//===-- lib/Semantics/check-omp-structure.cpp -----------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #include "check-omp-structure.h" #include "definable.h" #include "flang/Evaluate/check-expression.h" #include "flang/Parser/parse-tree.h" #include "flang/Semantics/expression.h" #include "flang/Semantics/openmp-modifiers.h" #include "flang/Semantics/tools.h" #include namespace Fortran::semantics { // Use when clause falls under 'struct OmpClause' in 'parse-tree.h'. #define CHECK_SIMPLE_CLAUSE(X, Y) \ void OmpStructureChecker::Enter(const parser::OmpClause::X &) { \ CheckAllowedClause(llvm::omp::Clause::Y); \ } #define CHECK_REQ_CONSTANT_SCALAR_INT_CLAUSE(X, Y) \ void OmpStructureChecker::Enter(const parser::OmpClause::X &c) { \ CheckAllowedClause(llvm::omp::Clause::Y); \ RequiresConstantPositiveParameter(llvm::omp::Clause::Y, c.v); \ } #define CHECK_REQ_SCALAR_INT_CLAUSE(X, Y) \ void OmpStructureChecker::Enter(const parser::OmpClause::X &c) { \ CheckAllowedClause(llvm::omp::Clause::Y); \ RequiresPositiveParameter(llvm::omp::Clause::Y, c.v); \ } // Use when clause don't falls under 'struct OmpClause' in 'parse-tree.h'. #define CHECK_SIMPLE_PARSER_CLAUSE(X, Y) \ void OmpStructureChecker::Enter(const parser::X &) { \ CheckAllowedClause(llvm::omp::Y); \ } std::string ThisVersion(unsigned version) { std::string tv{ std::to_string(version / 10) + "." + std::to_string(version % 10)}; return "OpenMP v" + tv; } std::string TryVersion(unsigned version) { return "try -fopenmp-version=" + std::to_string(version); } static const parser::Designator *GetDesignatorFromObj( const parser::OmpObject &object) { return std::get_if(&object.u); } static const parser::DataRef *GetDataRefFromObj( const parser::OmpObject &object) { if (auto *desg{GetDesignatorFromObj(object)}) { return std::get_if(&desg->u); } return nullptr; } static const parser::ArrayElement *GetArrayElementFromObj( const parser::OmpObject &object) { if (auto *dataRef{GetDataRefFromObj(object)}) { using ElementIndirection = common::Indirection; if (auto *ind{std::get_if(&dataRef->u)}) { return &ind->value(); } } return nullptr; } // 'OmpWorkshareBlockChecker' is used to check the validity of the assignment // statements and the expressions enclosed in an OpenMP Workshare construct class OmpWorkshareBlockChecker { public: OmpWorkshareBlockChecker(SemanticsContext &context, parser::CharBlock source) : context_{context}, source_{source} {} template bool Pre(const T &) { return true; } template void Post(const T &) {} bool Pre(const parser::AssignmentStmt &assignment) { const auto &var{std::get(assignment.t)}; const auto &expr{std::get(assignment.t)}; const auto *lhs{GetExpr(context_, var)}; const auto *rhs{GetExpr(context_, expr)}; if (lhs && rhs) { Tristate isDefined{semantics::IsDefinedAssignment( lhs->GetType(), lhs->Rank(), rhs->GetType(), rhs->Rank())}; if (isDefined == Tristate::Yes) { context_.Say(expr.source, "Defined assignment statement is not " "allowed in a WORKSHARE construct"_err_en_US); } } return true; } bool Pre(const parser::Expr &expr) { if (const auto *e{GetExpr(context_, expr)}) { for (const Symbol &symbol : evaluate::CollectSymbols(*e)) { const Symbol &root{GetAssociationRoot(symbol)}; if (IsFunction(root)) { std::string attrs{""}; if (!IsElementalProcedure(root)) { attrs = " non-ELEMENTAL"; } if (root.attrs().test(Attr::IMPURE)) { if (attrs != "") { attrs = "," + attrs; } attrs = " IMPURE" + attrs; } if (attrs != "") { context_.Say(expr.source, "User defined%s function '%s' is not allowed in a " "WORKSHARE construct"_err_en_US, attrs, root.name()); } } } } return false; } private: SemanticsContext &context_; parser::CharBlock source_; }; class AssociatedLoopChecker { public: AssociatedLoopChecker(SemanticsContext &context, std::int64_t level) : context_{context}, level_{level} {} template bool Pre(const T &) { return true; } template void Post(const T &) {} bool Pre(const parser::DoConstruct &dc) { level_--; const auto &doStmt{ std::get>(dc.t)}; const auto &constructName{ std::get>(doStmt.statement.t)}; if (constructName) { constructNamesAndLevels_.emplace( constructName.value().ToString(), level_); } if (level_ >= 0) { if (dc.IsDoWhile()) { context_.Say(doStmt.source, "The associated loop of a loop-associated directive cannot be a DO WHILE."_err_en_US); } if (!dc.GetLoopControl()) { context_.Say(doStmt.source, "The associated loop of a loop-associated directive cannot be a DO without control."_err_en_US); } } return true; } void Post(const parser::DoConstruct &dc) { level_++; } bool Pre(const parser::CycleStmt &cyclestmt) { std::map::iterator it; bool err{false}; if (cyclestmt.v) { it = constructNamesAndLevels_.find(cyclestmt.v->source.ToString()); err = (it != constructNamesAndLevels_.end() && it->second > 0); } else { // If there is no label then use the level of the last enclosing DO err = level_ > 0; } if (err) { context_.Say(*source_, "CYCLE statement to non-innermost associated loop of an OpenMP DO " "construct"_err_en_US); } return true; } bool Pre(const parser::ExitStmt &exitStmt) { std::map::iterator it; bool err{false}; if (exitStmt.v) { it = constructNamesAndLevels_.find(exitStmt.v->source.ToString()); err = (it != constructNamesAndLevels_.end() && it->second >= 0); } else { // If there is no label then use the level of the last enclosing DO err = level_ >= 0; } if (err) { context_.Say(*source_, "EXIT statement terminates associated loop of an OpenMP DO " "construct"_err_en_US); } return true; } bool Pre(const parser::Statement &actionstmt) { source_ = &actionstmt.source; return true; } private: SemanticsContext &context_; const parser::CharBlock *source_; std::int64_t level_; std::map constructNamesAndLevels_; }; // `OmpUnitedTaskDesignatorChecker` is used to check if the designator // can appear within the TASK construct class OmpUnitedTaskDesignatorChecker { public: OmpUnitedTaskDesignatorChecker(SemanticsContext &context) : context_{context} {} template bool Pre(const T &) { return true; } template void Post(const T &) {} bool Pre(const parser::Name &name) { if (name.symbol->test(Symbol::Flag::OmpThreadprivate)) { // OpenMP 5.2: 5.2 threadprivate directive restriction context_.Say(name.source, "A THREADPRIVATE variable `%s` cannot appear in an UNTIED TASK region"_err_en_US, name.source); } return true; } private: SemanticsContext &context_; }; bool OmpStructureChecker::CheckAllowedClause(llvmOmpClause clause) { // Do not do clause checks while processing METADIRECTIVE. // Context selectors can contain clauses that are not given as a part // of a construct, but as trait properties. Testing whether they are // valid or not is deferred to the checks of the context selectors. // As it stands now, these clauses would appear as if they were present // on METADIRECTIVE, leading to incorrect diagnostics. if (GetDirectiveNest(ContextSelectorNest) > 0) { return true; } unsigned version{context_.langOptions().OpenMPVersion}; DirectiveContext &dirCtx = GetContext(); llvm::omp::Directive dir{dirCtx.directive}; if (!llvm::omp::isAllowedClauseForDirective(dir, clause, version)) { unsigned allowedInVersion{[&] { for (unsigned v : llvm::omp::getOpenMPVersions()) { if (v <= version) { continue; } if (llvm::omp::isAllowedClauseForDirective(dir, clause, v)) { return v; } } return 0u; }()}; // Only report it if there is a later version that allows it. // If it's not allowed at all, it will be reported by CheckAllowed. if (allowedInVersion != 0) { auto clauseName{parser::ToUpperCaseLetters(getClauseName(clause).str())}; auto dirName{parser::ToUpperCaseLetters(getDirectiveName(dir).str())}; context_.Say(dirCtx.clauseSource, "%s clause is not allowed on directive %s in %s, %s"_err_en_US, clauseName, dirName, ThisVersion(version), TryVersion(allowedInVersion)); } } return CheckAllowed(clause); } bool OmpStructureChecker::IsCommonBlock(const Symbol &sym) { return sym.detailsIf() != nullptr; } bool OmpStructureChecker::IsVariableListItem(const Symbol &sym) { return evaluate::IsVariable(sym) || sym.attrs().test(Attr::POINTER); } bool OmpStructureChecker::IsExtendedListItem(const Symbol &sym) { return IsVariableListItem(sym) || sym.IsSubprogram(); } bool OmpStructureChecker::IsCloselyNestedRegion(const OmpDirectiveSet &set) { // Definition of close nesting: // // `A region nested inside another region with no parallel region nested // between them` // // Examples: // non-parallel construct 1 // non-parallel construct 2 // parallel construct // construct 3 // In the above example, construct 3 is NOT closely nested inside construct 1 // or 2 // // non-parallel construct 1 // non-parallel construct 2 // construct 3 // In the above example, construct 3 is closely nested inside BOTH construct 1 // and 2 // // Algorithm: // Starting from the parent context, Check in a bottom-up fashion, each level // of the context stack. If we have a match for one of the (supplied) // violating directives, `close nesting` is satisfied. If no match is there in // the entire stack, `close nesting` is not satisfied. If at any level, a // `parallel` region is found, `close nesting` is not satisfied. if (CurrentDirectiveIsNested()) { int index = dirContext_.size() - 2; while (index != -1) { if (set.test(dirContext_[index].directive)) { return true; } else if (llvm::omp::allParallelSet.test(dirContext_[index].directive)) { return false; } index--; } } return false; } namespace { struct ContiguousHelper { ContiguousHelper(SemanticsContext &context) : fctx_(context.foldingContext()) {} template std::optional Visit(const common::Indirection &x) { return Visit(x.value()); } template std::optional Visit(const common::Reference &x) { return Visit(x.get()); } template std::optional Visit(const evaluate::Expr &x) { return common::visit([&](auto &&s) { return Visit(s); }, x.u); } template std::optional Visit(const evaluate::Designator &x) { return common::visit( [this](auto &&s) { return evaluate::IsContiguous(s, fctx_); }, x.u); } template std::optional Visit(const T &) { // Everything else. return std::nullopt; } private: evaluate::FoldingContext &fctx_; }; } // namespace // Return values: // - std::optional{true} if the object is known to be contiguous // - std::optional{false} if the object is known not to be contiguous // - std::nullopt if the object contiguity cannot be determined std::optional OmpStructureChecker::IsContiguous( const parser::OmpObject &object) { return common::visit( // common::visitors{ [&](const parser::Name &x) { // Any member of a common block must be contiguous. return std::optional{true}; }, [&](const parser::Designator &x) { evaluate::ExpressionAnalyzer ea{context_}; if (MaybeExpr maybeExpr{ea.Analyze(x)}) { return ContiguousHelper{context_}.Visit(*maybeExpr); } return std::optional{}; }, }, object.u); } void OmpStructureChecker::CheckMultipleOccurrence( semantics::UnorderedSymbolSet &listVars, const std::list &nameList, const parser::CharBlock &item, const std::string &clauseName) { for (auto const &var : nameList) { if (llvm::is_contained(listVars, *(var.symbol))) { context_.Say(item, "List item '%s' present at multiple %s clauses"_err_en_US, var.ToString(), clauseName); } listVars.insert(*(var.symbol)); } } void OmpStructureChecker::CheckMultListItems() { semantics::UnorderedSymbolSet listVars; // Aligned clause for (auto [_, clause] : FindClauses(llvm::omp::Clause::OMPC_aligned)) { const auto &alignedClause{std::get(clause->u)}; const auto &alignedList{std::get<0>(alignedClause.v.t)}; std::list alignedNameList; for (const auto &ompObject : alignedList.v) { if (const auto *name{parser::Unwrap(ompObject)}) { if (name->symbol) { if (FindCommonBlockContaining(*(name->symbol))) { context_.Say(clause->source, "'%s' is a common block name and can not appear in an " "ALIGNED clause"_err_en_US, name->ToString()); } else if (!(IsBuiltinCPtr(*(name->symbol)) || IsAllocatableOrObjectPointer( &name->symbol->GetUltimate()))) { context_.Say(clause->source, "'%s' in ALIGNED clause must be of type C_PTR, POINTER or " "ALLOCATABLE"_err_en_US, name->ToString()); } else { alignedNameList.push_back(*name); } } else { // The symbol is null, return early return; } } } CheckMultipleOccurrence( listVars, alignedNameList, clause->source, "ALIGNED"); } // Nontemporal clause for (auto [_, clause] : FindClauses(llvm::omp::Clause::OMPC_nontemporal)) { const auto &nontempClause{ std::get(clause->u)}; const auto &nontempNameList{nontempClause.v}; CheckMultipleOccurrence( listVars, nontempNameList, clause->source, "NONTEMPORAL"); } // Linear clause for (auto [_, clause] : FindClauses(llvm::omp::Clause::OMPC_linear)) { auto &linearClause{std::get(clause->u)}; std::list nameList; SymbolSourceMap symbols; GetSymbolsInObjectList( std::get(linearClause.v.t), symbols); llvm::transform(symbols, std::back_inserter(nameList), [&](auto &&pair) { return parser::Name{pair.second, const_cast(pair.first)}; }); CheckMultipleOccurrence(listVars, nameList, clause->source, "LINEAR"); } } bool OmpStructureChecker::HasInvalidWorksharingNesting( const parser::CharBlock &source, const OmpDirectiveSet &set) { // set contains all the invalid closely nested directives // for the given directive (`source` here) if (IsCloselyNestedRegion(set)) { context_.Say(source, "A worksharing region may not be closely nested inside a " "worksharing, explicit task, taskloop, critical, ordered, atomic, or " "master region"_err_en_US); return true; } return false; } void OmpStructureChecker::HasInvalidDistributeNesting( const parser::OpenMPLoopConstruct &x) { bool violation{false}; const auto &beginLoopDir{std::get(x.t)}; const auto &beginDir{std::get(beginLoopDir.t)}; if (llvm::omp::topDistributeSet.test(beginDir.v)) { // `distribute` region has to be nested if (!CurrentDirectiveIsNested()) { violation = true; } else { // `distribute` region has to be strictly nested inside `teams` if (!OmpDirectiveSet{llvm::omp::OMPD_teams, llvm::omp::OMPD_target_teams} .test(GetContextParent().directive)) { violation = true; } } } if (violation) { context_.Say(beginDir.source, "`DISTRIBUTE` region has to be strictly nested inside `TEAMS` " "region."_err_en_US); } } void OmpStructureChecker::HasInvalidLoopBinding( const parser::OpenMPLoopConstruct &x) { const auto &beginLoopDir{std::get(x.t)}; const auto &beginDir{std::get(beginLoopDir.t)}; auto teamsBindingChecker = [&](parser::MessageFixedText msg) { const auto &clauseList{std::get(beginLoopDir.t)}; for (const auto &clause : clauseList.v) { if (const auto *bindClause{ std::get_if(&clause.u)}) { if (bindClause->v.v != parser::OmpBindClause::Binding::Teams) { context_.Say(beginDir.source, msg); } } } }; if (llvm::omp::Directive::OMPD_loop == beginDir.v && CurrentDirectiveIsNested() && OmpDirectiveSet{llvm::omp::OMPD_teams, llvm::omp::OMPD_target_teams}.test( GetContextParent().directive)) { teamsBindingChecker( "`BIND(TEAMS)` must be specified since the `LOOP` region is " "strictly nested inside a `TEAMS` region."_err_en_US); } if (OmpDirectiveSet{ llvm::omp::OMPD_teams_loop, llvm::omp::OMPD_target_teams_loop} .test(beginDir.v)) { teamsBindingChecker( "`BIND(TEAMS)` must be specified since the `LOOP` directive is " "combined with a `TEAMS` construct."_err_en_US); } } void OmpStructureChecker::HasInvalidTeamsNesting( const llvm::omp::Directive &dir, const parser::CharBlock &source) { if (!llvm::omp::nestedTeamsAllowedSet.test(dir)) { context_.Say(source, "Only `DISTRIBUTE`, `PARALLEL`, or `LOOP` regions are allowed to be " "strictly nested inside `TEAMS` region."_err_en_US); } } void OmpStructureChecker::CheckPredefinedAllocatorRestriction( const parser::CharBlock &source, const parser::Name &name) { if (const auto *symbol{name.symbol}) { const auto *commonBlock{FindCommonBlockContaining(*symbol)}; const auto &scope{context_.FindScope(symbol->name())}; const Scope &containingScope{GetProgramUnitContaining(scope)}; if (!isPredefinedAllocator && (IsSaved(*symbol) || commonBlock || containingScope.kind() == Scope::Kind::Module)) { context_.Say(source, "If list items within the %s directive have the " "SAVE attribute, are a common block name, or are " "declared in the scope of a module, then only " "predefined memory allocator parameters can be used " "in the allocator clause"_err_en_US, ContextDirectiveAsFortran()); } } } void OmpStructureChecker::CheckPredefinedAllocatorRestriction( const parser::CharBlock &source, const parser::OmpObjectList &ompObjectList) { for (const auto &ompObject : ompObjectList.v) { common::visit( common::visitors{ [&](const parser::Designator &designator) { if (const auto *dataRef{ std::get_if(&designator.u)}) { if (const auto *name{std::get_if(&dataRef->u)}) { CheckPredefinedAllocatorRestriction(source, *name); } } }, [&](const parser::Name &name) { CheckPredefinedAllocatorRestriction(source, name); }, }, ompObject.u); } } template void OmpStructureChecker::CheckHintClause( D *leftOmpClauseList, D *rightOmpClauseList) { auto checkForValidHintClause = [&](const D *clauseList) { for (const auto &clause : clauseList->v) { const parser::OmpClause *ompClause = nullptr; if constexpr (std::is_same_v) { ompClause = std::get_if(&clause.u); if (!ompClause) continue; } else if constexpr (std::is_same_v) { ompClause = &clause; } if (const parser::OmpClause::Hint *hintClause{ std::get_if(&ompClause->u)}) { std::optional hintValue = GetIntValue(hintClause->v); if (hintValue && *hintValue >= 0) { /*`omp_sync_hint_nonspeculative` and `omp_lock_hint_speculative`*/ if ((*hintValue & 0xC) == 0xC /*`omp_sync_hint_uncontended` and omp_sync_hint_contended*/ || (*hintValue & 0x3) == 0x3) context_.Say(clause.source, "Hint clause value " "is not a valid OpenMP synchronization value"_err_en_US); } else { context_.Say(clause.source, "Hint clause must have non-negative constant " "integer expression"_err_en_US); } } } }; if (leftOmpClauseList) { checkForValidHintClause(leftOmpClauseList); } if (rightOmpClauseList) { checkForValidHintClause(rightOmpClauseList); } } void OmpStructureChecker::Enter(const parser::OmpDirectiveSpecification &x) { PushContextAndClauseSets(x.source, std::get(x.t)); } void OmpStructureChecker::Leave(const parser::OmpDirectiveSpecification &) { dirContext_.pop_back(); } void OmpStructureChecker::Enter(const parser::OmpMetadirectiveDirective &x) { PushContextAndClauseSets(x.source, llvm::omp::Directive::OMPD_metadirective); } void OmpStructureChecker::Leave(const parser::OmpMetadirectiveDirective &) { dirContext_.pop_back(); } void OmpStructureChecker::Enter(const parser::OpenMPConstruct &x) { // Simd Construct with Ordered Construct Nesting check // We cannot use CurrentDirectiveIsNested() here because // PushContextAndClauseSets() has not been called yet, it is // called individually for each construct. Therefore a // dirContext_ size `1` means the current construct is nested if (dirContext_.size() >= 1) { if (GetDirectiveNest(SIMDNest) > 0) { CheckSIMDNest(x); } if (GetDirectiveNest(TargetNest) > 0) { CheckTargetNest(x); } } } void OmpStructureChecker::Leave(const parser::OpenMPConstruct &) { for (const auto &[sym, source] : deferredNonVariables_) { context_.SayWithDecl( *sym, source, "'%s' must be a variable"_err_en_US, sym->name()); } deferredNonVariables_.clear(); } void OmpStructureChecker::Enter(const parser::OpenMPDeclarativeConstruct &x) { EnterDirectiveNest(DeclarativeNest); } void OmpStructureChecker::Leave(const parser::OpenMPDeclarativeConstruct &x) { ExitDirectiveNest(DeclarativeNest); } void OmpStructureChecker::Enter(const parser::OpenMPLoopConstruct &x) { loopStack_.push_back(&x); const auto &beginLoopDir{std::get(x.t)}; const auto &beginDir{std::get(beginLoopDir.t)}; // check matching, End directive is optional if (const auto &endLoopDir{ std::get>(x.t)}) { const auto &endDir{ std::get(endLoopDir.value().t)}; CheckMatching(beginDir, endDir); } PushContextAndClauseSets(beginDir.source, beginDir.v); if (llvm::omp::allSimdSet.test(GetContext().directive)) { EnterDirectiveNest(SIMDNest); } // Combined target loop constructs are target device constructs. Keep track of // whether any such construct has been visited to later check that REQUIRES // directives for target-related options don't appear after them. if (llvm::omp::allTargetSet.test(beginDir.v)) { deviceConstructFound_ = true; } if (beginDir.v == llvm::omp::Directive::OMPD_do) { // 2.7.1 do-clause -> private-clause | // firstprivate-clause | // lastprivate-clause | // linear-clause | // reduction-clause | // schedule-clause | // collapse-clause | // ordered-clause // nesting check HasInvalidWorksharingNesting( beginDir.source, llvm::omp::nestedWorkshareErrSet); } SetLoopInfo(x); if (const auto &doConstruct{ std::get>(x.t)}) { const auto &doBlock{std::get(doConstruct->t)}; CheckNoBranching(doBlock, beginDir.v, beginDir.source); } CheckLoopItrVariableIsInt(x); CheckAssociatedLoopConstraints(x); HasInvalidDistributeNesting(x); HasInvalidLoopBinding(x); if (CurrentDirectiveIsNested() && llvm::omp::topTeamsSet.test(GetContextParent().directive)) { HasInvalidTeamsNesting(beginDir.v, beginDir.source); } if ((beginDir.v == llvm::omp::Directive::OMPD_distribute_parallel_do_simd) || (beginDir.v == llvm::omp::Directive::OMPD_distribute_simd)) { CheckDistLinear(x); } } const parser::Name OmpStructureChecker::GetLoopIndex( const parser::DoConstruct *x) { using Bounds = parser::LoopControl::Bounds; return std::get(x->GetLoopControl()->u).name.thing; } void OmpStructureChecker::SetLoopInfo(const parser::OpenMPLoopConstruct &x) { if (const auto &loopConstruct{ std::get>(x.t)}) { const parser::DoConstruct *loop{&*loopConstruct}; if (loop && loop->IsDoNormal()) { const parser::Name &itrVal{GetLoopIndex(loop)}; SetLoopIv(itrVal.symbol); } } } void OmpStructureChecker::CheckIteratorRange( const parser::OmpIteratorSpecifier &x) { // Check: // 1. Whether begin/end are present. // 2. Whether the step value is non-zero. // 3. If the step has a known sign, whether the lower/upper bounds form // a proper interval. const auto &[begin, end, step]{std::get(x.t).t}; if (!begin || !end) { context_.Say(x.source, "The begin and end expressions in iterator range-specification are " "mandatory"_err_en_US); } // [5.2:67:19] In a range-specification, if the step is not specified its // value is implicitly defined to be 1. if (auto stepv{step ? GetIntValue(*step) : std::optional{1}}) { if (*stepv == 0) { context_.Say( x.source, "The step value in the iterator range is 0"_warn_en_US); } else if (begin && end) { std::optional beginv{GetIntValue(*begin)}; std::optional endv{GetIntValue(*end)}; if (beginv && endv) { if (*stepv > 0 && *beginv > *endv) { context_.Say(x.source, "The begin value is greater than the end value in iterator " "range-specification with a positive step"_warn_en_US); } else if (*stepv < 0 && *beginv < *endv) { context_.Say(x.source, "The begin value is less than the end value in iterator " "range-specification with a negative step"_warn_en_US); } } } } } void OmpStructureChecker::CheckIteratorModifier(const parser::OmpIterator &x) { // Check if all iterator variables have integer type. for (auto &&iterSpec : x.v) { bool isInteger{true}; auto &typeDecl{std::get(iterSpec.t)}; auto &typeSpec{std::get(typeDecl.t)}; if (!std::holds_alternative(typeSpec.u)) { isInteger = false; } else { auto &intrinType{std::get(typeSpec.u)}; if (!std::holds_alternative(intrinType.u)) { isInteger = false; } } if (!isInteger) { context_.Say(iterSpec.source, "The iterator variable must be of integer type"_err_en_US); } CheckIteratorRange(iterSpec); } } void OmpStructureChecker::CheckLoopItrVariableIsInt( const parser::OpenMPLoopConstruct &x) { if (const auto &loopConstruct{ std::get>(x.t)}) { for (const parser::DoConstruct *loop{&*loopConstruct}; loop;) { if (loop->IsDoNormal()) { const parser::Name &itrVal{GetLoopIndex(loop)}; if (itrVal.symbol) { const auto *type{itrVal.symbol->GetType()}; if (!type->IsNumeric(TypeCategory::Integer)) { context_.Say(itrVal.source, "The DO loop iteration" " variable must be of the type integer."_err_en_US, itrVal.ToString()); } } } // Get the next DoConstruct if block is not empty. const auto &block{std::get(loop->t)}; const auto it{block.begin()}; loop = it != block.end() ? parser::Unwrap(*it) : nullptr; } } } void OmpStructureChecker::CheckSIMDNest(const parser::OpenMPConstruct &c) { // Check the following: // The only OpenMP constructs that can be encountered during execution of // a simd region are the `atomic` construct, the `loop` construct, the `simd` // construct and the `ordered` construct with the `simd` clause. // TODO: Expand the check to include `LOOP` construct as well when it is // supported. // Check if the parent context has the SIMD clause // Please note that we use GetContext() instead of GetContextParent() // because PushContextAndClauseSets() has not been called on the // current context yet. // TODO: Check for declare simd regions. bool eligibleSIMD{false}; common::visit( common::visitors{ // Allow `!$OMP ORDERED SIMD` [&](const parser::OpenMPBlockConstruct &c) { const auto &beginBlockDir{ std::get(c.t)}; const auto &beginDir{ std::get(beginBlockDir.t)}; if (beginDir.v == llvm::omp::Directive::OMPD_ordered) { const auto &clauses{ std::get(beginBlockDir.t)}; for (const auto &clause : clauses.v) { if (std::get_if(&clause.u)) { eligibleSIMD = true; break; } } } }, [&](const parser::OpenMPStandaloneConstruct &c) { if (const auto &simpleConstruct = std::get_if( &c.u)) { const auto &dir{std::get( simpleConstruct->t)}; if (dir.v == llvm::omp::Directive::OMPD_ordered) { const auto &clauses{ std::get(simpleConstruct->t)}; for (const auto &clause : clauses.v) { if (std::get_if(&clause.u)) { eligibleSIMD = true; break; } } } else if (dir.v == llvm::omp::Directive::OMPD_scan) { eligibleSIMD = true; } } }, // Allowing SIMD construct [&](const parser::OpenMPLoopConstruct &c) { const auto &beginLoopDir{ std::get(c.t)}; const auto &beginDir{ std::get(beginLoopDir.t)}; if ((beginDir.v == llvm::omp::Directive::OMPD_simd) || (beginDir.v == llvm::omp::Directive::OMPD_do_simd)) { eligibleSIMD = true; } }, [&](const parser::OpenMPAtomicConstruct &c) { // Allow `!$OMP ATOMIC` eligibleSIMD = true; }, [&](const auto &c) {}, }, c.u); if (!eligibleSIMD) { context_.Say(parser::FindSourceLocation(c), "The only OpenMP constructs that can be encountered during execution " "of a 'SIMD' region are the `ATOMIC` construct, the `LOOP` construct, " "the `SIMD` construct, the `SCAN` construct and the `ORDERED` " "construct with the `SIMD` clause."_err_en_US); } } void OmpStructureChecker::CheckTargetNest(const parser::OpenMPConstruct &c) { // 2.12.5 Target Construct Restriction bool eligibleTarget{true}; llvm::omp::Directive ineligibleTargetDir; common::visit( common::visitors{ [&](const parser::OpenMPBlockConstruct &c) { const auto &beginBlockDir{ std::get(c.t)}; const auto &beginDir{ std::get(beginBlockDir.t)}; if (beginDir.v == llvm::omp::Directive::OMPD_target_data) { eligibleTarget = false; ineligibleTargetDir = beginDir.v; } }, [&](const parser::OpenMPStandaloneConstruct &c) { common::visit( common::visitors{ [&](const parser::OpenMPSimpleStandaloneConstruct &c) { const auto &dir{ std::get(c.t)}; if (dir.v == llvm::omp::Directive::OMPD_target_update || dir.v == llvm::omp::Directive::OMPD_target_enter_data || dir.v == llvm::omp::Directive::OMPD_target_exit_data) { eligibleTarget = false; ineligibleTargetDir = dir.v; } }, [&](const auto &c) {}, }, c.u); }, [&](const parser::OpenMPLoopConstruct &c) { const auto &beginLoopDir{ std::get(c.t)}; const auto &beginDir{ std::get(beginLoopDir.t)}; if (llvm::omp::allTargetSet.test(beginDir.v)) { eligibleTarget = false; ineligibleTargetDir = beginDir.v; } }, [&](const auto &c) {}, }, c.u); if (!eligibleTarget) { context_.Warn(common::UsageWarning::OpenMPUsage, parser::FindSourceLocation(c), "If %s directive is nested inside TARGET region, the behaviour is unspecified"_port_en_US, parser::ToUpperCaseLetters( getDirectiveName(ineligibleTargetDir).str())); } } std::int64_t OmpStructureChecker::GetOrdCollapseLevel( const parser::OpenMPLoopConstruct &x) { const auto &beginLoopDir{std::get(x.t)}; const auto &clauseList{std::get(beginLoopDir.t)}; std::int64_t orderedCollapseLevel{1}; std::int64_t orderedLevel{1}; std::int64_t collapseLevel{1}; for (const auto &clause : clauseList.v) { if (const auto *collapseClause{ std::get_if(&clause.u)}) { if (const auto v{GetIntValue(collapseClause->v)}) { collapseLevel = *v; } } if (const auto *orderedClause{ std::get_if(&clause.u)}) { if (const auto v{GetIntValue(orderedClause->v)}) { orderedLevel = *v; } } } if (orderedLevel >= collapseLevel) { orderedCollapseLevel = orderedLevel; } else { orderedCollapseLevel = collapseLevel; } return orderedCollapseLevel; } void OmpStructureChecker::CheckAssociatedLoopConstraints( const parser::OpenMPLoopConstruct &x) { std::int64_t ordCollapseLevel{GetOrdCollapseLevel(x)}; AssociatedLoopChecker checker{context_, ordCollapseLevel}; parser::Walk(x, checker); } void OmpStructureChecker::CheckDistLinear( const parser::OpenMPLoopConstruct &x) { const auto &beginLoopDir{std::get(x.t)}; const auto &clauses{std::get(beginLoopDir.t)}; SymbolSourceMap indexVars; // Collect symbols of all the variables from linear clauses for (auto &clause : clauses.v) { if (auto *linearClause{std::get_if(&clause.u)}) { auto &objects{std::get(linearClause->v.t)}; GetSymbolsInObjectList(objects, indexVars); } } if (!indexVars.empty()) { // Get collapse level, if given, to find which loops are "associated." std::int64_t collapseVal{GetOrdCollapseLevel(x)}; // Include the top loop if no collapse is specified if (collapseVal == 0) { collapseVal = 1; } // Match the loop index variables with the collected symbols from linear // clauses. if (const auto &loopConstruct{ std::get>(x.t)}) { for (const parser::DoConstruct *loop{&*loopConstruct}; loop;) { if (loop->IsDoNormal()) { const parser::Name &itrVal{GetLoopIndex(loop)}; if (itrVal.symbol) { // Remove the symbol from the collected set indexVars.erase(&itrVal.symbol->GetUltimate()); } collapseVal--; if (collapseVal == 0) { break; } } // Get the next DoConstruct if block is not empty. const auto &block{std::get(loop->t)}; const auto it{block.begin()}; loop = it != block.end() ? parser::Unwrap(*it) : nullptr; } } // Show error for the remaining variables for (auto &[symbol, source] : indexVars) { const Symbol &root{GetAssociationRoot(*symbol)}; context_.Say(source, "Variable '%s' not allowed in LINEAR clause, only loop iterator can be specified in LINEAR clause of a construct combined with DISTRIBUTE"_err_en_US, root.name()); } } } void OmpStructureChecker::Leave(const parser::OpenMPLoopConstruct &x) { const auto &beginLoopDir{std::get(x.t)}; const auto &clauseList{std::get(beginLoopDir.t)}; // A few semantic checks for InScan reduction are performed below as SCAN // constructs inside LOOP may add the relevant information. Scan reduction is // supported only in loop constructs, so same checks are not applicable to // other directives. using ReductionModifier = parser::OmpReductionModifier; for (const auto &clause : clauseList.v) { if (const auto *reductionClause{ std::get_if(&clause.u)}) { auto &modifiers{OmpGetModifiers(reductionClause->v)}; auto *maybeModifier{OmpGetUniqueModifier(modifiers)}; if (maybeModifier && maybeModifier->v == ReductionModifier::Value::Inscan) { const auto &objectList{ std::get(reductionClause->v.t)}; auto checkReductionSymbolInScan = [&](const parser::Name *name) { if (auto &symbol = name->symbol) { if (!symbol->test(Symbol::Flag::OmpInclusiveScan) && !symbol->test(Symbol::Flag::OmpExclusiveScan)) { context_.Say(name->source, "List item %s must appear in EXCLUSIVE or " "INCLUSIVE clause of an " "enclosed SCAN directive"_err_en_US, name->ToString()); } } }; for (const auto &ompObj : objectList.v) { common::visit( common::visitors{ [&](const parser::Designator &designator) { if (const auto *name{semantics::getDesignatorNameIfDataRef( designator)}) { checkReductionSymbolInScan(name); } }, [&](const auto &name) { checkReductionSymbolInScan(&name); }, }, ompObj.u); } } } } if (llvm::omp::allSimdSet.test(GetContext().directive)) { ExitDirectiveNest(SIMDNest); } dirContext_.pop_back(); assert(!loopStack_.empty() && "Expecting non-empty loop stack"); #ifndef NDEBUG const LoopConstruct &top{loopStack_.back()}; auto *loopc{std::get_if(&top)}; assert(loopc != nullptr && *loopc == &x && "Mismatched loop constructs"); #endif loopStack_.pop_back(); } void OmpStructureChecker::Enter(const parser::OmpEndLoopDirective &x) { const auto &dir{std::get(x.t)}; ResetPartialContext(dir.source); switch (dir.v) { // 2.7.1 end-do -> END DO [nowait-clause] // 2.8.3 end-do-simd -> END DO SIMD [nowait-clause] case llvm::omp::Directive::OMPD_do: PushContextAndClauseSets(dir.source, llvm::omp::Directive::OMPD_end_do); break; case llvm::omp::Directive::OMPD_do_simd: PushContextAndClauseSets( dir.source, llvm::omp::Directive::OMPD_end_do_simd); break; default: // no clauses are allowed break; } } void OmpStructureChecker::Leave(const parser::OmpEndLoopDirective &x) { if ((GetContext().directive == llvm::omp::Directive::OMPD_end_do) || (GetContext().directive == llvm::omp::Directive::OMPD_end_do_simd)) { dirContext_.pop_back(); } } void OmpStructureChecker::Enter(const parser::OpenMPBlockConstruct &x) { const auto &beginBlockDir{std::get(x.t)}; const auto &endBlockDir{std::get(x.t)}; const auto &beginDir{std::get(beginBlockDir.t)}; const auto &endDir{std::get(endBlockDir.t)}; const parser::Block &block{std::get(x.t)}; CheckMatching(beginDir, endDir); PushContextAndClauseSets(beginDir.source, beginDir.v); if (llvm::omp::allTargetSet.test(GetContext().directive)) { EnterDirectiveNest(TargetNest); } if (CurrentDirectiveIsNested()) { if (llvm::omp::topTeamsSet.test(GetContextParent().directive)) { HasInvalidTeamsNesting(beginDir.v, beginDir.source); } if (GetContext().directive == llvm::omp::Directive::OMPD_master) { CheckMasterNesting(x); } // A teams region can only be strictly nested within the implicit parallel // region or a target region. if (GetContext().directive == llvm::omp::Directive::OMPD_teams && GetContextParent().directive != llvm::omp::Directive::OMPD_target) { context_.Say(parser::FindSourceLocation(x), "%s region can only be strictly nested within the implicit parallel " "region or TARGET region"_err_en_US, ContextDirectiveAsFortran()); } // If a teams construct is nested within a target construct, that target // construct must contain no statements, declarations or directives outside // of the teams construct. if (GetContext().directive == llvm::omp::Directive::OMPD_teams && GetContextParent().directive == llvm::omp::Directive::OMPD_target && !GetDirectiveNest(TargetBlockOnlyTeams)) { context_.Say(GetContextParent().directiveSource, "TARGET construct with nested TEAMS region contains statements or " "directives outside of the TEAMS construct"_err_en_US); } } CheckNoBranching(block, beginDir.v, beginDir.source); // Target block constructs are target device constructs. Keep track of // whether any such construct has been visited to later check that REQUIRES // directives for target-related options don't appear after them. if (llvm::omp::allTargetSet.test(beginDir.v)) { deviceConstructFound_ = true; } switch (beginDir.v) { case llvm::omp::Directive::OMPD_target: if (CheckTargetBlockOnlyTeams(block)) { EnterDirectiveNest(TargetBlockOnlyTeams); } break; case llvm::omp::OMPD_workshare: case llvm::omp::OMPD_parallel_workshare: CheckWorkshareBlockStmts(block, beginDir.source); HasInvalidWorksharingNesting( beginDir.source, llvm::omp::nestedWorkshareErrSet); break; case llvm::omp::Directive::OMPD_scope: case llvm::omp::Directive::OMPD_single: // TODO: This check needs to be extended while implementing nesting of // regions checks. HasInvalidWorksharingNesting( beginDir.source, llvm::omp::nestedWorkshareErrSet); break; case llvm::omp::Directive::OMPD_task: { const auto &clauses{std::get(beginBlockDir.t)}; for (const auto &clause : clauses.v) { if (std::get_if(&clause.u)) { OmpUnitedTaskDesignatorChecker check{context_}; parser::Walk(block, check); } } break; } default: break; } } void OmpStructureChecker::CheckMasterNesting( const parser::OpenMPBlockConstruct &x) { // A MASTER region may not be `closely nested` inside a worksharing, loop, // task, taskloop, or atomic region. // TODO: Expand the check to include `LOOP` construct as well when it is // supported. if (IsCloselyNestedRegion(llvm::omp::nestedMasterErrSet)) { context_.Say(parser::FindSourceLocation(x), "`MASTER` region may not be closely nested inside of `WORKSHARING`, " "`LOOP`, `TASK`, `TASKLOOP`," " or `ATOMIC` region."_err_en_US); } } void OmpStructureChecker::Leave(const parser::OpenMPBlockConstruct &) { if (GetDirectiveNest(TargetBlockOnlyTeams)) { ExitDirectiveNest(TargetBlockOnlyTeams); } if (llvm::omp::allTargetSet.test(GetContext().directive)) { ExitDirectiveNest(TargetNest); } dirContext_.pop_back(); } void OmpStructureChecker::ChecksOnOrderedAsBlock() { if (FindClause(llvm::omp::Clause::OMPC_depend)) { context_.Say(GetContext().clauseSource, "DEPEND clauses are not allowed when ORDERED construct is a block construct with an ORDERED region"_err_en_US); return; } bool isNestedInDo{false}; bool isNestedInDoSIMD{false}; bool isNestedInSIMD{false}; bool noOrderedClause{false}; bool isOrderedClauseWithPara{false}; bool isCloselyNestedRegion{true}; if (CurrentDirectiveIsNested()) { for (int i = (int)dirContext_.size() - 2; i >= 0; i--) { if (llvm::omp::nestedOrderedErrSet.test(dirContext_[i].directive)) { context_.Say(GetContext().directiveSource, "`ORDERED` region may not be closely nested inside of `CRITICAL`, " "`ORDERED`, explicit `TASK` or `TASKLOOP` region."_err_en_US); break; } else if (llvm::omp::allDoSet.test(dirContext_[i].directive)) { isNestedInDo = true; isNestedInDoSIMD = llvm::omp::allDoSimdSet.test(dirContext_[i].directive); if (const auto *clause{ FindClause(dirContext_[i], llvm::omp::Clause::OMPC_ordered)}) { const auto &orderedClause{ std::get(clause->u)}; const auto orderedValue{GetIntValue(orderedClause.v)}; isOrderedClauseWithPara = orderedValue > 0; } else { noOrderedClause = true; } break; } else if (llvm::omp::allSimdSet.test(dirContext_[i].directive)) { isNestedInSIMD = true; break; } else if (llvm::omp::nestedOrderedParallelErrSet.test( dirContext_[i].directive)) { isCloselyNestedRegion = false; break; } } } if (!isCloselyNestedRegion) { context_.Say(GetContext().directiveSource, "An ORDERED directive without the DEPEND clause must be closely nested " "in a SIMD, worksharing-loop, or worksharing-loop SIMD " "region"_err_en_US); } else { if (CurrentDirectiveIsNested() && FindClause(llvm::omp::Clause::OMPC_simd) && (!isNestedInDoSIMD && !isNestedInSIMD)) { context_.Say(GetContext().directiveSource, "An ORDERED directive with SIMD clause must be closely nested in a " "SIMD or worksharing-loop SIMD region"_err_en_US); } if (isNestedInDo && (noOrderedClause || isOrderedClauseWithPara)) { context_.Say(GetContext().directiveSource, "An ORDERED directive without the DEPEND clause must be closely " "nested in a worksharing-loop (or worksharing-loop SIMD) region with " "ORDERED clause without the parameter"_err_en_US); } } } void OmpStructureChecker::Leave(const parser::OmpBeginBlockDirective &) { switch (GetContext().directive) { case llvm::omp::Directive::OMPD_ordered: // [5.1] 2.19.9 Ordered Construct Restriction ChecksOnOrderedAsBlock(); break; default: break; } } void OmpStructureChecker::Enter(const parser::OpenMPSectionsConstruct &x) { const auto &beginSectionsDir{ std::get(x.t)}; const auto &endSectionsDir{std::get(x.t)}; const auto &beginDir{ std::get(beginSectionsDir.t)}; const auto &endDir{std::get(endSectionsDir.t)}; CheckMatching(beginDir, endDir); PushContextAndClauseSets(beginDir.source, beginDir.v); const auto §ionBlocks{std::get(x.t)}; for (const parser::OpenMPConstruct &block : sectionBlocks.v) { CheckNoBranching(std::get(block.u).v, beginDir.v, beginDir.source); } HasInvalidWorksharingNesting( beginDir.source, llvm::omp::nestedWorkshareErrSet); } void OmpStructureChecker::Leave(const parser::OpenMPSectionsConstruct &) { dirContext_.pop_back(); } void OmpStructureChecker::Enter(const parser::OmpEndSectionsDirective &x) { const auto &dir{std::get(x.t)}; ResetPartialContext(dir.source); switch (dir.v) { // 2.7.2 end-sections -> END SECTIONS [nowait-clause] case llvm::omp::Directive::OMPD_sections: PushContextAndClauseSets( dir.source, llvm::omp::Directive::OMPD_end_sections); break; default: // no clauses are allowed break; } } // TODO: Verify the popping of dirContext requirement after nowait // implementation, as there is an implicit barrier at the end of the worksharing // constructs unless a nowait clause is specified. Only OMPD_end_sections is // popped becuase it is pushed while entering the EndSectionsDirective. void OmpStructureChecker::Leave(const parser::OmpEndSectionsDirective &x) { if (GetContext().directive == llvm::omp::Directive::OMPD_end_sections) { dirContext_.pop_back(); } } void OmpStructureChecker::CheckThreadprivateOrDeclareTargetVar( const parser::OmpObjectList &objList) { for (const auto &ompObject : objList.v) { common::visit( common::visitors{ [&](const parser::Designator &) { if (const auto *name{parser::Unwrap(ompObject)}) { // The symbol is null, return early, CheckSymbolNames // should have already reported the missing symbol as a // diagnostic error if (!name->symbol) { return; } if (name->symbol->GetUltimate().IsSubprogram()) { if (GetContext().directive == llvm::omp::Directive::OMPD_threadprivate) context_.Say(name->source, "The procedure name cannot be in a %s " "directive"_err_en_US, ContextDirectiveAsFortran()); // TODO: Check for procedure name in declare target directive. } else if (name->symbol->attrs().test(Attr::PARAMETER)) { if (GetContext().directive == llvm::omp::Directive::OMPD_threadprivate) context_.Say(name->source, "The entity with PARAMETER attribute cannot be in a %s " "directive"_err_en_US, ContextDirectiveAsFortran()); else if (GetContext().directive == llvm::omp::Directive::OMPD_declare_target) context_.Warn(common::UsageWarning::OpenMPUsage, name->source, "The entity with PARAMETER attribute is used in a %s directive"_warn_en_US, ContextDirectiveAsFortran()); } else if (FindCommonBlockContaining(*name->symbol)) { context_.Say(name->source, "A variable in a %s directive cannot be an element of a " "common block"_err_en_US, ContextDirectiveAsFortran()); } else if (FindEquivalenceSet(*name->symbol)) { context_.Say(name->source, "A variable in a %s directive cannot appear in an " "EQUIVALENCE statement"_err_en_US, ContextDirectiveAsFortran()); } else if (name->symbol->test(Symbol::Flag::OmpThreadprivate) && GetContext().directive == llvm::omp::Directive::OMPD_declare_target) { context_.Say(name->source, "A THREADPRIVATE variable cannot appear in a %s " "directive"_err_en_US, ContextDirectiveAsFortran()); } else { const semantics::Scope &useScope{ context_.FindScope(GetContext().directiveSource)}; const semantics::Scope &curScope = name->symbol->GetUltimate().owner(); if (!curScope.IsTopLevel()) { const semantics::Scope &declScope = GetProgramUnitOrBlockConstructContaining(curScope); const semantics::Symbol *sym{ declScope.parent().FindSymbol(name->symbol->name())}; if (sym && (sym->has() || sym->has())) { context_.Say(name->source, "The module name or main program name cannot be in a " "%s " "directive"_err_en_US, ContextDirectiveAsFortran()); } else if (!IsSaved(*name->symbol) && declScope.kind() != Scope::Kind::MainProgram && declScope.kind() != Scope::Kind::Module) { context_.Say(name->source, "A variable that appears in a %s directive must be " "declared in the scope of a module or have the SAVE " "attribute, either explicitly or " "implicitly"_err_en_US, ContextDirectiveAsFortran()); } else if (useScope != declScope) { context_.Say(name->source, "The %s directive and the common block or variable " "in it must appear in the same declaration section " "of a scoping unit"_err_en_US, ContextDirectiveAsFortran()); } } } } }, [&](const parser::Name &) {}, // common block }, ompObject.u); } } void OmpStructureChecker::Enter(const parser::OpenMPThreadprivate &c) { const auto &dir{std::get(c.t)}; PushContextAndClauseSets( dir.source, llvm::omp::Directive::OMPD_threadprivate); } void OmpStructureChecker::Leave(const parser::OpenMPThreadprivate &c) { const auto &dir{std::get(c.t)}; const auto &objectList{std::get(c.t)}; CheckSymbolNames(dir.source, objectList); CheckIsVarPartOfAnotherVar(dir.source, objectList); CheckThreadprivateOrDeclareTargetVar(objectList); dirContext_.pop_back(); } void OmpStructureChecker::Enter(const parser::OpenMPDeclareSimdConstruct &x) { const auto &dir{std::get(x.t)}; PushContextAndClauseSets(dir.source, llvm::omp::Directive::OMPD_declare_simd); } void OmpStructureChecker::Leave(const parser::OpenMPDeclareSimdConstruct &) { dirContext_.pop_back(); } void OmpStructureChecker::Enter(const parser::OpenMPDepobjConstruct &x) { const auto &dir{std::get(x.t)}; PushContextAndClauseSets(dir.source, llvm::omp::Directive::OMPD_depobj); // [5.2:73:27-28] // If the destroy clause appears on a depobj construct, destroy-var must // refer to the same depend object as the depobj argument of the construct. auto &clause{std::get(x.t)}; if (clause.Id() == llvm::omp::Clause::OMPC_destroy) { auto getSymbol{[&](const parser::OmpObject &obj) { return common::visit( [&](auto &&s) { return GetLastName(s).symbol; }, obj.u); }}; auto &wrapper{std::get(clause.u)}; if (const std::optional &destroy{wrapper.v}) { const Symbol *constrSym{getSymbol(std::get(x.t))}; const Symbol *clauseSym{getSymbol(destroy->v)}; assert(constrSym && "Unresolved depobj construct symbol"); assert(clauseSym && "Unresolved destroy symbol on depobj construct"); if (constrSym != clauseSym) { context_.Say(x.source, "The DESTROY clause must refer to the same object as the " "DEPOBJ construct"_err_en_US); } } } } void OmpStructureChecker::Leave(const parser::OpenMPDepobjConstruct &x) { dirContext_.pop_back(); } void OmpStructureChecker::Enter(const parser::OpenMPRequiresConstruct &x) { const auto &dir{std::get(x.t)}; PushContextAndClauseSets(dir.source, llvm::omp::Directive::OMPD_requires); } void OmpStructureChecker::Leave(const parser::OpenMPRequiresConstruct &) { dirContext_.pop_back(); } void OmpStructureChecker::CheckAlignValue(const parser::OmpClause &clause) { if (auto *align{std::get_if(&clause.u)}) { if (const auto &v{GetIntValue(align->v)}; !v || *v <= 0) { context_.Say(clause.source, "The alignment value should be a constant positive integer"_err_en_US); } } } void OmpStructureChecker::Enter(const parser::OpenMPDeclarativeAllocate &x) { isPredefinedAllocator = true; const auto &dir{std::get(x.t)}; const auto &objectList{std::get(x.t)}; PushContextAndClauseSets(dir.source, llvm::omp::Directive::OMPD_allocate); const auto &clauseList{std::get(x.t)}; for (const auto &clause : clauseList.v) { CheckAlignValue(clause); } CheckIsVarPartOfAnotherVar(dir.source, objectList); } void OmpStructureChecker::Leave(const parser::OpenMPDeclarativeAllocate &x) { const auto &dir{std::get(x.t)}; const auto &objectList{std::get(x.t)}; CheckPredefinedAllocatorRestriction(dir.source, objectList); dirContext_.pop_back(); } void OmpStructureChecker::Enter(const parser::OmpClause::Allocator &x) { CheckAllowedClause(llvm::omp::Clause::OMPC_allocator); // Note: Predefined allocators are stored in ScalarExpr as numbers // whereas custom allocators are stored as strings, so if the ScalarExpr // actually has an int value, then it must be a predefined allocator isPredefinedAllocator = GetIntValue(x.v).has_value(); RequiresPositiveParameter(llvm::omp::Clause::OMPC_allocator, x.v); } void OmpStructureChecker::Enter(const parser::OmpClause::Allocate &x) { CheckAllowedClause(llvm::omp::Clause::OMPC_allocate); if (OmpVerifyModifiers( x.v, llvm::omp::OMPC_allocate, GetContext().clauseSource, context_)) { auto &modifiers{OmpGetModifiers(x.v)}; if (auto *align{ OmpGetUniqueModifier(modifiers)}) { if (const auto &v{GetIntValue(align->v)}; !v || *v <= 0) { context_.Say(OmpGetModifierSource(modifiers, align), "The alignment value should be a constant positive integer"_err_en_US); } } // The simple and complex modifiers have the same structure. They only // differ in their syntax. if (auto *alloc{OmpGetUniqueModifier( modifiers)}) { isPredefinedAllocator = GetIntValue(alloc->v).has_value(); } if (auto *alloc{OmpGetUniqueModifier( modifiers)}) { isPredefinedAllocator = GetIntValue(alloc->v).has_value(); } } } void OmpStructureChecker::Enter(const parser::OmpDeclareTargetWithClause &x) { SetClauseSets(llvm::omp::Directive::OMPD_declare_target); } void OmpStructureChecker::Leave(const parser::OmpDeclareTargetWithClause &x) { if (x.v.v.size() > 0) { const parser::OmpClause *enterClause = FindClause(llvm::omp::Clause::OMPC_enter); const parser::OmpClause *toClause = FindClause(llvm::omp::Clause::OMPC_to); const parser::OmpClause *linkClause = FindClause(llvm::omp::Clause::OMPC_link); if (!enterClause && !toClause && !linkClause) { context_.Say(x.source, "If the DECLARE TARGET directive has a clause, it must contain at least one ENTER clause or LINK clause"_err_en_US); } unsigned version{context_.langOptions().OpenMPVersion}; if (toClause && version >= 52) { context_.Warn(common::UsageWarning::OpenMPUsage, toClause->source, "The usage of TO clause on DECLARE TARGET directive has been deprecated. Use ENTER clause instead."_warn_en_US); } } } void OmpStructureChecker::Enter(const parser::OpenMPDeclareMapperConstruct &x) { const auto &dir{std::get(x.t)}; PushContextAndClauseSets( dir.source, llvm::omp::Directive::OMPD_declare_mapper); const auto &spec{std::get(x.t)}; const auto &type = std::get(spec.t); if (!std::get_if(&type.u)) { context_.Say(dir.source, "Type is not a derived type"_err_en_US); } } void OmpStructureChecker::Leave(const parser::OpenMPDeclareMapperConstruct &) { dirContext_.pop_back(); } void OmpStructureChecker::Enter(const parser::OpenMPDeclareTargetConstruct &x) { const auto &dir{std::get(x.t)}; PushContext(dir.source, llvm::omp::Directive::OMPD_declare_target); } void OmpStructureChecker::Enter(const parser::OmpDeclareTargetWithList &x) { SymbolSourceMap symbols; GetSymbolsInObjectList(x.v, symbols); for (auto &[symbol, source] : symbols) { const GenericDetails *genericDetails = symbol->detailsIf(); if (genericDetails) { context_.Say(source, "The procedure '%s' in DECLARE TARGET construct cannot be a generic name."_err_en_US, symbol->name()); genericDetails->specific(); } if (IsProcedurePointer(*symbol)) { context_.Say(source, "The procedure '%s' in DECLARE TARGET construct cannot be a procedure pointer."_err_en_US, symbol->name()); } const SubprogramDetails *entryDetails = symbol->detailsIf(); if (entryDetails && entryDetails->entryScope()) { context_.Say(source, "The procedure '%s' in DECLARE TARGET construct cannot be an entry name."_err_en_US, symbol->name()); } if (IsStmtFunction(*symbol)) { context_.Say(source, "The procedure '%s' in DECLARE TARGET construct cannot be a statement function."_err_en_US, symbol->name()); } } } void OmpStructureChecker::CheckSymbolNames( const parser::CharBlock &source, const parser::OmpObjectList &objList) { for (const auto &ompObject : objList.v) { common::visit( common::visitors{ [&](const parser::Designator &designator) { if (const auto *name{parser::Unwrap(ompObject)}) { if (!name->symbol) { context_.Say(source, "The given %s directive clause has an invalid argument"_err_en_US, ContextDirectiveAsFortran()); } } }, [&](const parser::Name &name) { if (!name.symbol) { context_.Say(source, "The given %s directive clause has an invalid argument"_err_en_US, ContextDirectiveAsFortran()); } }, }, ompObject.u); } } void OmpStructureChecker::Leave(const parser::OpenMPDeclareTargetConstruct &x) { const auto &dir{std::get(x.t)}; const auto &spec{std::get(x.t)}; // Handle both forms of DECLARE TARGET. // - Extended list: It behaves as if there was an ENTER/TO clause with the // list of objects as argument. It accepts no explicit clauses. // - With clauses. if (const auto *objectList{parser::Unwrap(spec.u)}) { deviceConstructFound_ = true; CheckSymbolNames(dir.source, *objectList); CheckIsVarPartOfAnotherVar(dir.source, *objectList); CheckThreadprivateOrDeclareTargetVar(*objectList); } else if (const auto *clauseList{ parser::Unwrap(spec.u)}) { bool toClauseFound{false}, deviceTypeClauseFound{false}, enterClauseFound{false}; for (const auto &clause : clauseList->v) { common::visit( common::visitors{ [&](const parser::OmpClause::To &toClause) { toClauseFound = true; auto &objList{std::get(toClause.v.t)}; CheckSymbolNames(dir.source, objList); CheckIsVarPartOfAnotherVar(dir.source, objList); CheckThreadprivateOrDeclareTargetVar(objList); }, [&](const parser::OmpClause::Link &linkClause) { CheckSymbolNames(dir.source, linkClause.v); CheckIsVarPartOfAnotherVar(dir.source, linkClause.v); CheckThreadprivateOrDeclareTargetVar(linkClause.v); }, [&](const parser::OmpClause::Enter &enterClause) { enterClauseFound = true; CheckSymbolNames(dir.source, enterClause.v); CheckIsVarPartOfAnotherVar(dir.source, enterClause.v); CheckThreadprivateOrDeclareTargetVar(enterClause.v); }, [&](const parser::OmpClause::DeviceType &deviceTypeClause) { deviceTypeClauseFound = true; if (deviceTypeClause.v.v != parser::OmpDeviceTypeClause::DeviceTypeDescription::Host) { // Function / subroutine explicitly marked as runnable by the // target device. deviceConstructFound_ = true; } }, [&](const auto &) {}, }, clause.u); if ((toClauseFound || enterClauseFound) && !deviceTypeClauseFound) { deviceConstructFound_ = true; } } } dirContext_.pop_back(); } void OmpStructureChecker::Enter(const parser::OmpErrorDirective &x) { const auto &dir{std::get(x.t)}; PushContextAndClauseSets(dir.source, llvm::omp::Directive::OMPD_error); } void OmpStructureChecker::Enter(const parser::OpenMPDispatchConstruct &x) { PushContextAndClauseSets(x.source, llvm::omp::Directive::OMPD_dispatch); const auto &block{std::get(x.t)}; if (block.empty() || block.size() > 1) { context_.Say(x.source, "The DISPATCH construct is empty or contains more than one statement"_err_en_US); return; } auto it{block.begin()}; bool passChecks{false}; if (const parser::AssignmentStmt * assignStmt{parser::Unwrap(*it)}) { if (parser::Unwrap(assignStmt->t)) { passChecks = true; } } else if (parser::Unwrap(*it)) { passChecks = true; } if (!passChecks) { context_.Say(x.source, "The DISPATCH construct does not contain a SUBROUTINE or FUNCTION"_err_en_US); } } void OmpStructureChecker::Leave(const parser::OpenMPDispatchConstruct &x) { dirContext_.pop_back(); } void OmpStructureChecker::Leave(const parser::OmpErrorDirective &x) { dirContext_.pop_back(); } void OmpStructureChecker::Enter(const parser::OmpClause::At &x) { CheckAllowedClause(llvm::omp::Clause::OMPC_at); if (GetDirectiveNest(DeclarativeNest) > 0) { if (x.v.v == parser::OmpAtClause::ActionTime::Execution) { context_.Say(GetContext().clauseSource, "The ERROR directive with AT(EXECUTION) cannot appear in the specification part"_err_en_US); } } } void OmpStructureChecker::Enter(const parser::OpenMPExecutableAllocate &x) { isPredefinedAllocator = true; const auto &dir{std::get(x.t)}; const auto &objectList{std::get>(x.t)}; PushContextAndClauseSets(dir.source, llvm::omp::Directive::OMPD_allocate); const auto &clauseList{std::get(x.t)}; for (const auto &clause : clauseList.v) { CheckAlignValue(clause); } if (objectList) { CheckIsVarPartOfAnotherVar(dir.source, *objectList); } } void OmpStructureChecker::Leave(const parser::OpenMPExecutableAllocate &x) { const auto &dir{std::get(x.t)}; const auto &objectList{std::get>(x.t)}; if (objectList) CheckPredefinedAllocatorRestriction(dir.source, *objectList); dirContext_.pop_back(); } void OmpStructureChecker::Enter(const parser::OpenMPAllocatorsConstruct &x) { isPredefinedAllocator = true; const auto &dir{std::get(x.t)}; PushContextAndClauseSets(dir.source, llvm::omp::Directive::OMPD_allocators); const auto &clauseList{std::get(x.t)}; for (const auto &clause : clauseList.v) { if (const auto *allocClause{ parser::Unwrap(clause)}) { CheckIsVarPartOfAnotherVar( dir.source, std::get(allocClause->v.t)); } } } void OmpStructureChecker::Leave(const parser::OpenMPAllocatorsConstruct &x) { const auto &dir{std::get(x.t)}; const auto &clauseList{std::get(x.t)}; for (const auto &clause : clauseList.v) { if (const auto *allocClause{ std::get_if(&clause.u)}) { CheckPredefinedAllocatorRestriction( dir.source, std::get(allocClause->v.t)); } } dirContext_.pop_back(); } void OmpStructureChecker::CheckScan( const parser::OpenMPSimpleStandaloneConstruct &x) { if (std::get(x.t).v.size() != 1) { context_.Say(x.source, "Exactly one of EXCLUSIVE or INCLUSIVE clause is expected"_err_en_US); } if (!CurrentDirectiveIsNested() || !llvm::omp::scanParentAllowedSet.test(GetContextParent().directive)) { context_.Say(x.source, "Orphaned SCAN directives are prohibited; perhaps you forgot " "to enclose the directive in to a WORKSHARING LOOP, a WORKSHARING " "LOOP SIMD or a SIMD directive."_err_en_US); } } void OmpStructureChecker::CheckBarrierNesting( const parser::OpenMPSimpleStandaloneConstruct &x) { // A barrier region may not be `closely nested` inside a worksharing, loop, // task, taskloop, critical, ordered, atomic, or master region. // TODO: Expand the check to include `LOOP` construct as well when it is // supported. if (IsCloselyNestedRegion(llvm::omp::nestedBarrierErrSet)) { context_.Say(parser::FindSourceLocation(x), "`BARRIER` region may not be closely nested inside of `WORKSHARING`, " "`LOOP`, `TASK`, `TASKLOOP`," "`CRITICAL`, `ORDERED`, `ATOMIC` or `MASTER` region."_err_en_US); } } void OmpStructureChecker::ChecksOnOrderedAsStandalone() { if (FindClause(llvm::omp::Clause::OMPC_threads) || FindClause(llvm::omp::Clause::OMPC_simd)) { context_.Say(GetContext().clauseSource, "THREADS and SIMD clauses are not allowed when ORDERED construct is a standalone construct with no ORDERED region"_err_en_US); } int dependSinkCount{0}, dependSourceCount{0}; bool exclusiveShown{false}, duplicateSourceShown{false}; auto visitDoacross{[&](const parser::OmpDoacross &doa, const parser::CharBlock &src) { common::visit( common::visitors{ [&](const parser::OmpDoacross::Source &) { dependSourceCount++; }, [&](const parser::OmpDoacross::Sink &) { dependSinkCount++; }}, doa.u); if (!exclusiveShown && dependSinkCount > 0 && dependSourceCount > 0) { exclusiveShown = true; context_.Say(src, "The SINK and SOURCE dependence types are mutually exclusive"_err_en_US); } if (!duplicateSourceShown && dependSourceCount > 1) { duplicateSourceShown = true; context_.Say(src, "At most one SOURCE dependence type can appear on the ORDERED directive"_err_en_US); } }}; // Visit the DEPEND and DOACROSS clauses. for (auto [_, clause] : FindClauses(llvm::omp::Clause::OMPC_depend)) { const auto &dependClause{std::get(clause->u)}; if (auto *doAcross{std::get_if(&dependClause.v.u)}) { visitDoacross(*doAcross, clause->source); } else { context_.Say(clause->source, "Only SINK or SOURCE dependence types are allowed when ORDERED construct is a standalone construct with no ORDERED region"_err_en_US); } } for (auto [_, clause] : FindClauses(llvm::omp::Clause::OMPC_doacross)) { auto &doaClause{std::get(clause->u)}; visitDoacross(doaClause.v.v, clause->source); } bool isNestedInDoOrderedWithPara{false}; if (CurrentDirectiveIsNested() && llvm::omp::nestedOrderedDoAllowedSet.test(GetContextParent().directive)) { if (const auto *clause{ FindClause(GetContextParent(), llvm::omp::Clause::OMPC_ordered)}) { const auto &orderedClause{ std::get(clause->u)}; const auto orderedValue{GetIntValue(orderedClause.v)}; if (orderedValue > 0) { isNestedInDoOrderedWithPara = true; CheckOrderedDependClause(orderedValue); } } } if (FindClause(llvm::omp::Clause::OMPC_depend) && !isNestedInDoOrderedWithPara) { context_.Say(GetContext().clauseSource, "An ORDERED construct with the DEPEND clause must be closely nested " "in a worksharing-loop (or parallel worksharing-loop) construct with " "ORDERED clause with a parameter"_err_en_US); } } void OmpStructureChecker::CheckOrderedDependClause( std::optional orderedValue) { auto visitDoacross{[&](const parser::OmpDoacross &doa, const parser::CharBlock &src) { if (auto *sinkVector{std::get_if(&doa.u)}) { int64_t numVar = sinkVector->v.v.size(); if (orderedValue != numVar) { context_.Say(src, "The number of variables in the SINK iteration vector does not match the parameter specified in ORDERED clause"_err_en_US); } } }}; for (auto [_, clause] : FindClauses(llvm::omp::Clause::OMPC_depend)) { auto &dependClause{std::get(clause->u)}; if (auto *doAcross{std::get_if(&dependClause.v.u)}) { visitDoacross(*doAcross, clause->source); } } for (auto [_, clause] : FindClauses(llvm::omp::Clause::OMPC_doacross)) { auto &doaClause{std::get(clause->u)}; visitDoacross(doaClause.v.v, clause->source); } } void OmpStructureChecker::CheckTargetUpdate() { const parser::OmpClause *toWrapper{FindClause(llvm::omp::Clause::OMPC_to)}; const parser::OmpClause *fromWrapper{ FindClause(llvm::omp::Clause::OMPC_from)}; if (!toWrapper && !fromWrapper) { context_.Say(GetContext().directiveSource, "At least one motion-clause (TO/FROM) must be specified on " "TARGET UPDATE construct."_err_en_US); } if (toWrapper && fromWrapper) { SymbolSourceMap toSymbols, fromSymbols; auto &fromClause{std::get(fromWrapper->u).v}; auto &toClause{std::get(toWrapper->u).v}; GetSymbolsInObjectList( std::get(fromClause.t), fromSymbols); GetSymbolsInObjectList( std::get(toClause.t), toSymbols); for (auto &[symbol, source] : toSymbols) { auto fromSymbol{fromSymbols.find(symbol)}; if (fromSymbol != fromSymbols.end()) { context_.Say(source, "A list item ('%s') can only appear in a TO or FROM clause, but not in both."_err_en_US, symbol->name()); context_.Say(source, "'%s' appears in the TO clause."_because_en_US, symbol->name()); context_.Say(fromSymbol->second, "'%s' appears in the FROM clause."_because_en_US, fromSymbol->first->name()); } } } } void OmpStructureChecker::CheckTaskDependenceType( const parser::OmpTaskDependenceType::Value &x) { // Common checks for task-dependence-type (DEPEND and UPDATE clauses). unsigned version{context_.langOptions().OpenMPVersion}; unsigned since{0}; switch (x) { case parser::OmpTaskDependenceType::Value::In: case parser::OmpTaskDependenceType::Value::Out: case parser::OmpTaskDependenceType::Value::Inout: break; case parser::OmpTaskDependenceType::Value::Mutexinoutset: case parser::OmpTaskDependenceType::Value::Depobj: since = 50; break; case parser::OmpTaskDependenceType::Value::Inoutset: since = 52; break; } if (version < since) { context_.Say(GetContext().clauseSource, "%s task dependence type is not supported in %s, %s"_warn_en_US, parser::ToUpperCaseLetters( parser::OmpTaskDependenceType::EnumToString(x)), ThisVersion(version), TryVersion(since)); } } void OmpStructureChecker::CheckDependenceType( const parser::OmpDependenceType::Value &x) { // Common checks for dependence-type (DEPEND and UPDATE clauses). unsigned version{context_.langOptions().OpenMPVersion}; unsigned deprecatedIn{~0u}; switch (x) { case parser::OmpDependenceType::Value::Source: case parser::OmpDependenceType::Value::Sink: deprecatedIn = 52; break; } if (version >= deprecatedIn) { context_.Say(GetContext().clauseSource, "%s dependence type is deprecated in %s"_warn_en_US, parser::ToUpperCaseLetters(parser::OmpDependenceType::EnumToString(x)), ThisVersion(deprecatedIn)); } } void OmpStructureChecker::Enter( const parser::OpenMPSimpleStandaloneConstruct &x) { const auto &dir{std::get(x.t)}; PushContextAndClauseSets(dir.source, dir.v); switch (dir.v) { case llvm::omp::Directive::OMPD_barrier: CheckBarrierNesting(x); break; case llvm::omp::Directive::OMPD_scan: CheckScan(x); break; default: break; } } void OmpStructureChecker::Leave( const parser::OpenMPSimpleStandaloneConstruct &x) { switch (GetContext().directive) { case llvm::omp::Directive::OMPD_ordered: // [5.1] 2.19.9 Ordered Construct Restriction ChecksOnOrderedAsStandalone(); break; case llvm::omp::Directive::OMPD_target_update: CheckTargetUpdate(); break; default: break; } dirContext_.pop_back(); } void OmpStructureChecker::Enter(const parser::OpenMPFlushConstruct &x) { const auto &dir{std::get(x.t)}; PushContextAndClauseSets(dir.source, llvm::omp::Directive::OMPD_flush); } void OmpStructureChecker::Leave(const parser::OpenMPFlushConstruct &x) { if (FindClause(llvm::omp::Clause::OMPC_acquire) || FindClause(llvm::omp::Clause::OMPC_release) || FindClause(llvm::omp::Clause::OMPC_acq_rel)) { if (const auto &flushList{ std::get>(x.t)}) { context_.Say(parser::FindSourceLocation(flushList), "If memory-order-clause is RELEASE, ACQUIRE, or ACQ_REL, list items " "must not be specified on the FLUSH directive"_err_en_US); } } dirContext_.pop_back(); } void OmpStructureChecker::Enter(const parser::OpenMPCancelConstruct &x) { const auto &dir{std::get(x.t)}; const auto &type{std::get(x.t)}; PushContextAndClauseSets(dir.source, llvm::omp::Directive::OMPD_cancel); CheckCancellationNest(dir.source, type.v); } void OmpStructureChecker::Leave(const parser::OpenMPCancelConstruct &) { dirContext_.pop_back(); } void OmpStructureChecker::Enter(const parser::OpenMPCriticalConstruct &x) { const auto &dir{std::get(x.t)}; const auto &endDir{std::get(x.t)}; PushContextAndClauseSets(dir.source, llvm::omp::Directive::OMPD_critical); const auto &block{std::get(x.t)}; CheckNoBranching(block, llvm::omp::Directive::OMPD_critical, dir.source); const auto &dirName{std::get>(dir.t)}; const auto &endDirName{std::get>(endDir.t)}; const auto &ompClause{std::get(dir.t)}; if (dirName && endDirName && dirName->ToString().compare(endDirName->ToString())) { context_ .Say(endDirName->source, parser::MessageFormattedText{ "CRITICAL directive names do not match"_err_en_US}) .Attach(dirName->source, "should be "_en_US); } else if (dirName && !endDirName) { context_ .Say(dirName->source, parser::MessageFormattedText{ "CRITICAL directive names do not match"_err_en_US}) .Attach(dirName->source, "should be NULL"_en_US); } else if (!dirName && endDirName) { context_ .Say(endDirName->source, parser::MessageFormattedText{ "CRITICAL directive names do not match"_err_en_US}) .Attach(endDirName->source, "should be NULL"_en_US); } if (!dirName && !ompClause.source.empty() && ompClause.source.NULTerminatedToString() != "hint(omp_sync_hint_none)") { context_.Say(dir.source, parser::MessageFormattedText{ "Hint clause other than omp_sync_hint_none cannot be specified for " "an unnamed CRITICAL directive"_err_en_US}); } CheckHintClause(&ompClause, nullptr); } void OmpStructureChecker::Leave(const parser::OpenMPCriticalConstruct &) { dirContext_.pop_back(); } void OmpStructureChecker::Enter( const parser::OpenMPCancellationPointConstruct &x) { const auto &dir{std::get(x.t)}; const auto &type{std::get(x.t)}; PushContextAndClauseSets( dir.source, llvm::omp::Directive::OMPD_cancellation_point); CheckCancellationNest(dir.source, type.v); } void OmpStructureChecker::Leave( const parser::OpenMPCancellationPointConstruct &) { dirContext_.pop_back(); } void OmpStructureChecker::CheckCancellationNest( const parser::CharBlock &source, const parser::OmpCancelType::Type &type) { if (CurrentDirectiveIsNested()) { // If construct-type-clause is taskgroup, the cancellation construct must be // closely nested inside a task or a taskloop construct and the cancellation // region must be closely nested inside a taskgroup region. If // construct-type-clause is sections, the cancellation construct must be // closely nested inside a sections or section construct. Otherwise, the // cancellation construct must be closely nested inside an OpenMP construct // that matches the type specified in construct-type-clause of the // cancellation construct. bool eligibleCancellation{false}; switch (type) { case parser::OmpCancelType::Type::Taskgroup: if (llvm::omp::nestedCancelTaskgroupAllowedSet.test( GetContextParent().directive)) { eligibleCancellation = true; if (dirContext_.size() >= 3) { // Check if the cancellation region is closely nested inside a // taskgroup region when there are more than two levels of directives // in the directive context stack. if (GetContextParent().directive == llvm::omp::Directive::OMPD_task || FindClauseParent(llvm::omp::Clause::OMPC_nogroup)) { for (int i = dirContext_.size() - 3; i >= 0; i--) { if (dirContext_[i].directive == llvm::omp::Directive::OMPD_taskgroup) { break; } if (llvm::omp::nestedCancelParallelAllowedSet.test( dirContext_[i].directive)) { eligibleCancellation = false; break; } } } } } if (!eligibleCancellation) { context_.Say(source, "With %s clause, %s construct must be closely nested inside TASK " "or TASKLOOP construct and %s region must be closely nested inside " "TASKGROUP region"_err_en_US, parser::ToUpperCaseLetters( parser::OmpCancelType::EnumToString(type)), ContextDirectiveAsFortran(), ContextDirectiveAsFortran()); } return; case parser::OmpCancelType::Type::Sections: if (llvm::omp::nestedCancelSectionsAllowedSet.test( GetContextParent().directive)) { eligibleCancellation = true; } break; case parser::OmpCancelType::Type::Do: if (llvm::omp::nestedCancelDoAllowedSet.test( GetContextParent().directive)) { eligibleCancellation = true; } break; case parser::OmpCancelType::Type::Parallel: if (llvm::omp::nestedCancelParallelAllowedSet.test( GetContextParent().directive)) { eligibleCancellation = true; } break; } if (!eligibleCancellation) { context_.Say(source, "With %s clause, %s construct cannot be closely nested inside %s " "construct"_err_en_US, parser::ToUpperCaseLetters(parser::OmpCancelType::EnumToString(type)), ContextDirectiveAsFortran(), parser::ToUpperCaseLetters( getDirectiveName(GetContextParent().directive).str())); } } else { // The cancellation directive cannot be orphaned. switch (type) { case parser::OmpCancelType::Type::Taskgroup: context_.Say(source, "%s %s directive is not closely nested inside " "TASK or TASKLOOP"_err_en_US, ContextDirectiveAsFortran(), parser::ToUpperCaseLetters( parser::OmpCancelType::EnumToString(type))); break; case parser::OmpCancelType::Type::Sections: context_.Say(source, "%s %s directive is not closely nested inside " "SECTION or SECTIONS"_err_en_US, ContextDirectiveAsFortran(), parser::ToUpperCaseLetters( parser::OmpCancelType::EnumToString(type))); break; case parser::OmpCancelType::Type::Do: context_.Say(source, "%s %s directive is not closely nested inside " "the construct that matches the DO clause type"_err_en_US, ContextDirectiveAsFortran(), parser::ToUpperCaseLetters( parser::OmpCancelType::EnumToString(type))); break; case parser::OmpCancelType::Type::Parallel: context_.Say(source, "%s %s directive is not closely nested inside " "the construct that matches the PARALLEL clause type"_err_en_US, ContextDirectiveAsFortran(), parser::ToUpperCaseLetters( parser::OmpCancelType::EnumToString(type))); break; } } } void OmpStructureChecker::Enter(const parser::OmpEndBlockDirective &x) { const auto &dir{std::get(x.t)}; ResetPartialContext(dir.source); switch (dir.v) { case llvm::omp::Directive::OMPD_scope: PushContextAndClauseSets(dir.source, llvm::omp::Directive::OMPD_end_scope); break; // 2.7.3 end-single-clause -> copyprivate-clause | // nowait-clause case llvm::omp::Directive::OMPD_single: PushContextAndClauseSets(dir.source, llvm::omp::Directive::OMPD_end_single); break; // 2.7.4 end-workshare -> END WORKSHARE [nowait-clause] case llvm::omp::Directive::OMPD_workshare: PushContextAndClauseSets( dir.source, llvm::omp::Directive::OMPD_end_workshare); break; default: // no clauses are allowed break; } } // TODO: Verify the popping of dirContext requirement after nowait // implementation, as there is an implicit barrier at the end of the worksharing // constructs unless a nowait clause is specified. Only OMPD_end_single and // end_workshareare popped as they are pushed while entering the // EndBlockDirective. void OmpStructureChecker::Leave(const parser::OmpEndBlockDirective &x) { if ((GetContext().directive == llvm::omp::Directive::OMPD_end_scope) || (GetContext().directive == llvm::omp::Directive::OMPD_end_single) || (GetContext().directive == llvm::omp::Directive::OMPD_end_workshare)) { dirContext_.pop_back(); } } inline void OmpStructureChecker::ErrIfAllocatableVariable( const parser::Variable &var) { // Err out if the given symbol has // ALLOCATABLE attribute if (const auto *e{GetExpr(context_, var)}) for (const Symbol &symbol : evaluate::CollectSymbols(*e)) if (IsAllocatable(symbol)) { const auto &designator = std::get>(var.u); const auto *dataRef = std::get_if(&designator.value().u); const parser::Name *name = dataRef ? std::get_if(&dataRef->u) : nullptr; if (name) context_.Say(name->source, "%s must not have ALLOCATABLE " "attribute"_err_en_US, name->ToString()); } } inline void OmpStructureChecker::ErrIfLHSAndRHSSymbolsMatch( const parser::Variable &var, const parser::Expr &expr) { // Err out if the symbol on the LHS is also used on the RHS of the assignment // statement const auto *e{GetExpr(context_, expr)}; const auto *v{GetExpr(context_, var)}; if (e && v) { auto vSyms{evaluate::GetSymbolVector(*v)}; const Symbol &varSymbol = vSyms.front(); for (const Symbol &symbol : evaluate::GetSymbolVector(*e)) { if (varSymbol == symbol) { const common::Indirection *designator = std::get_if>(&expr.u); if (designator) { auto *z{var.typedExpr.get()}; auto *c{expr.typedExpr.get()}; if (z->v == c->v) { context_.Say(expr.source, "RHS expression on atomic assignment statement cannot access '%s'"_err_en_US, var.GetSource()); } } else { context_.Say(expr.source, "RHS expression on atomic assignment statement cannot access '%s'"_err_en_US, var.GetSource()); } } } } } inline void OmpStructureChecker::ErrIfNonScalarAssignmentStmt( const parser::Variable &var, const parser::Expr &expr) { // Err out if either the variable on the LHS or the expression on the RHS of // the assignment statement are non-scalar (i.e. have rank > 0 or is of // CHARACTER type) const auto *e{GetExpr(context_, expr)}; const auto *v{GetExpr(context_, var)}; if (e && v) { if (e->Rank() != 0 || (e->GetType().has_value() && e->GetType().value().category() == common::TypeCategory::Character)) context_.Say(expr.source, "Expected scalar expression " "on the RHS of atomic assignment " "statement"_err_en_US); if (v->Rank() != 0 || (v->GetType().has_value() && v->GetType()->category() == common::TypeCategory::Character)) context_.Say(var.GetSource(), "Expected scalar variable " "on the LHS of atomic assignment " "statement"_err_en_US); } } template bool OmpStructureChecker::IsOperatorValid(const T &node, const D &variable) { using AllowedBinaryOperators = std::variant; using BinaryOperators = std::variant; if constexpr (common::HasMember) { const auto &variableName{variable.GetSource().ToString()}; const auto &exprLeft{std::get<0>(node.t)}; const auto &exprRight{std::get<1>(node.t)}; if ((exprLeft.value().source.ToString() != variableName) && (exprRight.value().source.ToString() != variableName)) { context_.Say(variable.GetSource(), "Atomic update statement should be of form " "`%s = %s operator expr` OR `%s = expr operator %s`"_err_en_US, variableName, variableName, variableName, variableName); } return common::HasMember; } return false; } void OmpStructureChecker::CheckAtomicCaptureStmt( const parser::AssignmentStmt &assignmentStmt) { const auto &var{std::get(assignmentStmt.t)}; const auto &expr{std::get(assignmentStmt.t)}; common::visit( common::visitors{ [&](const common::Indirection &designator) { const auto *dataRef = std::get_if(&designator.value().u); const auto *name = dataRef ? std::get_if(&dataRef->u) : nullptr; if (name && IsAllocatable(*name->symbol)) context_.Say(name->source, "%s must not have ALLOCATABLE " "attribute"_err_en_US, name->ToString()); }, [&](const auto &) { // Anything other than a `parser::Designator` is not allowed context_.Say(expr.source, "Expected scalar variable " "of intrinsic type on RHS of atomic " "assignment statement"_err_en_US); }}, expr.u); ErrIfLHSAndRHSSymbolsMatch(var, expr); ErrIfNonScalarAssignmentStmt(var, expr); } void OmpStructureChecker::CheckAtomicWriteStmt( const parser::AssignmentStmt &assignmentStmt) { const auto &var{std::get(assignmentStmt.t)}; const auto &expr{std::get(assignmentStmt.t)}; ErrIfAllocatableVariable(var); ErrIfLHSAndRHSSymbolsMatch(var, expr); ErrIfNonScalarAssignmentStmt(var, expr); } void OmpStructureChecker::CheckAtomicUpdateStmt( const parser::AssignmentStmt &assignment) { const auto &expr{std::get(assignment.t)}; const auto &var{std::get(assignment.t)}; bool isIntrinsicProcedure{false}; bool isValidOperator{false}; common::visit( common::visitors{ [&](const common::Indirection &x) { isIntrinsicProcedure = true; const auto &procedureDesignator{ std::get(x.value().v.t)}; const parser::Name *name{ std::get_if(&procedureDesignator.u)}; if (name && !(name->source == "max" || name->source == "min" || name->source == "iand" || name->source == "ior" || name->source == "ieor")) { context_.Say(expr.source, "Invalid intrinsic procedure name in " "OpenMP ATOMIC (UPDATE) statement"_err_en_US); } }, [&](const auto &x) { if (!IsOperatorValid(x, var)) { context_.Say(expr.source, "Invalid or missing operator in atomic update " "statement"_err_en_US); } else isValidOperator = true; }, }, expr.u); if (const auto *e{GetExpr(context_, expr)}) { const auto *v{GetExpr(context_, var)}; if (e->Rank() != 0 || (e->GetType().has_value() && e->GetType().value().category() == common::TypeCategory::Character)) context_.Say(expr.source, "Expected scalar expression " "on the RHS of atomic update assignment " "statement"_err_en_US); if (v->Rank() != 0 || (v->GetType().has_value() && v->GetType()->category() == common::TypeCategory::Character)) context_.Say(var.GetSource(), "Expected scalar variable " "on the LHS of atomic update assignment " "statement"_err_en_US); auto vSyms{evaluate::GetSymbolVector(*v)}; const Symbol &varSymbol = vSyms.front(); int numOfSymbolMatches{0}; SymbolVector exprSymbols{evaluate::GetSymbolVector(*e)}; for (const Symbol &symbol : exprSymbols) { if (varSymbol == symbol) { numOfSymbolMatches++; } } if (isIntrinsicProcedure) { std::string varName = var.GetSource().ToString(); if (numOfSymbolMatches != 1) context_.Say(expr.source, "Intrinsic procedure" " arguments in atomic update statement" " must have exactly one occurence of '%s'"_err_en_US, varName); else if (varSymbol != exprSymbols.front() && varSymbol != exprSymbols.back()) context_.Say(expr.source, "Atomic update statement " "should be of the form `%s = intrinsic_procedure(%s, expr_list)` " "OR `%s = intrinsic_procedure(expr_list, %s)`"_err_en_US, varName, varName, varName, varName); } else if (isValidOperator) { if (numOfSymbolMatches != 1) context_.Say(expr.source, "Exactly one occurence of '%s' " "expected on the RHS of atomic update assignment statement"_err_en_US, var.GetSource().ToString()); } } ErrIfAllocatableVariable(var); } void OmpStructureChecker::CheckAtomicCompareConstruct( const parser::OmpAtomicCompare &atomicCompareConstruct) { // TODO: Check that the if-stmt is `if (var == expr) var = new` // [with or without then/end-do] unsigned version{context_.langOptions().OpenMPVersion}; if (version < 51) { context_.Say(atomicCompareConstruct.source, "%s construct not allowed in %s, %s"_err_en_US, atomicCompareConstruct.source, ThisVersion(version), TryVersion(51)); } // TODO: More work needed here. Some of the Update restrictions need to // be added, but Update isn't the same either. } // TODO: Allow cond-update-stmt once compare clause is supported. void OmpStructureChecker::CheckAtomicCaptureConstruct( const parser::OmpAtomicCapture &atomicCaptureConstruct) { const parser::AssignmentStmt &stmt1 = std::get(atomicCaptureConstruct.t) .v.statement; const auto &stmt1Var{std::get(stmt1.t)}; const auto &stmt1Expr{std::get(stmt1.t)}; const parser::AssignmentStmt &stmt2 = std::get(atomicCaptureConstruct.t) .v.statement; const auto &stmt2Var{std::get(stmt2.t)}; const auto &stmt2Expr{std::get(stmt2.t)}; if (semantics::checkForSingleVariableOnRHS(stmt1)) { CheckAtomicCaptureStmt(stmt1); if (semantics::checkForSymbolMatch(stmt2)) { // ATOMIC CAPTURE construct is of the form [capture-stmt, update-stmt] CheckAtomicUpdateStmt(stmt2); } else { // ATOMIC CAPTURE construct is of the form [capture-stmt, write-stmt] CheckAtomicWriteStmt(stmt2); } auto *v{stmt2Var.typedExpr.get()}; auto *e{stmt1Expr.typedExpr.get()}; if (v && e && !(v->v == e->v)) { context_.Say(stmt1Expr.source, "Captured variable/array element/derived-type component %s expected to be assigned in the second statement of ATOMIC CAPTURE construct"_err_en_US, stmt1Expr.source); } } else if (semantics::checkForSymbolMatch(stmt1) && semantics::checkForSingleVariableOnRHS(stmt2)) { // ATOMIC CAPTURE construct is of the form [update-stmt, capture-stmt] CheckAtomicUpdateStmt(stmt1); CheckAtomicCaptureStmt(stmt2); // Variable updated in stmt1 should be captured in stmt2 auto *v{stmt1Var.typedExpr.get()}; auto *e{stmt2Expr.typedExpr.get()}; if (v && e && !(v->v == e->v)) { context_.Say(stmt1Var.GetSource(), "Updated variable/array element/derived-type component %s expected to be captured in the second statement of ATOMIC CAPTURE construct"_err_en_US, stmt1Var.GetSource()); } } else { context_.Say(stmt1Expr.source, "Invalid ATOMIC CAPTURE construct statements. Expected one of [update-stmt, capture-stmt], [capture-stmt, update-stmt], or [capture-stmt, write-stmt]"_err_en_US); } } void OmpStructureChecker::CheckAtomicMemoryOrderClause( const parser::OmpAtomicClauseList *leftHandClauseList, const parser::OmpAtomicClauseList *rightHandClauseList) { int numMemoryOrderClause{0}; int numFailClause{0}; auto checkForValidMemoryOrderClause = [&](const parser::OmpAtomicClauseList *clauseList) { for (const auto &clause : clauseList->v) { if (std::get_if(&clause.u)) { numFailClause++; if (numFailClause > 1) { context_.Say(clause.source, "More than one FAIL clause not allowed on OpenMP ATOMIC construct"_err_en_US); return; } } else { if (std::get_if(&clause.u)) { numMemoryOrderClause++; if (numMemoryOrderClause > 1) { context_.Say(clause.source, "More than one memory order clause not allowed on OpenMP ATOMIC construct"_err_en_US); return; } } } } }; if (leftHandClauseList) { checkForValidMemoryOrderClause(leftHandClauseList); } if (rightHandClauseList) { checkForValidMemoryOrderClause(rightHandClauseList); } } void OmpStructureChecker::Enter(const parser::OpenMPAtomicConstruct &x) { common::visit( common::visitors{ [&](const parser::OmpAtomic &atomicConstruct) { const auto &dir{std::get(atomicConstruct.t)}; PushContextAndClauseSets( dir.source, llvm::omp::Directive::OMPD_atomic); CheckAtomicUpdateStmt( std::get>( atomicConstruct.t) .statement); CheckAtomicMemoryOrderClause( &std::get(atomicConstruct.t), nullptr); CheckHintClause( &std::get(atomicConstruct.t), nullptr); }, [&](const parser::OmpAtomicUpdate &atomicUpdate) { const auto &dir{std::get(atomicUpdate.t)}; PushContextAndClauseSets( dir.source, llvm::omp::Directive::OMPD_atomic); CheckAtomicUpdateStmt( std::get>( atomicUpdate.t) .statement); CheckAtomicMemoryOrderClause( &std::get<0>(atomicUpdate.t), &std::get<2>(atomicUpdate.t)); CheckHintClause( &std::get<0>(atomicUpdate.t), &std::get<2>(atomicUpdate.t)); }, [&](const parser::OmpAtomicRead &atomicRead) { const auto &dir{std::get(atomicRead.t)}; PushContextAndClauseSets( dir.source, llvm::omp::Directive::OMPD_atomic); CheckAtomicMemoryOrderClause( &std::get<0>(atomicRead.t), &std::get<2>(atomicRead.t)); CheckHintClause( &std::get<0>(atomicRead.t), &std::get<2>(atomicRead.t)); CheckAtomicCaptureStmt( std::get>( atomicRead.t) .statement); }, [&](const parser::OmpAtomicWrite &atomicWrite) { const auto &dir{std::get(atomicWrite.t)}; PushContextAndClauseSets( dir.source, llvm::omp::Directive::OMPD_atomic); CheckAtomicMemoryOrderClause( &std::get<0>(atomicWrite.t), &std::get<2>(atomicWrite.t)); CheckHintClause( &std::get<0>(atomicWrite.t), &std::get<2>(atomicWrite.t)); CheckAtomicWriteStmt( std::get>( atomicWrite.t) .statement); }, [&](const parser::OmpAtomicCapture &atomicCapture) { const auto &dir{std::get(atomicCapture.t)}; PushContextAndClauseSets( dir.source, llvm::omp::Directive::OMPD_atomic); CheckAtomicMemoryOrderClause( &std::get<0>(atomicCapture.t), &std::get<2>(atomicCapture.t)); CheckHintClause( &std::get<0>(atomicCapture.t), &std::get<2>(atomicCapture.t)); CheckAtomicCaptureConstruct(atomicCapture); }, [&](const parser::OmpAtomicCompare &atomicCompare) { const auto &dir{std::get(atomicCompare.t)}; PushContextAndClauseSets( dir.source, llvm::omp::Directive::OMPD_atomic); CheckAtomicMemoryOrderClause( &std::get<0>(atomicCompare.t), &std::get<2>(atomicCompare.t)); CheckHintClause( &std::get<0>(atomicCompare.t), &std::get<2>(atomicCompare.t)); CheckAtomicCompareConstruct(atomicCompare); }, }, x.u); } void OmpStructureChecker::Leave(const parser::OpenMPAtomicConstruct &) { dirContext_.pop_back(); } // Clauses // Mainly categorized as // 1. Checks on 'OmpClauseList' from 'parse-tree.h'. // 2. Checks on clauses which fall under 'struct OmpClause' from parse-tree.h. // 3. Checks on clauses which are not in 'struct OmpClause' from parse-tree.h. void OmpStructureChecker::Leave(const parser::OmpClauseList &) { // 2.7.1 Loop Construct Restriction if (llvm::omp::allDoSet.test(GetContext().directive)) { if (auto *clause{FindClause(llvm::omp::Clause::OMPC_schedule)}) { // only one schedule clause is allowed const auto &schedClause{std::get(clause->u)}; auto &modifiers{OmpGetModifiers(schedClause.v)}; auto *ordering{ OmpGetUniqueModifier(modifiers)}; if (ordering && ordering->v == parser::OmpOrderingModifier::Value::Nonmonotonic) { if (FindClause(llvm::omp::Clause::OMPC_ordered)) { context_.Say(clause->source, "The NONMONOTONIC modifier cannot be specified " "if an ORDERED clause is specified"_err_en_US); } } } if (auto *clause{FindClause(llvm::omp::Clause::OMPC_ordered)}) { // only one ordered clause is allowed const auto &orderedClause{ std::get(clause->u)}; if (orderedClause.v) { CheckNotAllowedIfClause( llvm::omp::Clause::OMPC_ordered, {llvm::omp::Clause::OMPC_linear}); if (auto *clause2{FindClause(llvm::omp::Clause::OMPC_collapse)}) { const auto &collapseClause{ std::get(clause2->u)}; // ordered and collapse both have parameters if (const auto orderedValue{GetIntValue(orderedClause.v)}) { if (const auto collapseValue{GetIntValue(collapseClause.v)}) { if (*orderedValue > 0 && *orderedValue < *collapseValue) { context_.Say(clause->source, "The parameter of the ORDERED clause must be " "greater than or equal to " "the parameter of the COLLAPSE clause"_err_en_US); } } } } } // TODO: ordered region binding check (requires nesting implementation) } } // doSet // 2.8.1 Simd Construct Restriction if (llvm::omp::allSimdSet.test(GetContext().directive)) { if (auto *clause{FindClause(llvm::omp::Clause::OMPC_simdlen)}) { if (auto *clause2{FindClause(llvm::omp::Clause::OMPC_safelen)}) { const auto &simdlenClause{ std::get(clause->u)}; const auto &safelenClause{ std::get(clause2->u)}; // simdlen and safelen both have parameters if (const auto simdlenValue{GetIntValue(simdlenClause.v)}) { if (const auto safelenValue{GetIntValue(safelenClause.v)}) { if (*safelenValue > 0 && *simdlenValue > *safelenValue) { context_.Say(clause->source, "The parameter of the SIMDLEN clause must be less than or " "equal to the parameter of the SAFELEN clause"_err_en_US); } } } } } // 2.11.5 Simd construct restriction (OpenMP 5.1) if (auto *sl_clause{FindClause(llvm::omp::Clause::OMPC_safelen)}) { if (auto *o_clause{FindClause(llvm::omp::Clause::OMPC_order)}) { const auto &orderClause{ std::get(o_clause->u)}; if (std::get(orderClause.v.t) == parser::OmpOrderClause::Ordering::Concurrent) { context_.Say(sl_clause->source, "The `SAFELEN` clause cannot appear in the `SIMD` directive " "with `ORDER(CONCURRENT)` clause"_err_en_US); } } } } // SIMD // Semantic checks related to presence of multiple list items within the same // clause CheckMultListItems(); // 2.7.3 Single Construct Restriction if (GetContext().directive == llvm::omp::Directive::OMPD_end_single) { CheckNotAllowedIfClause( llvm::omp::Clause::OMPC_copyprivate, {llvm::omp::Clause::OMPC_nowait}); } auto testThreadprivateVarErr = [&](Symbol sym, parser::Name name, llvmOmpClause clauseTy) { if (sym.test(Symbol::Flag::OmpThreadprivate)) context_.Say(name.source, "A THREADPRIVATE variable cannot be in %s clause"_err_en_US, parser::ToUpperCaseLetters(getClauseName(clauseTy).str())); }; // [5.1] 2.21.2 Threadprivate Directive Restriction OmpClauseSet threadprivateAllowedSet{llvm::omp::Clause::OMPC_copyin, llvm::omp::Clause::OMPC_copyprivate, llvm::omp::Clause::OMPC_schedule, llvm::omp::Clause::OMPC_num_threads, llvm::omp::Clause::OMPC_thread_limit, llvm::omp::Clause::OMPC_if}; for (auto it : GetContext().clauseInfo) { llvmOmpClause type = it.first; const auto *clause = it.second; if (!threadprivateAllowedSet.test(type)) { if (const auto *objList{GetOmpObjectList(*clause)}) { for (const auto &ompObject : objList->v) { common::visit( common::visitors{ [&](const parser::Designator &) { if (const auto *name{ parser::Unwrap(ompObject)}) { if (name->symbol) { testThreadprivateVarErr( name->symbol->GetUltimate(), *name, type); } } }, [&](const parser::Name &name) { if (name.symbol) { for (const auto &mem : name.symbol->get().objects()) { testThreadprivateVarErr(mem->GetUltimate(), name, type); break; } } }, }, ompObject.u); } } } } CheckRequireAtLeastOneOf(); } void OmpStructureChecker::Enter(const parser::OmpClause &x) { SetContextClause(x); // The visitors for these clauses do their own checks. switch (x.Id()) { case llvm::omp::Clause::OMPC_copyprivate: case llvm::omp::Clause::OMPC_enter: case llvm::omp::Clause::OMPC_lastprivate: case llvm::omp::Clause::OMPC_reduction: case llvm::omp::Clause::OMPC_to: return; default: break; } if (const parser::OmpObjectList *objList{GetOmpObjectList(x)}) { SymbolSourceMap symbols; GetSymbolsInObjectList(*objList, symbols); for (const auto &[symbol, source] : symbols) { if (!IsVariableListItem(*symbol)) { deferredNonVariables_.insert({symbol, source}); } } } } // Following clauses do not have a separate node in parse-tree.h. CHECK_SIMPLE_CLAUSE(Absent, OMPC_absent) CHECK_SIMPLE_CLAUSE(Affinity, OMPC_affinity) CHECK_SIMPLE_CLAUSE(Capture, OMPC_capture) CHECK_SIMPLE_CLAUSE(Contains, OMPC_contains) CHECK_SIMPLE_CLAUSE(Default, OMPC_default) CHECK_SIMPLE_CLAUSE(Depobj, OMPC_depobj) CHECK_SIMPLE_CLAUSE(Detach, OMPC_detach) CHECK_SIMPLE_CLAUSE(DeviceType, OMPC_device_type) CHECK_SIMPLE_CLAUSE(DistSchedule, OMPC_dist_schedule) CHECK_SIMPLE_CLAUSE(Exclusive, OMPC_exclusive) CHECK_SIMPLE_CLAUSE(Final, OMPC_final) CHECK_SIMPLE_CLAUSE(Flush, OMPC_flush) CHECK_SIMPLE_CLAUSE(Full, OMPC_full) CHECK_SIMPLE_CLAUSE(Grainsize, OMPC_grainsize) CHECK_SIMPLE_CLAUSE(Hint, OMPC_hint) CHECK_SIMPLE_CLAUSE(Holds, OMPC_holds) CHECK_SIMPLE_CLAUSE(Inclusive, OMPC_inclusive) CHECK_SIMPLE_CLAUSE(Match, OMPC_match) CHECK_SIMPLE_CLAUSE(Nontemporal, OMPC_nontemporal) CHECK_SIMPLE_CLAUSE(NumTasks, OMPC_num_tasks) CHECK_SIMPLE_CLAUSE(Order, OMPC_order) CHECK_SIMPLE_CLAUSE(Read, OMPC_read) CHECK_SIMPLE_CLAUSE(Threadprivate, OMPC_threadprivate) CHECK_SIMPLE_CLAUSE(Threads, OMPC_threads) CHECK_SIMPLE_CLAUSE(Inbranch, OMPC_inbranch) CHECK_SIMPLE_CLAUSE(Link, OMPC_link) CHECK_SIMPLE_CLAUSE(Indirect, OMPC_indirect) CHECK_SIMPLE_CLAUSE(Mergeable, OMPC_mergeable) CHECK_SIMPLE_CLAUSE(NoOpenmp, OMPC_no_openmp) CHECK_SIMPLE_CLAUSE(NoOpenmpRoutines, OMPC_no_openmp_routines) CHECK_SIMPLE_CLAUSE(NoParallelism, OMPC_no_parallelism) CHECK_SIMPLE_CLAUSE(Nogroup, OMPC_nogroup) CHECK_SIMPLE_CLAUSE(Notinbranch, OMPC_notinbranch) CHECK_SIMPLE_CLAUSE(Partial, OMPC_partial) CHECK_SIMPLE_CLAUSE(ProcBind, OMPC_proc_bind) CHECK_SIMPLE_CLAUSE(Simd, OMPC_simd) CHECK_SIMPLE_CLAUSE(Sizes, OMPC_sizes) CHECK_SIMPLE_CLAUSE(Permutation, OMPC_permutation) CHECK_SIMPLE_CLAUSE(Uniform, OMPC_uniform) CHECK_SIMPLE_CLAUSE(Unknown, OMPC_unknown) CHECK_SIMPLE_CLAUSE(Untied, OMPC_untied) CHECK_SIMPLE_CLAUSE(UsesAllocators, OMPC_uses_allocators) CHECK_SIMPLE_CLAUSE(Write, OMPC_write) CHECK_SIMPLE_CLAUSE(Init, OMPC_init) CHECK_SIMPLE_CLAUSE(Use, OMPC_use) CHECK_SIMPLE_CLAUSE(Novariants, OMPC_novariants) CHECK_SIMPLE_CLAUSE(Nocontext, OMPC_nocontext) CHECK_SIMPLE_CLAUSE(Severity, OMPC_severity) CHECK_SIMPLE_CLAUSE(Message, OMPC_message) CHECK_SIMPLE_CLAUSE(Filter, OMPC_filter) CHECK_SIMPLE_CLAUSE(Otherwise, OMPC_otherwise) CHECK_SIMPLE_CLAUSE(When, OMPC_when) CHECK_SIMPLE_CLAUSE(AdjustArgs, OMPC_adjust_args) CHECK_SIMPLE_CLAUSE(AppendArgs, OMPC_append_args) CHECK_SIMPLE_CLAUSE(MemoryOrder, OMPC_memory_order) CHECK_SIMPLE_CLAUSE(Bind, OMPC_bind) CHECK_SIMPLE_CLAUSE(Align, OMPC_align) CHECK_SIMPLE_CLAUSE(Compare, OMPC_compare) CHECK_SIMPLE_CLAUSE(CancellationConstructType, OMPC_cancellation_construct_type) CHECK_SIMPLE_CLAUSE(OmpxAttribute, OMPC_ompx_attribute) CHECK_SIMPLE_CLAUSE(Weak, OMPC_weak) CHECK_REQ_SCALAR_INT_CLAUSE(NumTeams, OMPC_num_teams) CHECK_REQ_SCALAR_INT_CLAUSE(NumThreads, OMPC_num_threads) CHECK_REQ_SCALAR_INT_CLAUSE(OmpxDynCgroupMem, OMPC_ompx_dyn_cgroup_mem) CHECK_REQ_SCALAR_INT_CLAUSE(Priority, OMPC_priority) CHECK_REQ_SCALAR_INT_CLAUSE(ThreadLimit, OMPC_thread_limit) CHECK_REQ_CONSTANT_SCALAR_INT_CLAUSE(Collapse, OMPC_collapse) CHECK_REQ_CONSTANT_SCALAR_INT_CLAUSE(Safelen, OMPC_safelen) CHECK_REQ_CONSTANT_SCALAR_INT_CLAUSE(Simdlen, OMPC_simdlen) void OmpStructureChecker::Enter(const parser::OmpClause::AcqRel &) { if (!isFailClause) CheckAllowedClause(llvm::omp::Clause::OMPC_acq_rel); } void OmpStructureChecker::Enter(const parser::OmpClause::Acquire &) { if (!isFailClause) CheckAllowedClause(llvm::omp::Clause::OMPC_acquire); } void OmpStructureChecker::Enter(const parser::OmpClause::Release &) { if (!isFailClause) CheckAllowedClause(llvm::omp::Clause::OMPC_release); } void OmpStructureChecker::Enter(const parser::OmpClause::Relaxed &) { if (!isFailClause) CheckAllowedClause(llvm::omp::Clause::OMPC_relaxed); } void OmpStructureChecker::Enter(const parser::OmpClause::SeqCst &) { if (!isFailClause) CheckAllowedClause(llvm::omp::Clause::OMPC_seq_cst); } void OmpStructureChecker::Enter(const parser::OmpClause::Fail &) { assert(!isFailClause && "Unexpected FAIL clause inside a FAIL clause?"); isFailClause = true; CheckAllowedClause(llvm::omp::Clause::OMPC_fail); } void OmpStructureChecker::Leave(const parser::OmpClause::Fail &) { assert(isFailClause && "Expected to be inside a FAIL clause here"); isFailClause = false; } void OmpStructureChecker::Enter(const parser::OmpFailClause &) { assert(!isFailClause && "Unexpected FAIL clause inside a FAIL clause?"); isFailClause = true; CheckAllowedClause(llvm::omp::Clause::OMPC_fail); } void OmpStructureChecker::Leave(const parser::OmpFailClause &) { assert(isFailClause && "Expected to be inside a FAIL clause here"); isFailClause = false; } // Restrictions specific to each clause are implemented apart from the // generalized restrictions. void OmpStructureChecker::Enter(const parser::OmpClause::Destroy &x) { CheckAllowedClause(llvm::omp::Clause::OMPC_destroy); llvm::omp::Directive dir{GetContext().directive}; unsigned version{context_.langOptions().OpenMPVersion}; if (dir == llvm::omp::Directive::OMPD_depobj) { unsigned argSince{52}, noargDeprecatedIn{52}; if (x.v) { if (version < argSince) { context_.Say(GetContext().clauseSource, "The object parameter in DESTROY clause on DEPOPJ construct is not allowed in %s, %s"_warn_en_US, ThisVersion(version), TryVersion(argSince)); } } else { if (version >= noargDeprecatedIn) { context_.Say(GetContext().clauseSource, "The DESTROY clause without argument on DEPOBJ construct is deprecated in %s"_warn_en_US, ThisVersion(noargDeprecatedIn)); } } } } void OmpStructureChecker::Enter(const parser::OmpClause::Reduction &x) { CheckAllowedClause(llvm::omp::Clause::OMPC_reduction); auto &objects{std::get(x.v.t)}; if (OmpVerifyModifiers(x.v, llvm::omp::OMPC_reduction, GetContext().clauseSource, context_)) { auto &modifiers{OmpGetModifiers(x.v)}; const auto *ident{ OmpGetUniqueModifier(modifiers)}; assert(ident && "reduction-identifier is a required modifier"); if (CheckReductionOperator(*ident, OmpGetModifierSource(modifiers, ident), llvm::omp::OMPC_reduction)) { CheckReductionObjectTypes(objects, *ident); } using ReductionModifier = parser::OmpReductionModifier; if (auto *modifier{OmpGetUniqueModifier(modifiers)}) { CheckReductionModifier(*modifier); } } CheckReductionObjects(objects, llvm::omp::Clause::OMPC_reduction); // If this is a worksharing construct then ensure the reduction variable // is not private in the parallel region that it binds to. if (llvm::omp::nestedReduceWorkshareAllowedSet.test(GetContext().directive)) { CheckSharedBindingInOuterContext(objects); } } void OmpStructureChecker::Enter(const parser::OmpClause::InReduction &x) { CheckAllowedClause(llvm::omp::Clause::OMPC_in_reduction); auto &objects{std::get(x.v.t)}; if (OmpVerifyModifiers(x.v, llvm::omp::OMPC_in_reduction, GetContext().clauseSource, context_)) { auto &modifiers{OmpGetModifiers(x.v)}; const auto *ident{ OmpGetUniqueModifier(modifiers)}; assert(ident && "reduction-identifier is a required modifier"); if (CheckReductionOperator(*ident, OmpGetModifierSource(modifiers, ident), llvm::omp::OMPC_in_reduction)) { CheckReductionObjectTypes(objects, *ident); } } CheckReductionObjects(objects, llvm::omp::Clause::OMPC_in_reduction); } void OmpStructureChecker::Enter(const parser::OmpClause::TaskReduction &x) { CheckAllowedClause(llvm::omp::Clause::OMPC_task_reduction); auto &objects{std::get(x.v.t)}; if (OmpVerifyModifiers(x.v, llvm::omp::OMPC_task_reduction, GetContext().clauseSource, context_)) { auto &modifiers{OmpGetModifiers(x.v)}; const auto *ident{ OmpGetUniqueModifier(modifiers)}; assert(ident && "reduction-identifier is a required modifier"); if (CheckReductionOperator(*ident, OmpGetModifierSource(modifiers, ident), llvm::omp::OMPC_task_reduction)) { CheckReductionObjectTypes(objects, *ident); } } CheckReductionObjects(objects, llvm::omp::Clause::OMPC_task_reduction); } bool OmpStructureChecker::CheckReductionOperator( const parser::OmpReductionIdentifier &ident, parser::CharBlock source, llvm::omp::Clause clauseId) { auto visitOperator{[&](const parser::DefinedOperator &dOpr) { if (const auto *intrinsicOp{ std::get_if(&dOpr.u)}) { switch (*intrinsicOp) { case parser::DefinedOperator::IntrinsicOperator::Add: case parser::DefinedOperator::IntrinsicOperator::Multiply: case parser::DefinedOperator::IntrinsicOperator::AND: case parser::DefinedOperator::IntrinsicOperator::OR: case parser::DefinedOperator::IntrinsicOperator::EQV: case parser::DefinedOperator::IntrinsicOperator::NEQV: return true; case parser::DefinedOperator::IntrinsicOperator::Subtract: context_.Say(GetContext().clauseSource, "The minus reduction operator is deprecated since OpenMP 5.2 and is not supported in the REDUCTION clause."_err_en_US, ContextDirectiveAsFortran()); return false; default: break; } } context_.Say(source, "Invalid reduction operator in %s clause."_err_en_US, parser::ToUpperCaseLetters(getClauseName(clauseId).str())); return false; }}; auto visitDesignator{[&](const parser::ProcedureDesignator &procD) { const parser::Name *name{std::get_if(&procD.u)}; bool valid{false}; if (name && name->symbol) { const SourceName &realName{name->symbol->GetUltimate().name()}; valid = llvm::is_contained({"max", "min", "iand", "ior", "ieor"}, realName); } if (!valid) { context_.Say(source, "Invalid reduction identifier in %s clause."_err_en_US, parser::ToUpperCaseLetters(getClauseName(clauseId).str())); } return valid; }}; return common::visit( common::visitors{visitOperator, visitDesignator}, ident.u); } /// Check restrictions on objects that are common to all reduction clauses. void OmpStructureChecker::CheckReductionObjects( const parser::OmpObjectList &objects, llvm::omp::Clause clauseId) { unsigned version{context_.langOptions().OpenMPVersion}; SymbolSourceMap symbols; GetSymbolsInObjectList(objects, symbols); // Array sections must be a contiguous storage, have non-zero length. for (const parser::OmpObject &object : objects.v) { CheckIfContiguous(object); } CheckReductionArraySection(objects, clauseId); // An object must be definable. CheckDefinableObjects(symbols, clauseId); // Procedure pointers are not allowed. CheckProcedurePointer(symbols, clauseId); // Pointers must not have INTENT(IN). CheckIntentInPointer(symbols, clauseId); // Disallow common blocks. // Iterate on objects because `GetSymbolsInObjectList` expands common block // names into the lists of their members. for (const parser::OmpObject &object : objects.v) { auto *symbol{GetObjectSymbol(object)}; assert(symbol && "Expecting a symbol for object"); if (IsCommonBlock(*symbol)) { auto source{GetObjectSource(object)}; context_.Say(source ? *source : GetContext().clauseSource, "Common block names are not allowed in %s clause"_err_en_US, parser::ToUpperCaseLetters(getClauseName(clauseId).str())); } } if (version >= 50) { // Object cannot be a part of another object (except array elements) CheckStructureComponent(objects, clauseId); // If object is an array section or element, the base expression must be // a language identifier. for (const parser::OmpObject &object : objects.v) { if (auto *elem{GetArrayElementFromObj(object)}) { const parser::DataRef &base = elem->base; if (!std::holds_alternative(base.u)) { auto source{GetObjectSource(object)}; context_.Say(source ? *source : GetContext().clauseSource, "The base expression of an array element or section in %s clause must be an identifier"_err_en_US, parser::ToUpperCaseLetters(getClauseName(clauseId).str())); } } } // Type parameter inquiries are not allowed. for (const parser::OmpObject &object : objects.v) { if (auto *dataRef{GetDataRefFromObj(object)}) { if (IsDataRefTypeParamInquiry(dataRef)) { auto source{GetObjectSource(object)}; context_.Say(source ? *source : GetContext().clauseSource, "Type parameter inquiry is not permitted in %s clause"_err_en_US, parser::ToUpperCaseLetters(getClauseName(clauseId).str())); } } } } } static bool IsReductionAllowedForType( const parser::OmpReductionIdentifier &ident, const DeclTypeSpec &type) { auto isLogical{[](const DeclTypeSpec &type) -> bool { return type.category() == DeclTypeSpec::Logical; }}; auto isCharacter{[](const DeclTypeSpec &type) -> bool { return type.category() == DeclTypeSpec::Character; }}; auto checkOperator{[&](const parser::DefinedOperator &dOpr) { if (const auto *intrinsicOp{ std::get_if(&dOpr.u)}) { // OMP5.2: The type [...] of a list item that appears in a // reduction clause must be valid for the combiner expression // See F2023: Table 10.2 // .LT., .LE., .GT., .GE. are handled as procedure designators // below. switch (*intrinsicOp) { case parser::DefinedOperator::IntrinsicOperator::Multiply: case parser::DefinedOperator::IntrinsicOperator::Add: case parser::DefinedOperator::IntrinsicOperator::Subtract: return type.IsNumeric(TypeCategory::Integer) || type.IsNumeric(TypeCategory::Real) || type.IsNumeric(TypeCategory::Complex); case parser::DefinedOperator::IntrinsicOperator::AND: case parser::DefinedOperator::IntrinsicOperator::OR: case parser::DefinedOperator::IntrinsicOperator::EQV: case parser::DefinedOperator::IntrinsicOperator::NEQV: return isLogical(type); // Reduction identifier is not in OMP5.2 Table 5.2 default: DIE("This should have been caught in CheckIntrinsicOperator"); return false; } } return true; }}; auto checkDesignator{[&](const parser::ProcedureDesignator &procD) { const parser::Name *name{std::get_if(&procD.u)}; if (name && name->symbol) { const SourceName &realName{name->symbol->GetUltimate().name()}; // OMP5.2: The type [...] of a list item that appears in a // reduction clause must be valid for the combiner expression if (realName == "iand" || realName == "ior" || realName == "ieor") { // IAND: arguments must be integers: F2023 16.9.100 // IEOR: arguments must be integers: F2023 16.9.106 // IOR: arguments must be integers: F2023 16.9.111 return type.IsNumeric(TypeCategory::Integer); } else if (realName == "max" || realName == "min") { // MAX: arguments must be integer, real, or character: // F2023 16.9.135 // MIN: arguments must be integer, real, or character: // F2023 16.9.141 return type.IsNumeric(TypeCategory::Integer) || type.IsNumeric(TypeCategory::Real) || isCharacter(type); } } // TODO: user defined reduction operators. Just allow everything for now. return true; }}; return common::visit( common::visitors{checkOperator, checkDesignator}, ident.u); } void OmpStructureChecker::CheckReductionObjectTypes( const parser::OmpObjectList &objects, const parser::OmpReductionIdentifier &ident) { SymbolSourceMap symbols; GetSymbolsInObjectList(objects, symbols); for (auto &[symbol, source] : symbols) { if (auto *type{symbol->GetType()}) { if (!IsReductionAllowedForType(ident, *type)) { context_.Say(source, "The type of '%s' is incompatible with the reduction operator."_err_en_US, symbol->name()); } } else { assert(IsProcedurePointer(*symbol) && "Unexpected symbol properties"); } } } void OmpStructureChecker::CheckReductionModifier( const parser::OmpReductionModifier &modifier) { using ReductionModifier = parser::OmpReductionModifier; if (modifier.v == ReductionModifier::Value::Default) { // The default one is always ok. return; } const DirectiveContext &dirCtx{GetContext()}; if (dirCtx.directive == llvm::omp::Directive::OMPD_loop) { // [5.2:257:33-34] // If a reduction-modifier is specified in a reduction clause that // appears on the directive, then the reduction modifier must be // default. context_.Say(GetContext().clauseSource, "REDUCTION modifier on LOOP directive must be DEFAULT"_err_en_US); } if (modifier.v == ReductionModifier::Value::Task) { // "Task" is only allowed on worksharing or "parallel" directive. static llvm::omp::Directive worksharing[]{ llvm::omp::Directive::OMPD_do, llvm::omp::Directive::OMPD_scope, llvm::omp::Directive::OMPD_sections, // There are more worksharing directives, but they do not apply: // "for" is C++ only, // "single" and "workshare" don't allow reduction clause, // "loop" has different restrictions (checked above). }; if (dirCtx.directive != llvm::omp::Directive::OMPD_parallel && !llvm::is_contained(worksharing, dirCtx.directive)) { context_.Say(GetContext().clauseSource, "Modifier 'TASK' on REDUCTION clause is only allowed with " "PARALLEL or worksharing directive"_err_en_US); } } else if (modifier.v == ReductionModifier::Value::Inscan) { // "Inscan" is only allowed on worksharing-loop, worksharing-loop simd, // or "simd" directive. // The worksharing-loop directives are OMPD_do and OMPD_for. Only the // former is allowed in Fortran. if (!llvm::omp::scanParentAllowedSet.test(dirCtx.directive)) { context_.Say(GetContext().clauseSource, "Modifier 'INSCAN' on REDUCTION clause is only allowed with " "WORKSHARING LOOP, WORKSHARING LOOP SIMD, " "or SIMD directive"_err_en_US); } } else { // Catch-all for potential future modifiers to make sure that this // function is up-to-date. context_.Say(GetContext().clauseSource, "Unexpected modifier on REDUCTION clause"_err_en_US); } } void OmpStructureChecker::CheckReductionArraySection( const parser::OmpObjectList &ompObjectList, llvm::omp::Clause clauseId) { for (const auto &ompObject : ompObjectList.v) { if (const auto *dataRef{parser::Unwrap(ompObject)}) { if (const auto *arrayElement{ parser::Unwrap(ompObject)}) { CheckArraySection(*arrayElement, GetLastName(*dataRef), clauseId); } } } } void OmpStructureChecker::CheckSharedBindingInOuterContext( const parser::OmpObjectList &redObjectList) { // TODO: Verify the assumption here that the immediately enclosing region is // the parallel region to which the worksharing construct having reduction // binds to. if (auto *enclosingContext{GetEnclosingDirContext()}) { for (auto it : enclosingContext->clauseInfo) { llvmOmpClause type = it.first; const auto *clause = it.second; if (llvm::omp::privateReductionSet.test(type)) { if (const auto *objList{GetOmpObjectList(*clause)}) { for (const auto &ompObject : objList->v) { if (const auto *name{parser::Unwrap(ompObject)}) { if (const auto *symbol{name->symbol}) { for (const auto &redOmpObject : redObjectList.v) { if (const auto *rname{ parser::Unwrap(redOmpObject)}) { if (const auto *rsymbol{rname->symbol}) { if (rsymbol->name() == symbol->name()) { context_.Say(GetContext().clauseSource, "%s variable '%s' is %s in outer context must" " be shared in the parallel regions to which any" " of the worksharing regions arising from the " "worksharing construct bind."_err_en_US, parser::ToUpperCaseLetters( getClauseName(llvm::omp::Clause::OMPC_reduction) .str()), symbol->name(), parser::ToUpperCaseLetters( getClauseName(type).str())); } } } } } } } } } } } } void OmpStructureChecker::Enter(const parser::OmpClause::Ordered &x) { CheckAllowedClause(llvm::omp::Clause::OMPC_ordered); // the parameter of ordered clause is optional if (const auto &expr{x.v}) { RequiresConstantPositiveParameter(llvm::omp::Clause::OMPC_ordered, *expr); // 2.8.3 Loop SIMD Construct Restriction if (llvm::omp::allDoSimdSet.test(GetContext().directive)) { context_.Say(GetContext().clauseSource, "No ORDERED clause with a parameter can be specified " "on the %s directive"_err_en_US, ContextDirectiveAsFortran()); } } } void OmpStructureChecker::Enter(const parser::OmpClause::Shared &x) { CheckAllowedClause(llvm::omp::Clause::OMPC_shared); CheckIsVarPartOfAnotherVar(GetContext().clauseSource, x.v, "SHARED"); CheckCrayPointee(x.v, "SHARED"); } void OmpStructureChecker::Enter(const parser::OmpClause::Private &x) { SymbolSourceMap symbols; GetSymbolsInObjectList(x.v, symbols); CheckAllowedClause(llvm::omp::Clause::OMPC_private); CheckIsVarPartOfAnotherVar(GetContext().clauseSource, x.v, "PRIVATE"); CheckIntentInPointer(symbols, llvm::omp::Clause::OMPC_private); CheckCrayPointee(x.v, "PRIVATE"); } void OmpStructureChecker::Enter(const parser::OmpClause::Nowait &x) { CheckAllowedClause(llvm::omp::Clause::OMPC_nowait); if (llvm::omp::noWaitClauseNotAllowedSet.test(GetContext().directive)) { context_.Say(GetContext().clauseSource, "%s clause is not allowed on the OMP %s directive," " use it on OMP END %s directive "_err_en_US, parser::ToUpperCaseLetters( getClauseName(llvm::omp::Clause::OMPC_nowait).str()), parser::ToUpperCaseLetters(GetContext().directiveSource.ToString()), parser::ToUpperCaseLetters(GetContext().directiveSource.ToString())); } } bool OmpStructureChecker::IsDataRefTypeParamInquiry( const parser::DataRef *dataRef) { bool dataRefIsTypeParamInquiry{false}; if (const auto *structComp{ parser::Unwrap(dataRef)}) { if (const auto *compSymbol{structComp->component.symbol}) { if (const auto *compSymbolMiscDetails{ std::get_if(&compSymbol->details())}) { const auto detailsKind = compSymbolMiscDetails->kind(); dataRefIsTypeParamInquiry = (detailsKind == MiscDetails::Kind::KindParamInquiry || detailsKind == MiscDetails::Kind::LenParamInquiry); } else if (compSymbol->has()) { dataRefIsTypeParamInquiry = true; } } } return dataRefIsTypeParamInquiry; } void OmpStructureChecker::CheckIsVarPartOfAnotherVar( const parser::CharBlock &source, const parser::OmpObjectList &objList, llvm::StringRef clause) { for (const auto &ompObject : objList.v) { common::visit( common::visitors{ [&](const parser::Designator &designator) { if (const auto *dataRef{ std::get_if(&designator.u)}) { if (IsDataRefTypeParamInquiry(dataRef)) { context_.Say(source, "A type parameter inquiry cannot appear on the %s " "directive"_err_en_US, ContextDirectiveAsFortran()); } else if (parser::Unwrap( ompObject) || parser::Unwrap(ompObject)) { if (llvm::omp::nonPartialVarSet.test( GetContext().directive)) { context_.Say(source, "A variable that is part of another variable (as an " "array or structure element) cannot appear on the %s " "directive"_err_en_US, ContextDirectiveAsFortran()); } else { context_.Say(source, "A variable that is part of another variable (as an " "array or structure element) cannot appear in a " "%s clause"_err_en_US, clause.data()); } } } }, [&](const parser::Name &name) {}, }, ompObject.u); } } void OmpStructureChecker::Enter(const parser::OmpClause::Firstprivate &x) { CheckAllowedClause(llvm::omp::Clause::OMPC_firstprivate); CheckIsVarPartOfAnotherVar(GetContext().clauseSource, x.v, "FIRSTPRIVATE"); CheckCrayPointee(x.v, "FIRSTPRIVATE"); CheckIsLoopIvPartOfClause(llvmOmpClause::OMPC_firstprivate, x.v); SymbolSourceMap currSymbols; GetSymbolsInObjectList(x.v, currSymbols); CheckCopyingPolymorphicAllocatable( currSymbols, llvm::omp::Clause::OMPC_firstprivate); DirectivesClauseTriple dirClauseTriple; // Check firstprivate variables in worksharing constructs dirClauseTriple.emplace(llvm::omp::Directive::OMPD_do, std::make_pair( llvm::omp::Directive::OMPD_parallel, llvm::omp::privateReductionSet)); dirClauseTriple.emplace(llvm::omp::Directive::OMPD_sections, std::make_pair( llvm::omp::Directive::OMPD_parallel, llvm::omp::privateReductionSet)); dirClauseTriple.emplace(llvm::omp::Directive::OMPD_single, std::make_pair( llvm::omp::Directive::OMPD_parallel, llvm::omp::privateReductionSet)); // Check firstprivate variables in distribute construct dirClauseTriple.emplace(llvm::omp::Directive::OMPD_distribute, std::make_pair( llvm::omp::Directive::OMPD_teams, llvm::omp::privateReductionSet)); dirClauseTriple.emplace(llvm::omp::Directive::OMPD_distribute, std::make_pair(llvm::omp::Directive::OMPD_target_teams, llvm::omp::privateReductionSet)); // Check firstprivate variables in task and taskloop constructs dirClauseTriple.emplace(llvm::omp::Directive::OMPD_task, std::make_pair(llvm::omp::Directive::OMPD_parallel, OmpClauseSet{llvm::omp::Clause::OMPC_reduction})); dirClauseTriple.emplace(llvm::omp::Directive::OMPD_taskloop, std::make_pair(llvm::omp::Directive::OMPD_parallel, OmpClauseSet{llvm::omp::Clause::OMPC_reduction})); CheckPrivateSymbolsInOuterCxt( currSymbols, dirClauseTriple, llvm::omp::Clause::OMPC_firstprivate); } void OmpStructureChecker::CheckIsLoopIvPartOfClause( llvmOmpClause clause, const parser::OmpObjectList &ompObjectList) { for (const auto &ompObject : ompObjectList.v) { if (const parser::Name *name{parser::Unwrap(ompObject)}) { if (name->symbol == GetContext().loopIV) { context_.Say(name->source, "DO iteration variable %s is not allowed in %s clause."_err_en_US, name->ToString(), parser::ToUpperCaseLetters(getClauseName(clause).str())); } } } } // Following clauses have a separate node in parse-tree.h. // Atomic-clause CHECK_SIMPLE_PARSER_CLAUSE(OmpAtomicRead, OMPC_read) CHECK_SIMPLE_PARSER_CLAUSE(OmpAtomicWrite, OMPC_write) CHECK_SIMPLE_PARSER_CLAUSE(OmpAtomicUpdate, OMPC_update) CHECK_SIMPLE_PARSER_CLAUSE(OmpAtomicCapture, OMPC_capture) void OmpStructureChecker::Leave(const parser::OmpAtomicRead &) { CheckNotAllowedIfClause(llvm::omp::Clause::OMPC_read, {llvm::omp::Clause::OMPC_release, llvm::omp::Clause::OMPC_acq_rel}); } void OmpStructureChecker::Leave(const parser::OmpAtomicWrite &) { CheckNotAllowedIfClause(llvm::omp::Clause::OMPC_write, {llvm::omp::Clause::OMPC_acquire, llvm::omp::Clause::OMPC_acq_rel}); } void OmpStructureChecker::Leave(const parser::OmpAtomicUpdate &) { CheckNotAllowedIfClause(llvm::omp::Clause::OMPC_update, {llvm::omp::Clause::OMPC_acquire, llvm::omp::Clause::OMPC_acq_rel}); } // OmpAtomic node represents atomic directive without atomic-clause. // atomic-clause - READ,WRITE,UPDATE,CAPTURE. void OmpStructureChecker::Leave(const parser::OmpAtomic &) { if (const auto *clause{FindClause(llvm::omp::Clause::OMPC_acquire)}) { context_.Say(clause->source, "Clause ACQUIRE is not allowed on the ATOMIC directive"_err_en_US); } if (const auto *clause{FindClause(llvm::omp::Clause::OMPC_acq_rel)}) { context_.Say(clause->source, "Clause ACQ_REL is not allowed on the ATOMIC directive"_err_en_US); } } // Restrictions specific to each clause are implemented apart from the // generalized restrictions. void OmpStructureChecker::Enter(const parser::OmpClause::Aligned &x) { CheckAllowedClause(llvm::omp::Clause::OMPC_aligned); if (OmpVerifyModifiers( x.v, llvm::omp::OMPC_aligned, GetContext().clauseSource, context_)) { auto &modifiers{OmpGetModifiers(x.v)}; if (auto *align{OmpGetUniqueModifier(modifiers)}) { if (const auto &v{GetIntValue(align->v)}; !v || *v <= 0) { context_.Say(OmpGetModifierSource(modifiers, align), "The alignment value should be a constant positive integer"_err_en_US); } } } // 2.8.1 TODO: list-item attribute check } void OmpStructureChecker::Enter(const parser::OmpClause::Defaultmap &x) { CheckAllowedClause(llvm::omp::Clause::OMPC_defaultmap); unsigned version{context_.langOptions().OpenMPVersion}; using ImplicitBehavior = parser::OmpDefaultmapClause::ImplicitBehavior; auto behavior{std::get(x.v.t)}; if (version <= 45) { if (behavior != ImplicitBehavior::Tofrom) { context_.Say(GetContext().clauseSource, "%s is not allowed in %s, %s"_warn_en_US, parser::ToUpperCaseLetters( parser::OmpDefaultmapClause::EnumToString(behavior)), ThisVersion(version), TryVersion(50)); } } if (!OmpVerifyModifiers(x.v, llvm::omp::OMPC_defaultmap, GetContext().clauseSource, context_)) { // If modifier verification fails, return early. return; } auto &modifiers{OmpGetModifiers(x.v)}; auto *maybeCategory{ OmpGetUniqueModifier(modifiers)}; if (maybeCategory) { using VariableCategory = parser::OmpVariableCategory; VariableCategory::Value category{maybeCategory->v}; unsigned tryVersion{0}; if (version <= 45 && category != VariableCategory::Value::Scalar) { tryVersion = 50; } if (version < 52 && category == VariableCategory::Value::All) { tryVersion = 52; } if (tryVersion) { context_.Say(GetContext().clauseSource, "%s is not allowed in %s, %s"_warn_en_US, parser::ToUpperCaseLetters(VariableCategory::EnumToString(category)), ThisVersion(version), TryVersion(tryVersion)); } } } void OmpStructureChecker::Enter(const parser::OmpClause::If &x) { CheckAllowedClause(llvm::omp::Clause::OMPC_if); unsigned version{context_.langOptions().OpenMPVersion}; llvm::omp::Directive dir{GetContext().directive}; auto isConstituent{[](llvm::omp::Directive dir, llvm::omp::Directive part) { using namespace llvm::omp; llvm::ArrayRef dirLeafs{getLeafConstructsOrSelf(dir)}; llvm::ArrayRef partLeafs{getLeafConstructsOrSelf(part)}; // Maybe it's sufficient to check if every leaf of `part` is also a leaf // of `dir`, but to be safe check if `partLeafs` is a sub-sequence of // `dirLeafs`. size_t dirSize{dirLeafs.size()}, partSize{partLeafs.size()}; // Find the first leaf from `part` in `dir`. if (auto first = llvm::find(dirLeafs, partLeafs.front()); first != dirLeafs.end()) { // A leaf can only appear once in a compound directive, so if `part` // is a subsequence of `dir`, it must start here. size_t firstPos{ static_cast(std::distance(dirLeafs.begin(), first))}; llvm::ArrayRef subSeq{ first, std::min(dirSize - firstPos, partSize)}; return subSeq == partLeafs; } return false; }}; if (OmpVerifyModifiers( x.v, llvm::omp::OMPC_if, GetContext().clauseSource, context_)) { auto &modifiers{OmpGetModifiers(x.v)}; if (auto *dnm{OmpGetUniqueModifier( modifiers)}) { llvm::omp::Directive sub{dnm->v}; std::string subName{parser::ToUpperCaseLetters( llvm::omp::getOpenMPDirectiveName(sub).str())}; std::string dirName{parser::ToUpperCaseLetters( llvm::omp::getOpenMPDirectiveName(dir).str())}; parser::CharBlock modifierSource{OmpGetModifierSource(modifiers, dnm)}; auto desc{OmpGetDescriptor()}; std::string modName{desc.name.str()}; if (!isConstituent(dir, sub)) { context_ .Say(modifierSource, "%s is not a constituent of the %s directive"_err_en_US, subName, dirName) .Attach(GetContext().directiveSource, "Cannot apply to directive"_en_US); } else { static llvm::omp::Directive valid45[]{ llvm::omp::OMPD_cancel, // llvm::omp::OMPD_parallel, // /* OMP 5.0+ also allows OMPD_simd */ llvm::omp::OMPD_target, // llvm::omp::OMPD_target_data, // llvm::omp::OMPD_target_enter_data, // llvm::omp::OMPD_target_exit_data, // llvm::omp::OMPD_target_update, // llvm::omp::OMPD_task, // llvm::omp::OMPD_taskloop, // /* OMP 5.2+ also allows OMPD_teams */ }; if (version < 50 && sub == llvm::omp::OMPD_simd) { context_.Say(modifierSource, "%s is not allowed as '%s' in %s, %s"_warn_en_US, subName, modName, ThisVersion(version), TryVersion(50)); } else if (version < 52 && sub == llvm::omp::OMPD_teams) { context_.Say(modifierSource, "%s is not allowed as '%s' in %s, %s"_warn_en_US, subName, modName, ThisVersion(version), TryVersion(52)); } else if (!llvm::is_contained(valid45, sub) && sub != llvm::omp::OMPD_simd && sub != llvm::omp::OMPD_teams) { context_.Say(modifierSource, "%s is not allowed as '%s' in %s"_err_en_US, subName, modName, ThisVersion(version)); } } } } } void OmpStructureChecker::Enter(const parser::OmpClause::Linear &x) { CheckAllowedClause(llvm::omp::Clause::OMPC_linear); unsigned version{context_.langOptions().OpenMPVersion}; llvm::omp::Directive dir{GetContext().directive}; parser::CharBlock clauseSource{GetContext().clauseSource}; const parser::OmpLinearModifier *linearMod{nullptr}; SymbolSourceMap symbols; auto &objects{std::get(x.v.t)}; CheckCrayPointee(objects, "LINEAR", false); GetSymbolsInObjectList(objects, symbols); auto CheckIntegerNoRef{[&](const Symbol *symbol, parser::CharBlock source) { if (!symbol->GetType()->IsNumeric(TypeCategory::Integer)) { auto &desc{OmpGetDescriptor()}; context_.Say(source, "The list item '%s' specified without the REF '%s' must be of INTEGER type"_err_en_US, symbol->name(), desc.name.str()); } }}; if (OmpVerifyModifiers(x.v, llvm::omp::OMPC_linear, clauseSource, context_)) { auto &modifiers{OmpGetModifiers(x.v)}; linearMod = OmpGetUniqueModifier(modifiers); if (linearMod) { // 2.7 Loop Construct Restriction if ((llvm::omp::allDoSet | llvm::omp::allSimdSet).test(dir)) { context_.Say(clauseSource, "A modifier may not be specified in a LINEAR clause on the %s directive"_err_en_US, ContextDirectiveAsFortran()); return; } auto &desc{OmpGetDescriptor()}; for (auto &[symbol, source] : symbols) { if (linearMod->v != parser::OmpLinearModifier::Value::Ref) { CheckIntegerNoRef(symbol, source); } else { if (!IsAllocatable(*symbol) && !IsAssumedShape(*symbol) && !IsPolymorphic(*symbol)) { context_.Say(source, "The list item `%s` specified with the REF '%s' must be polymorphic variable, assumed-shape array, or a variable with the `ALLOCATABLE` attribute"_err_en_US, symbol->name(), desc.name.str()); } } if (linearMod->v == parser::OmpLinearModifier::Value::Ref || linearMod->v == parser::OmpLinearModifier::Value::Uval) { if (!IsDummy(*symbol) || IsValue(*symbol)) { context_.Say(source, "If the `%s` is REF or UVAL, the list item '%s' must be a dummy argument without the VALUE attribute"_err_en_US, desc.name.str(), symbol->name()); } } } // for (symbol, source) if (version >= 52 && !std::get(x.v.t)) { context_.Say(OmpGetModifierSource(modifiers, linearMod), "The 'modifier()' syntax is deprecated in %s, use ' : modifier' instead"_warn_en_US, ThisVersion(version)); } } } // OpenMP 5.2: Ordered clause restriction if (const auto *clause{ FindClause(GetContext(), llvm::omp::Clause::OMPC_ordered)}) { const auto &orderedClause{std::get(clause->u)}; if (orderedClause.v) { return; } } // OpenMP 5.2: Linear clause Restrictions for (auto &[symbol, source] : symbols) { if (!linearMod) { // Already checked this with the modifier present. CheckIntegerNoRef(symbol, source); } if (dir == llvm::omp::Directive::OMPD_declare_simd && !IsDummy(*symbol)) { context_.Say(source, "The list item `%s` must be a dummy argument"_err_en_US, symbol->name()); } if (IsPointer(*symbol) || symbol->test(Symbol::Flag::CrayPointer)) { context_.Say(source, "The list item `%s` in a LINEAR clause must not be Cray Pointer or a variable with POINTER attribute"_err_en_US, symbol->name()); } if (FindCommonBlockContaining(*symbol)) { context_.Say(source, "'%s' is a common block name and must not appear in an LINEAR clause"_err_en_US, symbol->name()); } } } void OmpStructureChecker::CheckAllowedMapTypes( const parser::OmpMapType::Value &type, const std::list &allowedMapTypeList) { if (!llvm::is_contained(allowedMapTypeList, type)) { std::string commaSeparatedMapTypes; llvm::interleave( allowedMapTypeList.begin(), allowedMapTypeList.end(), [&](const parser::OmpMapType::Value &mapType) { commaSeparatedMapTypes.append(parser::ToUpperCaseLetters( parser::OmpMapType::EnumToString(mapType))); }, [&] { commaSeparatedMapTypes.append(", "); }); context_.Say(GetContext().clauseSource, "Only the %s map types are permitted " "for MAP clauses on the %s directive"_err_en_US, commaSeparatedMapTypes, ContextDirectiveAsFortran()); } } void OmpStructureChecker::Enter(const parser::OmpClause::Map &x) { CheckAllowedClause(llvm::omp::Clause::OMPC_map); if (!OmpVerifyModifiers( x.v, llvm::omp::OMPC_map, GetContext().clauseSource, context_)) { return; } auto &modifiers{OmpGetModifiers(x.v)}; unsigned version{context_.langOptions().OpenMPVersion}; if (auto commas{std::get(x.v.t)}; !commas && version >= 52) { context_.Say(GetContext().clauseSource, "The specification of modifiers without comma separators for the " "'MAP' clause has been deprecated in OpenMP 5.2"_port_en_US); } if (auto *iter{OmpGetUniqueModifier(modifiers)}) { CheckIteratorModifier(*iter); } if (auto *type{OmpGetUniqueModifier(modifiers)}) { using Value = parser::OmpMapType::Value; switch (GetContext().directive) { case llvm::omp::Directive::OMPD_target: case llvm::omp::Directive::OMPD_target_teams: case llvm::omp::Directive::OMPD_target_teams_distribute: case llvm::omp::Directive::OMPD_target_teams_distribute_simd: case llvm::omp::Directive::OMPD_target_teams_distribute_parallel_do: case llvm::omp::Directive::OMPD_target_teams_distribute_parallel_do_simd: case llvm::omp::Directive::OMPD_target_data: CheckAllowedMapTypes( type->v, {Value::To, Value::From, Value::Tofrom, Value::Alloc}); break; case llvm::omp::Directive::OMPD_target_enter_data: CheckAllowedMapTypes(type->v, {Value::To, Value::Alloc}); break; case llvm::omp::Directive::OMPD_target_exit_data: CheckAllowedMapTypes( type->v, {Value::From, Value::Release, Value::Delete}); break; default: break; } } auto &&typeMods{ OmpGetRepeatableModifier(modifiers)}; struct Less { using Iterator = decltype(typeMods.begin()); bool operator()(Iterator a, Iterator b) const { const parser::OmpMapTypeModifier *pa = *a; const parser::OmpMapTypeModifier *pb = *b; return pa->v < pb->v; } }; if (auto maybeIter{FindDuplicate(typeMods)}) { context_.Say(GetContext().clauseSource, "Duplicate map-type-modifier entry '%s' will be ignored"_warn_en_US, parser::ToUpperCaseLetters( parser::OmpMapTypeModifier::EnumToString((**maybeIter)->v))); } } void OmpStructureChecker::Enter(const parser::OmpClause::Schedule &x) { CheckAllowedClause(llvm::omp::Clause::OMPC_schedule); const parser::OmpScheduleClause &scheduleClause = x.v; if (!OmpVerifyModifiers(scheduleClause, llvm::omp::OMPC_schedule, GetContext().clauseSource, context_)) { return; } // 2.7 Loop Construct Restriction if (llvm::omp::allDoSet.test(GetContext().directive)) { auto &modifiers{OmpGetModifiers(scheduleClause)}; auto kind{std::get(scheduleClause.t)}; auto &chunk{ std::get>(scheduleClause.t)}; if (chunk) { if (kind == parser::OmpScheduleClause::Kind::Runtime || kind == parser::OmpScheduleClause::Kind::Auto) { context_.Say(GetContext().clauseSource, "When SCHEDULE clause has %s specified, " "it must not have chunk size specified"_err_en_US, parser::ToUpperCaseLetters( parser::OmpScheduleClause::EnumToString(kind))); } if (const auto &chunkExpr{std::get>( scheduleClause.t)}) { RequiresPositiveParameter( llvm::omp::Clause::OMPC_schedule, *chunkExpr, "chunk size"); } } auto *ordering{ OmpGetUniqueModifier(modifiers)}; if (ordering && ordering->v == parser::OmpOrderingModifier::Value::Nonmonotonic) { if (kind != parser::OmpScheduleClause::Kind::Dynamic && kind != parser::OmpScheduleClause::Kind::Guided) { context_.Say(GetContext().clauseSource, "The NONMONOTONIC modifier can only be specified with " "SCHEDULE(DYNAMIC) or SCHEDULE(GUIDED)"_err_en_US); } } } } void OmpStructureChecker::Enter(const parser::OmpClause::Device &x) { CheckAllowedClause(llvm::omp::Clause::OMPC_device); const parser::OmpDeviceClause &deviceClause{x.v}; const auto &device{std::get(deviceClause.t)}; RequiresPositiveParameter( llvm::omp::Clause::OMPC_device, device, "device expression"); llvm::omp::Directive dir{GetContext().directive}; if (OmpVerifyModifiers(deviceClause, llvm::omp::OMPC_device, GetContext().clauseSource, context_)) { auto &modifiers{OmpGetModifiers(deviceClause)}; if (auto *deviceMod{ OmpGetUniqueModifier(modifiers)}) { using Value = parser::OmpDeviceModifier::Value; if (dir != llvm::omp::OMPD_target && deviceMod->v == Value::Ancestor) { auto name{OmpGetDescriptor().name}; context_.Say(OmpGetModifierSource(modifiers, deviceMod), "The ANCESTOR %s must not appear on the DEVICE clause on any directive other than the TARGET construct. Found on %s construct."_err_en_US, name.str(), parser::ToUpperCaseLetters(getDirectiveName(dir))); } } } } void OmpStructureChecker::Enter(const parser::OmpClause::Depend &x) { CheckAllowedClause(llvm::omp::Clause::OMPC_depend); llvm::omp::Directive dir{GetContext().directive}; unsigned version{context_.langOptions().OpenMPVersion}; auto *doaDep{std::get_if(&x.v.u)}; auto *taskDep{std::get_if(&x.v.u)}; assert(((doaDep == nullptr) != (taskDep == nullptr)) && "Unexpected alternative in update clause"); if (doaDep) { CheckDoacross(*doaDep); CheckDependenceType(doaDep->GetDepType()); } else { CheckTaskDependenceType(taskDep->GetTaskDepType()); } if (dir == llvm::omp::OMPD_depobj) { // [5.0:255:11], [5.1:288:3] // A depend clause on a depobj construct must not have source, sink [or // depobj](5.0) as dependence-type. if (version >= 50) { bool invalidDep{false}; if (taskDep) { if (version == 50) { invalidDep = taskDep->GetTaskDepType() == parser::OmpTaskDependenceType::Value::Depobj; } } else { invalidDep = true; } if (invalidDep) { context_.Say(GetContext().clauseSource, "A DEPEND clause on a DEPOBJ construct must not have %s as dependence type"_err_en_US, version == 50 ? "SINK, SOURCE or DEPOBJ" : "SINK or SOURCE"); } } } else if (dir != llvm::omp::OMPD_ordered) { if (doaDep) { context_.Say(GetContext().clauseSource, "The SINK and SOURCE dependence types can only be used with the ORDERED directive, used here in the %s construct"_err_en_US, parser::ToUpperCaseLetters(getDirectiveName(dir))); } } if (taskDep) { auto &objList{std::get(taskDep->t)}; if (dir == llvm::omp::OMPD_depobj) { // [5.0:255:13], [5.1:288:6], [5.2:322:26] // A depend clause on a depobj construct must only specify one locator. if (objList.v.size() != 1) { context_.Say(GetContext().clauseSource, "A DEPEND clause on a DEPOBJ construct must only specify " "one locator"_err_en_US); } } for (const auto &object : objList.v) { if (const auto *name{std::get_if(&object.u)}) { context_.Say(GetContext().clauseSource, "Common block name ('%s') cannot appear in a DEPEND " "clause"_err_en_US, name->ToString()); } else if (auto *designator{std::get_if(&object.u)}) { if (auto *dataRef{std::get_if(&designator->u)}) { CheckDependList(*dataRef); if (const auto *arr{ std::get_if>( &dataRef->u)}) { CheckArraySection(arr->value(), GetLastName(*dataRef), llvm::omp::Clause::OMPC_depend); } } } } if (OmpVerifyModifiers(*taskDep, llvm::omp::OMPC_depend, GetContext().clauseSource, context_)) { auto &modifiers{OmpGetModifiers(*taskDep)}; if (OmpGetUniqueModifier(modifiers)) { if (dir == llvm::omp::OMPD_depobj) { context_.Say(GetContext().clauseSource, "An iterator-modifier may specify multiple locators, a DEPEND clause on a DEPOBJ construct must only specify one locator"_warn_en_US); } } } } } void OmpStructureChecker::Enter(const parser::OmpClause::Doacross &x) { CheckAllowedClause(llvm::omp::Clause::OMPC_doacross); CheckDoacross(x.v.v); } void OmpStructureChecker::CheckDoacross(const parser::OmpDoacross &doa) { if (std::holds_alternative(doa.u)) { // Nothing to check here. return; } // Process SINK dependence type. SINK may only appear in an ORDER construct, // which references a prior ORDERED(n) clause on a DO or SIMD construct // that marks the top of the loop nest. auto &sink{std::get(doa.u)}; const std::list &vec{sink.v.v}; // Check if the variables in the iteration vector are unique. struct Less { using Iterator = std::list::const_iterator; bool operator()(Iterator a, Iterator b) const { auto namea{std::get(a->t)}; auto nameb{std::get(b->t)}; assert(namea.symbol && nameb.symbol && "Unresolved symbols"); // The non-determinism of the "<" doesn't matter, we only care about // equality, i.e. a == b <=> !(a < b) && !(b < a) return reinterpret_cast(namea.symbol) < reinterpret_cast(nameb.symbol); } }; if (auto maybeIter{FindDuplicate(vec)}) { auto name{std::get((*maybeIter)->t)}; context_.Say(name.source, "Duplicate variable '%s' in the iteration vector"_err_en_US, name.ToString()); } // Check if the variables in the iteration vector are induction variables. // Ignore any mismatch between the size of the iteration vector and the // number of DO constructs on the stack. This is checked elsewhere. auto GetLoopDirective{[](const parser::OpenMPLoopConstruct &x) { auto &begin{std::get(x.t)}; return std::get(begin.t).v; }}; auto GetLoopClauses{[](const parser::OpenMPLoopConstruct &x) -> const std::list & { auto &begin{std::get(x.t)}; return std::get(begin.t).v; }}; std::set inductionVars; for (const LoopConstruct &loop : llvm::reverse(loopStack_)) { if (auto *doc{std::get_if(&loop)}) { // Do-construct, collect the induction variable. if (auto &control{(*doc)->GetLoopControl()}) { if (auto *b{std::get_if(&control->u)}) { inductionVars.insert(b->name.thing.symbol); } } } else { // Omp-loop-construct, check if it's do/simd with an ORDERED clause. auto *loopc{std::get_if(&loop)}; assert(loopc && "Expecting OpenMPLoopConstruct"); llvm::omp::Directive loopDir{GetLoopDirective(**loopc)}; if (loopDir == llvm::omp::OMPD_do || loopDir == llvm::omp::OMPD_simd) { auto IsOrdered{[](const parser::OmpClause &c) { return c.Id() == llvm::omp::OMPC_ordered; }}; // If it has ORDERED clause, stop the traversal. if (llvm::any_of(GetLoopClauses(**loopc), IsOrdered)) { break; } } } } for (const parser::OmpIteration &iter : vec) { auto &name{std::get(iter.t)}; if (!inductionVars.count(name.symbol)) { context_.Say(name.source, "The iteration vector element '%s' is not an induction variable within the ORDERED loop nest"_err_en_US, name.ToString()); } } } void OmpStructureChecker::CheckCopyingPolymorphicAllocatable( SymbolSourceMap &symbols, const llvm::omp::Clause clause) { if (context_.ShouldWarn(common::UsageWarning::Portability)) { for (auto &[symbol, source] : symbols) { if (IsPolymorphicAllocatable(*symbol)) { context_.Warn(common::UsageWarning::Portability, source, "If a polymorphic variable with allocatable attribute '%s' is in %s clause, the behavior is unspecified"_port_en_US, symbol->name(), parser::ToUpperCaseLetters(getClauseName(clause).str())); } } } } void OmpStructureChecker::Enter(const parser::OmpClause::Copyprivate &x) { CheckAllowedClause(llvm::omp::Clause::OMPC_copyprivate); SymbolSourceMap symbols; GetSymbolsInObjectList(x.v, symbols); CheckIntentInPointer(symbols, llvm::omp::Clause::OMPC_copyprivate); CheckCopyingPolymorphicAllocatable( symbols, llvm::omp::Clause::OMPC_copyprivate); if (GetContext().directive == llvm::omp::Directive::OMPD_single) { context_.Say(GetContext().clauseSource, "%s clause is not allowed on the OMP %s directive," " use it on OMP END %s directive "_err_en_US, parser::ToUpperCaseLetters( getClauseName(llvm::omp::Clause::OMPC_copyprivate).str()), parser::ToUpperCaseLetters(GetContext().directiveSource.ToString()), parser::ToUpperCaseLetters(GetContext().directiveSource.ToString())); } } void OmpStructureChecker::Enter(const parser::OmpClause::Lastprivate &x) { CheckAllowedClause(llvm::omp::Clause::OMPC_lastprivate); const auto &objectList{std::get(x.v.t)}; CheckIsVarPartOfAnotherVar( GetContext().clauseSource, objectList, "LASTPRIVATE"); CheckCrayPointee(objectList, "LASTPRIVATE"); DirectivesClauseTriple dirClauseTriple; SymbolSourceMap currSymbols; GetSymbolsInObjectList(objectList, currSymbols); CheckDefinableObjects(currSymbols, llvm::omp::Clause::OMPC_lastprivate); CheckCopyingPolymorphicAllocatable( currSymbols, llvm::omp::Clause::OMPC_lastprivate); // Check lastprivate variables in worksharing constructs dirClauseTriple.emplace(llvm::omp::Directive::OMPD_do, std::make_pair( llvm::omp::Directive::OMPD_parallel, llvm::omp::privateReductionSet)); dirClauseTriple.emplace(llvm::omp::Directive::OMPD_sections, std::make_pair( llvm::omp::Directive::OMPD_parallel, llvm::omp::privateReductionSet)); CheckPrivateSymbolsInOuterCxt( currSymbols, dirClauseTriple, llvm::omp::Clause::OMPC_lastprivate); OmpVerifyModifiers( x.v, llvm::omp::OMPC_lastprivate, GetContext().clauseSource, context_); } void OmpStructureChecker::Enter(const parser::OmpClause::Copyin &x) { CheckAllowedClause(llvm::omp::Clause::OMPC_copyin); SymbolSourceMap currSymbols; GetSymbolsInObjectList(x.v, currSymbols); CheckCopyingPolymorphicAllocatable( currSymbols, llvm::omp::Clause::OMPC_copyin); } void OmpStructureChecker::CheckStructureComponent( const parser::OmpObjectList &objects, llvm::omp::Clause clauseId) { auto CheckComponent{[&](const parser::Designator &designator) { if (auto *dataRef{std::get_if(&designator.u)}) { if (!IsDataRefTypeParamInquiry(dataRef)) { if (auto *comp{parser::Unwrap(*dataRef)}) { context_.Say(comp->component.source, "A variable that is part of another variable cannot appear on the %s clause"_err_en_US, parser::ToUpperCaseLetters(getClauseName(clauseId).str())); } } } }}; for (const auto &object : objects.v) { common::visit( common::visitors{ CheckComponent, [&](const parser::Name &name) {}, }, object.u); } } void OmpStructureChecker::Enter(const parser::OmpClause::Update &x) { CheckAllowedClause(llvm::omp::Clause::OMPC_update); llvm::omp::Directive dir{GetContext().directive}; unsigned version{context_.langOptions().OpenMPVersion}; auto *depType{std::get_if(&x.v.u)}; auto *taskType{std::get_if(&x.v.u)}; assert(((depType == nullptr) != (taskType == nullptr)) && "Unexpected alternative in update clause"); if (depType) { CheckDependenceType(depType->v); } else if (taskType) { CheckTaskDependenceType(taskType->v); } // [5.1:288:4-5] // An update clause on a depobj construct must not have source, sink or depobj // as dependence-type. // [5.2:322:3] // task-dependence-type must not be depobj. if (dir == llvm::omp::OMPD_depobj) { if (version >= 51) { bool invalidDep{false}; if (taskType) { invalidDep = taskType->v == parser::OmpTaskDependenceType::Value::Depobj; } else { invalidDep = true; } if (invalidDep) { context_.Say(GetContext().clauseSource, "An UPDATE clause on a DEPOBJ construct must not have SINK, SOURCE or DEPOBJ as dependence type"_err_en_US); } } } } void OmpStructureChecker::Enter(const parser::OmpClause::UseDevicePtr &x) { CheckStructureComponent(x.v, llvm::omp::Clause::OMPC_use_device_ptr); CheckAllowedClause(llvm::omp::Clause::OMPC_use_device_ptr); SymbolSourceMap currSymbols; GetSymbolsInObjectList(x.v, currSymbols); semantics::UnorderedSymbolSet listVars; for (auto [_, clause] : FindClauses(llvm::omp::Clause::OMPC_use_device_ptr)) { const auto &useDevicePtrClause{ std::get(clause->u)}; const auto &useDevicePtrList{useDevicePtrClause.v}; std::list useDevicePtrNameList; for (const auto &ompObject : useDevicePtrList.v) { if (const auto *name{parser::Unwrap(ompObject)}) { if (name->symbol) { if (!(IsBuiltinCPtr(*(name->symbol)))) { context_.Warn(common::UsageWarning::OpenMPUsage, clause->source, "Use of non-C_PTR type '%s' in USE_DEVICE_PTR is deprecated, use USE_DEVICE_ADDR instead"_warn_en_US, name->ToString()); } else { useDevicePtrNameList.push_back(*name); } } } } CheckMultipleOccurrence( listVars, useDevicePtrNameList, clause->source, "USE_DEVICE_PTR"); } } void OmpStructureChecker::Enter(const parser::OmpClause::UseDeviceAddr &x) { CheckStructureComponent(x.v, llvm::omp::Clause::OMPC_use_device_addr); CheckAllowedClause(llvm::omp::Clause::OMPC_use_device_addr); SymbolSourceMap currSymbols; GetSymbolsInObjectList(x.v, currSymbols); semantics::UnorderedSymbolSet listVars; for (auto [_, clause] : FindClauses(llvm::omp::Clause::OMPC_use_device_addr)) { const auto &useDeviceAddrClause{ std::get(clause->u)}; const auto &useDeviceAddrList{useDeviceAddrClause.v}; std::list useDeviceAddrNameList; for (const auto &ompObject : useDeviceAddrList.v) { if (const auto *name{parser::Unwrap(ompObject)}) { if (name->symbol) { useDeviceAddrNameList.push_back(*name); } } } CheckMultipleOccurrence( listVars, useDeviceAddrNameList, clause->source, "USE_DEVICE_ADDR"); } } void OmpStructureChecker::Enter(const parser::OmpClause::IsDevicePtr &x) { CheckAllowedClause(llvm::omp::Clause::OMPC_is_device_ptr); SymbolSourceMap currSymbols; GetSymbolsInObjectList(x.v, currSymbols); semantics::UnorderedSymbolSet listVars; for (auto [_, clause] : FindClauses(llvm::omp::Clause::OMPC_is_device_ptr)) { const auto &isDevicePtrClause{ std::get(clause->u)}; const auto &isDevicePtrList{isDevicePtrClause.v}; SymbolSourceMap currSymbols; GetSymbolsInObjectList(isDevicePtrList, currSymbols); for (auto &[symbol, source] : currSymbols) { if (!(IsBuiltinCPtr(*symbol))) { context_.Say(clause->source, "Variable '%s' in IS_DEVICE_PTR clause must be of type C_PTR"_err_en_US, source.ToString()); } else if (!(IsDummy(*symbol))) { context_.Warn(common::UsageWarning::OpenMPUsage, clause->source, "Variable '%s' in IS_DEVICE_PTR clause must be a dummy argument. " "This semantic check is deprecated from OpenMP 5.2 and later."_warn_en_US, source.ToString()); } else if (IsAllocatableOrPointer(*symbol) || IsValue(*symbol)) { context_.Warn(common::UsageWarning::OpenMPUsage, clause->source, "Variable '%s' in IS_DEVICE_PTR clause must be a dummy argument " "that does not have the ALLOCATABLE, POINTER or VALUE attribute. " "This semantic check is deprecated from OpenMP 5.2 and later."_warn_en_US, source.ToString()); } } } } void OmpStructureChecker::Enter(const parser::OmpClause::HasDeviceAddr &x) { CheckAllowedClause(llvm::omp::Clause::OMPC_has_device_addr); SymbolSourceMap currSymbols; GetSymbolsInObjectList(x.v, currSymbols); semantics::UnorderedSymbolSet listVars; for (auto [_, clause] : FindClauses(llvm::omp::Clause::OMPC_has_device_addr)) { const auto &hasDeviceAddrClause{ std::get(clause->u)}; const auto &hasDeviceAddrList{hasDeviceAddrClause.v}; std::list hasDeviceAddrNameList; for (const auto &ompObject : hasDeviceAddrList.v) { if (const auto *name{parser::Unwrap(ompObject)}) { if (name->symbol) { hasDeviceAddrNameList.push_back(*name); } } } } } void OmpStructureChecker::Enter(const parser::OmpClause::Enter &x) { CheckAllowedClause(llvm::omp::Clause::OMPC_enter); const parser::OmpObjectList &objList{x.v}; SymbolSourceMap symbols; GetSymbolsInObjectList(objList, symbols); for (const auto &[symbol, source] : symbols) { if (!IsExtendedListItem(*symbol)) { context_.SayWithDecl(*symbol, source, "'%s' must be a variable or a procedure"_err_en_US, symbol->name()); } } } void OmpStructureChecker::Enter(const parser::OmpClause::From &x) { CheckAllowedClause(llvm::omp::Clause::OMPC_from); if (!OmpVerifyModifiers( x.v, llvm::omp::OMPC_from, GetContext().clauseSource, context_)) { return; } auto &modifiers{OmpGetModifiers(x.v)}; unsigned version{context_.langOptions().OpenMPVersion}; if (auto *iter{OmpGetUniqueModifier(modifiers)}) { CheckIteratorModifier(*iter); } const auto &objList{std::get(x.v.t)}; SymbolSourceMap symbols; GetSymbolsInObjectList(objList, symbols); for (const auto &[symbol, source] : symbols) { if (!IsVariableListItem(*symbol)) { context_.SayWithDecl( *symbol, source, "'%s' must be a variable"_err_en_US, symbol->name()); } } // Ref: [4.5:109:19] // If a list item is an array section it must specify contiguous storage. if (version <= 45) { for (const parser::OmpObject &object : objList.v) { CheckIfContiguous(object); } } } void OmpStructureChecker::Enter(const parser::OmpClause::To &x) { CheckAllowedClause(llvm::omp::Clause::OMPC_to); if (!OmpVerifyModifiers( x.v, llvm::omp::OMPC_to, GetContext().clauseSource, context_)) { return; } auto &modifiers{OmpGetModifiers(x.v)}; unsigned version{context_.langOptions().OpenMPVersion}; // The "to" clause is only allowed on "declare target" (pre-5.1), and // "target update". In the former case it can take an extended list item, // in the latter a variable (a locator). // The "declare target" construct (and the "to" clause on it) are already // handled (in the declare-target checkers), so just look at "to" in "target // update". if (GetContext().directive == llvm::omp::OMPD_declare_target) { return; } assert(GetContext().directive == llvm::omp::OMPD_target_update); if (auto *iter{OmpGetUniqueModifier(modifiers)}) { CheckIteratorModifier(*iter); } const auto &objList{std::get(x.v.t)}; SymbolSourceMap symbols; GetSymbolsInObjectList(objList, symbols); for (const auto &[symbol, source] : symbols) { if (!IsVariableListItem(*symbol)) { context_.SayWithDecl( *symbol, source, "'%s' must be a variable"_err_en_US, symbol->name()); } } // Ref: [4.5:109:19] // If a list item is an array section it must specify contiguous storage. if (version <= 45) { for (const parser::OmpObject &object : objList.v) { CheckIfContiguous(object); } } } void OmpStructureChecker::Enter(const parser::OmpClause::OmpxBare &x) { // Don't call CheckAllowedClause, because it allows "ompx_bare" on // a non-combined "target" directive (for reasons of splitting combined // directives). In source code it's only allowed on "target teams". if (GetContext().directive != llvm::omp::Directive::OMPD_target_teams) { context_.Say(GetContext().clauseSource, "%s clause is only allowed on combined TARGET TEAMS"_err_en_US, parser::ToUpperCaseLetters(getClauseName(llvm::omp::OMPC_ompx_bare))); } } void OmpStructureChecker::Enter(const parser::OmpContextSelector &ctxSel) { EnterDirectiveNest(ContextSelectorNest); } void OmpStructureChecker::Leave(const parser::OmpContextSelector &) { ExitDirectiveNest(ContextSelectorNest); } llvm::StringRef OmpStructureChecker::getClauseName(llvm::omp::Clause clause) { return llvm::omp::getOpenMPClauseName(clause); } llvm::StringRef OmpStructureChecker::getDirectiveName( llvm::omp::Directive directive) { return llvm::omp::getOpenMPDirectiveName(directive); } const Symbol *OmpStructureChecker::GetObjectSymbol( const parser::OmpObject &object) { if (auto *name{std::get_if(&object.u)}) { return &name->symbol->GetUltimate(); } else if (auto *desg{std::get_if(&object.u)}) { return &GetLastName(*desg).symbol->GetUltimate(); } return nullptr; } std::optional OmpStructureChecker::GetObjectSource( const parser::OmpObject &object) { if (auto *name{std::get_if(&object.u)}) { return name->source; } else if (auto *desg{std::get_if(&object.u)}) { return GetLastName(*desg).source; } return std::nullopt; } void OmpStructureChecker::CheckDependList(const parser::DataRef &d) { common::visit( common::visitors{ [&](const common::Indirection &elem) { // Check if the base element is valid on Depend Clause CheckDependList(elem.value().base); }, [&](const common::Indirection &) { context_.Say(GetContext().clauseSource, "A variable that is part of another variable " "(such as an element of a structure) but is not an array " "element or an array section cannot appear in a DEPEND " "clause"_err_en_US); }, [&](const common::Indirection &) { context_.Say(GetContext().clauseSource, "Coarrays are not supported in DEPEND clause"_err_en_US); }, [&](const parser::Name &) {}, }, d.u); } // Called from both Reduction and Depend clause. void OmpStructureChecker::CheckArraySection( const parser::ArrayElement &arrayElement, const parser::Name &name, const llvm::omp::Clause clause) { if (!arrayElement.subscripts.empty()) { for (const auto &subscript : arrayElement.subscripts) { if (const auto *triplet{ std::get_if(&subscript.u)}) { if (std::get<0>(triplet->t) && std::get<1>(triplet->t)) { const auto &lower{std::get<0>(triplet->t)}; const auto &upper{std::get<1>(triplet->t)}; if (lower && upper) { const auto lval{GetIntValue(lower)}; const auto uval{GetIntValue(upper)}; if (lval && uval && *uval < *lval) { context_.Say(GetContext().clauseSource, "'%s' in %s clause" " is a zero size array section"_err_en_US, name.ToString(), parser::ToUpperCaseLetters(getClauseName(clause).str())); break; } else if (std::get<2>(triplet->t)) { const auto &strideExpr{std::get<2>(triplet->t)}; if (strideExpr) { if (clause == llvm::omp::Clause::OMPC_depend) { context_.Say(GetContext().clauseSource, "Stride should not be specified for array section in " "DEPEND " "clause"_err_en_US); } } } } } } } } } void OmpStructureChecker::CheckIntentInPointer( SymbolSourceMap &symbols, llvm::omp::Clause clauseId) { for (auto &[symbol, source] : symbols) { if (IsPointer(*symbol) && IsIntentIn(*symbol)) { context_.Say(source, "Pointer '%s' with the INTENT(IN) attribute may not appear in a %s clause"_err_en_US, symbol->name(), parser::ToUpperCaseLetters(getClauseName(clauseId).str())); } } } void OmpStructureChecker::CheckProcedurePointer( SymbolSourceMap &symbols, llvm::omp::Clause clause) { for (const auto &[symbol, source] : symbols) { if (IsProcedurePointer(*symbol)) { context_.Say(source, "Procedure pointer '%s' may not appear in a %s clause"_err_en_US, symbol->name(), parser::ToUpperCaseLetters(getClauseName(clause).str())); } } } void OmpStructureChecker::CheckCrayPointee( const parser::OmpObjectList &objectList, llvm::StringRef clause, bool suggestToUseCrayPointer) { SymbolSourceMap symbols; GetSymbolsInObjectList(objectList, symbols); for (auto it{symbols.begin()}; it != symbols.end(); ++it) { const auto *symbol{it->first}; const auto source{it->second}; if (symbol->test(Symbol::Flag::CrayPointee)) { std::string suggestionMsg = ""; if (suggestToUseCrayPointer) suggestionMsg = ", use Cray Pointer '" + semantics::GetCrayPointer(*symbol).name().ToString() + "' instead"; context_.Say(source, "Cray Pointee '%s' may not appear in %s clause%s"_err_en_US, symbol->name(), clause.str(), suggestionMsg); } } } void OmpStructureChecker::GetSymbolsInObjectList( const parser::OmpObjectList &objectList, SymbolSourceMap &symbols) { for (const auto &ompObject : objectList.v) { if (const auto *name{parser::Unwrap(ompObject)}) { if (const auto *symbol{name->symbol}) { if (const auto *commonBlockDetails{ symbol->detailsIf()}) { for (const auto &object : commonBlockDetails->objects()) { symbols.emplace(&object->GetUltimate(), name->source); } } else { symbols.emplace(&symbol->GetUltimate(), name->source); } } } } } void OmpStructureChecker::CheckDefinableObjects( SymbolSourceMap &symbols, const llvm::omp::Clause clause) { for (auto &[symbol, source] : symbols) { if (auto msg{WhyNotDefinable(source, context_.FindScope(source), DefinabilityFlags{}, *symbol)}) { context_ .Say(source, "Variable '%s' on the %s clause is not definable"_err_en_US, symbol->name(), parser::ToUpperCaseLetters(getClauseName(clause).str())) .Attach(std::move(msg->set_severity(parser::Severity::Because))); } } } void OmpStructureChecker::CheckPrivateSymbolsInOuterCxt( SymbolSourceMap &currSymbols, DirectivesClauseTriple &dirClauseTriple, const llvm::omp::Clause currClause) { SymbolSourceMap enclosingSymbols; auto range{dirClauseTriple.equal_range(GetContext().directive)}; for (auto dirIter{range.first}; dirIter != range.second; ++dirIter) { auto enclosingDir{dirIter->second.first}; auto enclosingClauseSet{dirIter->second.second}; if (auto *enclosingContext{GetEnclosingContextWithDir(enclosingDir)}) { for (auto it{enclosingContext->clauseInfo.begin()}; it != enclosingContext->clauseInfo.end(); ++it) { if (enclosingClauseSet.test(it->first)) { if (const auto *ompObjectList{GetOmpObjectList(*it->second)}) { GetSymbolsInObjectList(*ompObjectList, enclosingSymbols); } } } // Check if the symbols in current context are private in outer context for (auto &[symbol, source] : currSymbols) { if (enclosingSymbols.find(symbol) != enclosingSymbols.end()) { context_.Say(source, "%s variable '%s' is PRIVATE in outer context"_err_en_US, parser::ToUpperCaseLetters(getClauseName(currClause).str()), symbol->name()); } } } } } bool OmpStructureChecker::CheckTargetBlockOnlyTeams( const parser::Block &block) { bool nestedTeams{false}; if (!block.empty()) { auto it{block.begin()}; if (const auto *ompConstruct{ parser::Unwrap(*it)}) { if (const auto *ompBlockConstruct{ std::get_if(&ompConstruct->u)}) { const auto &beginBlockDir{ std::get(ompBlockConstruct->t)}; const auto &beginDir{ std::get(beginBlockDir.t)}; if (beginDir.v == llvm::omp::Directive::OMPD_teams) { nestedTeams = true; } } } if (nestedTeams && ++it == block.end()) { return true; } } return false; } void OmpStructureChecker::CheckWorkshareBlockStmts( const parser::Block &block, parser::CharBlock source) { OmpWorkshareBlockChecker ompWorkshareBlockChecker{context_, source}; for (auto it{block.begin()}; it != block.end(); ++it) { if (parser::Unwrap(*it) || parser::Unwrap(*it) || parser::Unwrap(*it) || parser::Unwrap(*it) || parser::Unwrap(*it)) { parser::Walk(*it, ompWorkshareBlockChecker); } else if (const auto *ompConstruct{ parser::Unwrap(*it)}) { if (const auto *ompAtomicConstruct{ std::get_if(&ompConstruct->u)}) { // Check if assignment statements in the enclosing OpenMP Atomic // construct are allowed in the Workshare construct parser::Walk(*ompAtomicConstruct, ompWorkshareBlockChecker); } else if (const auto *ompCriticalConstruct{ std::get_if( &ompConstruct->u)}) { // All the restrictions on the Workshare construct apply to the // statements in the enclosing critical constructs const auto &criticalBlock{ std::get(ompCriticalConstruct->t)}; CheckWorkshareBlockStmts(criticalBlock, source); } else { // Check if OpenMP constructs enclosed in the Workshare construct are // 'Parallel' constructs auto currentDir{llvm::omp::Directive::OMPD_unknown}; if (const auto *ompBlockConstruct{ std::get_if(&ompConstruct->u)}) { const auto &beginBlockDir{ std::get(ompBlockConstruct->t)}; const auto &beginDir{ std::get(beginBlockDir.t)}; currentDir = beginDir.v; } else if (const auto *ompLoopConstruct{ std::get_if( &ompConstruct->u)}) { const auto &beginLoopDir{ std::get(ompLoopConstruct->t)}; const auto &beginDir{ std::get(beginLoopDir.t)}; currentDir = beginDir.v; } else if (const auto *ompSectionsConstruct{ std::get_if( &ompConstruct->u)}) { const auto &beginSectionsDir{ std::get( ompSectionsConstruct->t)}; const auto &beginDir{ std::get(beginSectionsDir.t)}; currentDir = beginDir.v; } if (!llvm::omp::topParallelSet.test(currentDir)) { context_.Say(source, "OpenMP constructs enclosed in WORKSHARE construct may consist " "of ATOMIC, CRITICAL or PARALLEL constructs only"_err_en_US); } } } else { context_.Say(source, "The structured block in a WORKSHARE construct may consist of only " "SCALAR or ARRAY assignments, FORALL or WHERE statements, " "FORALL, WHERE, ATOMIC, CRITICAL or PARALLEL constructs"_err_en_US); } } } void OmpStructureChecker::CheckIfContiguous(const parser::OmpObject &object) { if (auto contig{IsContiguous(object)}; contig && !*contig) { const parser::Name *name{GetObjectName(object)}; assert(name && "Expecting name component"); context_.Say(name->source, "Reference to '%s' must be a contiguous object"_err_en_US, name->ToString()); } } namespace { struct NameHelper { template static const parser::Name *Visit(const common::Indirection &x) { return Visit(x.value()); } static const parser::Name *Visit(const parser::Substring &x) { return Visit(std::get(x.t)); } static const parser::Name *Visit(const parser::ArrayElement &x) { return Visit(x.base); } static const parser::Name *Visit(const parser::Designator &x) { return common::visit([](auto &&s) { return Visit(s); }, x.u); } static const parser::Name *Visit(const parser::DataRef &x) { return common::visit([](auto &&s) { return Visit(s); }, x.u); } static const parser::Name *Visit(const parser::OmpObject &x) { return common::visit([](auto &&s) { return Visit(s); }, x.u); } template static const parser::Name *Visit(T &&) { return nullptr; } static const parser::Name *Visit(const parser::Name &x) { return &x; } }; } // namespace const parser::Name *OmpStructureChecker::GetObjectName( const parser::OmpObject &object) { return NameHelper::Visit(object); } const parser::OmpObjectList *OmpStructureChecker::GetOmpObjectList( const parser::OmpClause &clause) { // Clauses with OmpObjectList as its data member using MemberObjectListClauses = std::tuple; // Clauses with OmpObjectList in the tuple using TupleObjectListClauses = std::tuple; // TODO:: Generate the tuples using TableGen. // Handle other constructs with OmpObjectList such as OpenMPThreadprivate. return common::visit( common::visitors{ [&](const auto &x) -> const parser::OmpObjectList * { using Ty = std::decay_t; if constexpr (common::HasMember) { return &x.v; } else if constexpr (common::HasMember) { return &(std::get(x.v.t)); } else { return nullptr; } }, }, clause.u); } void OmpStructureChecker::Enter( const parser::OmpClause::AtomicDefaultMemOrder &x) { CheckAllowedRequiresClause(llvm::omp::Clause::OMPC_atomic_default_mem_order); } void OmpStructureChecker::Enter(const parser::OmpClause::DynamicAllocators &x) { CheckAllowedRequiresClause(llvm::omp::Clause::OMPC_dynamic_allocators); } void OmpStructureChecker::Enter(const parser::OmpClause::ReverseOffload &x) { CheckAllowedRequiresClause(llvm::omp::Clause::OMPC_reverse_offload); } void OmpStructureChecker::Enter(const parser::OmpClause::UnifiedAddress &x) { CheckAllowedRequiresClause(llvm::omp::Clause::OMPC_unified_address); } void OmpStructureChecker::Enter( const parser::OmpClause::UnifiedSharedMemory &x) { CheckAllowedRequiresClause(llvm::omp::Clause::OMPC_unified_shared_memory); } void OmpStructureChecker::Enter(const parser::DoConstruct &x) { Base::Enter(x); loopStack_.push_back(&x); } void OmpStructureChecker::Leave(const parser::DoConstruct &x) { assert(!loopStack_.empty() && "Expecting non-empty loop stack"); #ifndef NDEBUG const LoopConstruct &top = loopStack_.back(); auto *doc{std::get_if(&top)}; assert(doc != nullptr && *doc == &x && "Mismatched loop constructs"); #endif loopStack_.pop_back(); Base::Leave(x); } void OmpStructureChecker::CheckAllowedRequiresClause(llvmOmpClause clause) { CheckAllowedClause(clause); if (clause != llvm::omp::Clause::OMPC_atomic_default_mem_order) { // Check that it does not appear after a device construct if (deviceConstructFound_) { context_.Say(GetContext().clauseSource, "REQUIRES directive with '%s' clause found lexically after device " "construct"_err_en_US, parser::ToUpperCaseLetters(getClauseName(clause).str())); } } } } // namespace Fortran::semantics