFF...E. That is why -2 and not -1. constexpr int MAX_EXPONENT_VALUE = (1 << LDBits::EXP_LEN) - 2; if (biased_exponent > MAX_EXPONENT_VALUE) { return LDBits::inf(sign).get_val(); } FPBits result(0.0l); result.set_sign(sign); constexpr int SUBNORMAL_EXPONENT = -LDBits::EXP_BIAS + 1; if (exponent < SUBNORMAL_EXPONENT) { unsigned shift = SUBNORMAL_EXPONENT - exponent; if (shift <= LDBits::FRACTION_LEN + 1) { // Generate a subnormal number. Might lead to loss of precision. // We round to nearest and round halfway cases to even. const StorageType shift_out_mask = (StorageType(1) << shift) - 1; const StorageType shift_out_value = mantissa & shift_out_mask; const StorageType halfway_value = StorageType(1) << (shift - 1); result.set_biased_exponent(0); result.set_mantissa(mantissa >> shift); StorageType new_mantissa = result.get_mantissa(); if (shift_out_value > halfway_value) { new_mantissa += 1; } else if (shift_out_value == halfway_value) { // Round to even. if (result.get_mantissa() & 0x1) new_mantissa += 1; } result.set_mantissa(new_mantissa); // Adding 1 to mantissa can lead to overflow. This can only happen if // mantissa was all ones (0b111..11). For such a case, we will carry // the overflow into the exponent and set the implicit bit to 1. if (new_mantissa == ONE) { result.set_biased_exponent(1); result.set_implicit_bit(1); } else { result.set_implicit_bit(0); } return result.get_val(); } else { return result.get_val(); } } result.set_biased_exponent(biased_exponent); result.set_mantissa(mantissa); result.set_implicit_bit(1); return result.get_val(); } #endif // LIBC_TYPES_LONG_DOUBLE_IS_X86_FLOAT80 } // namespace fputil } // namespace LIBC_NAMESPACE_DECL #endif // LLVM_LIBC_SRC___SUPPORT_FPUTIL_NORMALFLOAT_H