//===-- lib/Semantics/check-declarations.cpp ------------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // Static declaration checking #include "check-declarations.h" #include "flang/Evaluate/check-expression.h" #include "flang/Evaluate/fold.h" #include "flang/Evaluate/tools.h" #include "flang/Semantics/scope.h" #include "flang/Semantics/semantics.h" #include "flang/Semantics/symbol.h" #include "flang/Semantics/tools.h" #include "flang/Semantics/type.h" #include namespace Fortran::semantics { using evaluate::characteristics::DummyArgument; using evaluate::characteristics::DummyDataObject; using evaluate::characteristics::Procedure; class CheckHelper { public: explicit CheckHelper(SemanticsContext &c) : context_{c} {} void Check() { Check(context_.globalScope()); } void Check(const ParamValue &, bool canBeAssumed); void Check(const Bound &bound) { CheckSpecExpr(bound.GetExplicit()); } void Check(const ShapeSpec &spec) { Check(spec.lbound()); Check(spec.ubound()); } void Check(const ArraySpec &); void Check(const DeclTypeSpec &, bool canHaveAssumedTypeParameters); void Check(const Symbol &); void Check(const Scope &); private: template void CheckSpecExpr(A &x) { x = Fold(foldingContext_, std::move(x)); evaluate::CheckSpecificationExpr(x, messages_, DEREF(scope_)); } template void CheckSpecExpr(const A &x) { evaluate::CheckSpecificationExpr(x, messages_, DEREF(scope_)); } void CheckValue(const Symbol &, const DerivedTypeSpec *); void CheckVolatile( const Symbol &, bool isAssociated, const DerivedTypeSpec *); void CheckPointer(const Symbol &); void CheckPassArg( const Symbol &proc, const Symbol *interface, const WithPassArg &); void CheckProcBinding(const Symbol &, const ProcBindingDetails &); void CheckObjectEntity(const Symbol &, const ObjectEntityDetails &); void CheckArraySpec(const Symbol &, const ArraySpec &); void CheckProcEntity(const Symbol &, const ProcEntityDetails &); void CheckAssumedTypeEntity(const Symbol &, const ObjectEntityDetails &); void CheckDerivedType(const Symbol &, const DerivedTypeDetails &); void CheckGeneric(const Symbol &, const GenericDetails &); std::optional> Characterize(const SymbolVector &); bool CheckDefinedOperator(const SourceName &, const GenericKind &, const Symbol &, const Procedure &); std::optional CheckNumberOfArgs( const GenericKind &, std::size_t); bool CheckDefinedOperatorArg( const SourceName &, const Symbol &, const Procedure &, std::size_t); bool CheckDefinedAssignment(const Symbol &, const Procedure &); bool CheckDefinedAssignmentArg(const Symbol &, const DummyArgument &, int); void CheckSpecificsAreDistinguishable( const Symbol &, const GenericDetails &, const std::vector &); void CheckEquivalenceSet(const EquivalenceSet &); void CheckBlockData(const Scope &); void SayNotDistinguishable( const SourceName &, GenericKind, const Symbol &, const Symbol &); bool CheckConflicting(const Symbol &, Attr, Attr); bool InPure() const { return innermostSymbol_ && IsPureProcedure(*innermostSymbol_); } bool InFunction() const { return innermostSymbol_ && IsFunction(*innermostSymbol_); } template void SayWithDeclaration(const Symbol &symbol, A &&... x) { if (parser::Message * msg{messages_.Say(std::forward(x)...)}) { if (messages_.at() != symbol.name()) { evaluate::AttachDeclaration(*msg, symbol); } } } SemanticsContext &context_; evaluate::FoldingContext &foldingContext_{context_.foldingContext()}; parser::ContextualMessages &messages_{foldingContext_.messages()}; const Scope *scope_{nullptr}; // This symbol is the one attached to the innermost enclosing scope // that has a symbol. const Symbol *innermostSymbol_{nullptr}; }; void CheckHelper::Check(const ParamValue &value, bool canBeAssumed) { if (value.isAssumed()) { if (!canBeAssumed) { // C795, C721, C726 messages_.Say( "An assumed (*) type parameter may be used only for a (non-statement" " function) dummy argument, associate name, named constant, or" " external function result"_err_en_US); } } else { CheckSpecExpr(value.GetExplicit()); } } void CheckHelper::Check(const ArraySpec &shape) { for (const auto &spec : shape) { Check(spec); } } void CheckHelper::Check( const DeclTypeSpec &type, bool canHaveAssumedTypeParameters) { if (type.category() == DeclTypeSpec::Character) { Check(type.characterTypeSpec().length(), canHaveAssumedTypeParameters); } else if (const DerivedTypeSpec * derived{type.AsDerived()}) { for (auto &parm : derived->parameters()) { Check(parm.second, canHaveAssumedTypeParameters); } } } void CheckHelper::Check(const Symbol &symbol) { if (context_.HasError(symbol)) { return; } const DeclTypeSpec *type{symbol.GetType()}; const DerivedTypeSpec *derived{type ? type->AsDerived() : nullptr}; auto restorer{messages_.SetLocation(symbol.name())}; context_.set_location(symbol.name()); bool isAssociated{symbol.has() || symbol.has()}; if (symbol.attrs().test(Attr::VOLATILE)) { CheckVolatile(symbol, isAssociated, derived); } if (isAssociated) { return; // only care about checking VOLATILE on associated symbols } if (IsPointer(symbol)) { CheckPointer(symbol); } std::visit( common::visitors{ [&](const ProcBindingDetails &x) { CheckProcBinding(symbol, x); }, [&](const ObjectEntityDetails &x) { CheckObjectEntity(symbol, x); }, [&](const ProcEntityDetails &x) { CheckProcEntity(symbol, x); }, [&](const DerivedTypeDetails &x) { CheckDerivedType(symbol, x); }, [&](const GenericDetails &x) { CheckGeneric(symbol, x); }, [](const auto &) {}, }, symbol.details()); if (InPure()) { if (IsSaved(symbol)) { messages_.Say( "A pure subprogram may not have a variable with the SAVE attribute"_err_en_US); } if (symbol.attrs().test(Attr::VOLATILE)) { messages_.Say( "A pure subprogram may not have a variable with the VOLATILE attribute"_err_en_US); } if (IsProcedure(symbol) && !IsPureProcedure(symbol) && IsDummy(symbol)) { messages_.Say( "A dummy procedure of a pure subprogram must be pure"_err_en_US); } if (!IsDummy(symbol) && !IsFunctionResult(symbol)) { if (IsPolymorphicAllocatable(symbol)) { SayWithDeclaration(symbol, "Deallocation of polymorphic object '%s' is not permitted in a pure subprogram"_err_en_US, symbol.name()); } else if (derived) { if (auto bad{FindPolymorphicAllocatableUltimateComponent(*derived)}) { SayWithDeclaration(*bad, "Deallocation of polymorphic object '%s%s' is not permitted in a pure subprogram"_err_en_US, symbol.name(), bad.BuildResultDesignatorName()); } } } } if (type) { // Section 7.2, paragraph 7 bool canHaveAssumedParameter{IsNamedConstant(symbol) || IsAssumedLengthExternalCharacterFunction(symbol) || // C722 symbol.test(Symbol::Flag::ParentComp)}; if (!IsStmtFunctionDummy(symbol)) { // C726 if (const auto *object{symbol.detailsIf()}) { canHaveAssumedParameter |= object->isDummy() || (object->isFuncResult() && type->category() == DeclTypeSpec::Character) || IsStmtFunctionResult(symbol); // Avoids multiple messages } else { canHaveAssumedParameter |= symbol.has(); } } Check(*type, canHaveAssumedParameter); if (InPure() && InFunction() && IsFunctionResult(symbol)) { if (derived && HasImpureFinal(*derived)) { // C1584 messages_.Say( "Result of pure function may not have an impure FINAL subroutine"_err_en_US); } if (type->IsPolymorphic() && IsAllocatable(symbol)) { // C1585 messages_.Say( "Result of pure function may not be both polymorphic and ALLOCATABLE"_err_en_US); } if (derived) { if (auto bad{FindPolymorphicAllocatableUltimateComponent(*derived)}) { SayWithDeclaration(*bad, "Result of pure function may not have polymorphic ALLOCATABLE ultimate component '%s'"_err_en_US, bad.BuildResultDesignatorName()); } } } } if (IsAssumedLengthExternalCharacterFunction(symbol)) { // C723 if (symbol.attrs().test(Attr::RECURSIVE)) { messages_.Say( "An assumed-length CHARACTER(*) function cannot be RECURSIVE"_err_en_US); } if (symbol.Rank() > 0) { messages_.Say( "An assumed-length CHARACTER(*) function cannot return an array"_err_en_US); } if (symbol.attrs().test(Attr::PURE)) { messages_.Say( "An assumed-length CHARACTER(*) function cannot be PURE"_err_en_US); } if (symbol.attrs().test(Attr::ELEMENTAL)) { messages_.Say( "An assumed-length CHARACTER(*) function cannot be ELEMENTAL"_err_en_US); } if (const Symbol * result{FindFunctionResult(symbol)}) { if (IsPointer(*result)) { messages_.Say( "An assumed-length CHARACTER(*) function cannot return a POINTER"_err_en_US); } } } if (symbol.attrs().test(Attr::VALUE)) { CheckValue(symbol, derived); } if (symbol.attrs().test(Attr::CONTIGUOUS) && IsPointer(symbol) && symbol.Rank() == 0) { // C830 messages_.Say("CONTIGUOUS POINTER must be an array"_err_en_US); } } void CheckHelper::CheckValue( const Symbol &symbol, const DerivedTypeSpec *derived) { // C863 - C865 if (!IsDummy(symbol)) { messages_.Say( "VALUE attribute may apply only to a dummy argument"_err_en_US); } if (IsProcedure(symbol)) { messages_.Say( "VALUE attribute may apply only to a dummy data object"_err_en_US); } if (IsAssumedSizeArray(symbol)) { messages_.Say( "VALUE attribute may not apply to an assumed-size array"_err_en_US); } if (IsCoarray(symbol)) { messages_.Say("VALUE attribute may not apply to a coarray"_err_en_US); } if (IsAllocatable(symbol)) { messages_.Say("VALUE attribute may not apply to an ALLOCATABLE"_err_en_US); } else if (IsPointer(symbol)) { messages_.Say("VALUE attribute may not apply to a POINTER"_err_en_US); } if (IsIntentInOut(symbol)) { messages_.Say( "VALUE attribute may not apply to an INTENT(IN OUT) argument"_err_en_US); } else if (IsIntentOut(symbol)) { messages_.Say( "VALUE attribute may not apply to an INTENT(OUT) argument"_err_en_US); } if (symbol.attrs().test(Attr::VOLATILE)) { messages_.Say("VALUE attribute may not apply to a VOLATILE"_err_en_US); } if (innermostSymbol_ && IsBindCProcedure(*innermostSymbol_) && IsOptional(symbol)) { messages_.Say( "VALUE attribute may not apply to an OPTIONAL in a BIND(C) procedure"_err_en_US); } if (derived) { if (FindCoarrayUltimateComponent(*derived)) { messages_.Say( "VALUE attribute may not apply to a type with a coarray ultimate component"_err_en_US); } } } void CheckHelper::CheckAssumedTypeEntity( // C709 const Symbol &symbol, const ObjectEntityDetails &details) { if (const DeclTypeSpec * type{symbol.GetType()}; type && type->category() == DeclTypeSpec::TypeStar) { if (!symbol.IsDummy()) { messages_.Say( "Assumed-type entity '%s' must be a dummy argument"_err_en_US, symbol.name()); } else { if (symbol.attrs().test(Attr::ALLOCATABLE)) { messages_.Say("Assumed-type argument '%s' cannot have the ALLOCATABLE" " attribute"_err_en_US, symbol.name()); } if (symbol.attrs().test(Attr::POINTER)) { messages_.Say("Assumed-type argument '%s' cannot have the POINTER" " attribute"_err_en_US, symbol.name()); } if (symbol.attrs().test(Attr::VALUE)) { messages_.Say("Assumed-type argument '%s' cannot have the VALUE" " attribute"_err_en_US, symbol.name()); } if (symbol.attrs().test(Attr::INTENT_OUT)) { messages_.Say( "Assumed-type argument '%s' cannot be INTENT(OUT)"_err_en_US, symbol.name()); } if (IsCoarray(symbol)) { messages_.Say( "Assumed-type argument '%s' cannot be a coarray"_err_en_US, symbol.name()); } if (details.IsArray() && !(details.IsAssumedShape() || details.IsAssumedSize())) { messages_.Say("Assumed-type argument '%s' must be assumed shape" " or assumed size array"_err_en_US, symbol.name()); } } } } void CheckHelper::CheckObjectEntity( const Symbol &symbol, const ObjectEntityDetails &details) { CheckArraySpec(symbol, details.shape()); Check(details.shape()); Check(details.coshape()); CheckAssumedTypeEntity(symbol, details); if (!details.coshape().empty()) { if (IsAllocatable(symbol)) { if (!details.coshape().IsDeferredShape()) { // C827 messages_.Say( "ALLOCATABLE coarray must have a deferred coshape"_err_en_US); } } else { if (!details.coshape().IsAssumedSize()) { // C828 messages_.Say( "Non-ALLOCATABLE coarray must have an explicit coshape"_err_en_US); } } } if (details.isDummy()) { if (symbol.attrs().test(Attr::INTENT_OUT)) { if (FindUltimateComponent(symbol, [](const Symbol &x) { return IsCoarray(x) && IsAllocatable(x); })) { // C846 messages_.Say( "An INTENT(OUT) dummy argument may not be, or contain, an ALLOCATABLE coarray"_err_en_US); } if (IsOrContainsEventOrLockComponent(symbol)) { // C847 messages_.Say( "An INTENT(OUT) dummy argument may not be, or contain, EVENT_TYPE or LOCK_TYPE"_err_en_US); } } if (InPure() && !IsPointer(symbol) && !IsIntentIn(symbol) && !symbol.attrs().test(Attr::VALUE)) { if (InFunction()) { // C1583 messages_.Say( "non-POINTER dummy argument of pure function must be INTENT(IN) or VALUE"_err_en_US); } else if (IsIntentOut(symbol)) { if (const DeclTypeSpec * type{details.type()}) { if (type && type->IsPolymorphic()) { // C1588 messages_.Say( "An INTENT(OUT) dummy argument of a pure subroutine may not be polymorphic"_err_en_US); } else if (const DerivedTypeSpec * derived{type->AsDerived()}) { if (FindUltimateComponent(*derived, [](const Symbol &x) { const DeclTypeSpec *type{x.GetType()}; return type && type->IsPolymorphic(); })) { // C1588 messages_.Say( "An INTENT(OUT) dummy argument of a pure subroutine may not have a polymorphic ultimate component"_err_en_US); } if (HasImpureFinal(*derived)) { // C1587 messages_.Say( "An INTENT(OUT) dummy argument of a pure subroutine may not have an impure FINAL subroutine"_err_en_US); } } } } else if (!IsIntentInOut(symbol)) { // C1586 messages_.Say( "non-POINTER dummy argument of pure subroutine must have INTENT() or VALUE attribute"_err_en_US); } } } if (symbol.owner().kind() != Scope::Kind::DerivedType && IsInitialized(symbol)) { if (details.commonBlock()) { if (details.commonBlock()->name().empty()) { messages_.Say( "A variable in blank COMMON should not be initialized"_en_US); } } else if (symbol.owner().kind() == Scope::Kind::BlockData) { if (IsAllocatable(symbol)) { messages_.Say( "An ALLOCATABLE variable may not appear in a BLOCK DATA subprogram"_err_en_US); } else { messages_.Say( "An initialized variable in BLOCK DATA must be in a COMMON block"_err_en_US); } } } if (const DeclTypeSpec * type{details.type()}) { // C708 if (type->IsPolymorphic() && !(type->IsAssumedType() || IsAllocatableOrPointer(symbol) || symbol.IsDummy())) { messages_.Say("CLASS entity '%s' must be a dummy argument or have " "ALLOCATABLE or POINTER attribute"_err_en_US, symbol.name()); } } } // The six different kinds of array-specs: // array-spec -> explicit-shape-list | deferred-shape-list // | assumed-shape-list | implied-shape-list // | assumed-size | assumed-rank // explicit-shape -> [ lb : ] ub // deferred-shape -> : // assumed-shape -> [ lb ] : // implied-shape -> [ lb : ] * // assumed-size -> [ explicit-shape-list , ] [ lb : ] * // assumed-rank -> .. // Note: // - deferred-shape is also an assumed-shape // - A single "*" or "lb:*" might be assumed-size or implied-shape-list void CheckHelper::CheckArraySpec( const Symbol &symbol, const ArraySpec &arraySpec) { if (arraySpec.Rank() == 0) { return; } bool isExplicit{arraySpec.IsExplicitShape()}; bool isDeferred{arraySpec.IsDeferredShape()}; bool isImplied{arraySpec.IsImpliedShape()}; bool isAssumedShape{arraySpec.IsAssumedShape()}; bool isAssumedSize{arraySpec.IsAssumedSize()}; bool isAssumedRank{arraySpec.IsAssumedRank()}; std::optional msg; if (symbol.test(Symbol::Flag::CrayPointee) && !isExplicit && !isAssumedSize) { msg = "Cray pointee '%s' must have must have explicit shape or" " assumed size"_err_en_US; } else if (IsAllocatableOrPointer(symbol) && !isDeferred && !isAssumedRank) { if (symbol.owner().IsDerivedType()) { // C745 if (IsAllocatable(symbol)) { msg = "Allocatable array component '%s' must have" " deferred shape"_err_en_US; } else { msg = "Array pointer component '%s' must have deferred shape"_err_en_US; } } else { if (IsAllocatable(symbol)) { // C832 msg = "Allocatable array '%s' must have deferred shape or" " assumed rank"_err_en_US; } else { msg = "Array pointer '%s' must have deferred shape or" " assumed rank"_err_en_US; } } } else if (symbol.IsDummy()) { if (isImplied && !isAssumedSize) { // C836 msg = "Dummy array argument '%s' may not have implied shape"_err_en_US; } } else if (isAssumedShape && !isDeferred) { msg = "Assumed-shape array '%s' must be a dummy argument"_err_en_US; } else if (isAssumedSize && !isImplied) { // C833 msg = "Assumed-size array '%s' must be a dummy argument"_err_en_US; } else if (isAssumedRank) { // C837 msg = "Assumed-rank array '%s' must be a dummy argument"_err_en_US; } else if (isImplied) { if (!IsNamedConstant(symbol)) { // C836 msg = "Implied-shape array '%s' must be a named constant"_err_en_US; } } else if (IsNamedConstant(symbol)) { if (!isExplicit && !isImplied) { msg = "Named constant '%s' array must have explicit or" " implied shape"_err_en_US; } } else if (!IsAllocatableOrPointer(symbol) && !isExplicit) { if (symbol.owner().IsDerivedType()) { // C749 msg = "Component array '%s' without ALLOCATABLE or POINTER attribute must" " have explicit shape"_err_en_US; } else { // C816 msg = "Array '%s' without ALLOCATABLE or POINTER attribute must have" " explicit shape"_err_en_US; } } if (msg) { context_.Say(std::move(*msg), symbol.name()); } } void CheckHelper::CheckProcEntity( const Symbol &symbol, const ProcEntityDetails &details) { if (details.isDummy()) { const Symbol *interface{details.interface().symbol()}; if (!symbol.attrs().test(Attr::INTRINSIC) && (symbol.attrs().test(Attr::ELEMENTAL) || (interface && !interface->attrs().test(Attr::INTRINSIC) && interface->attrs().test(Attr::ELEMENTAL)))) { // There's no explicit constraint or "shall" that we can find in the // standard for this check, but it seems to be implied in multiple // sites, and ELEMENTAL non-intrinsic actual arguments *are* // explicitly forbidden. But we allow "PROCEDURE(SIN)::dummy" // because it is explicitly legal to *pass* the specific intrinsic // function SIN as an actual argument. messages_.Say("A dummy procedure may not be ELEMENTAL"_err_en_US); } } else if (symbol.owner().IsDerivedType()) { CheckPassArg(symbol, details.interface().symbol(), details); } if (symbol.attrs().test(Attr::POINTER)) { if (const Symbol * interface{details.interface().symbol()}) { if (interface->attrs().test(Attr::ELEMENTAL) && !interface->attrs().test(Attr::INTRINSIC)) { messages_.Say("Procedure pointer '%s' may not be ELEMENTAL"_err_en_US, symbol.name()); // C1517 } } } } void CheckHelper::CheckDerivedType( const Symbol &symbol, const DerivedTypeDetails &details) { if (!symbol.scope()) { CHECK(details.isForwardReferenced()); return; } CHECK(symbol.scope()->symbol() == &symbol); CHECK(symbol.scope()->IsDerivedType()); if (symbol.attrs().test(Attr::ABSTRACT) && (symbol.attrs().test(Attr::BIND_C) || details.sequence())) { messages_.Say("An ABSTRACT derived type must be extensible"_err_en_US); } if (const DeclTypeSpec * parent{FindParentTypeSpec(symbol)}) { const DerivedTypeSpec *parentDerived{parent->AsDerived()}; if (!IsExtensibleType(parentDerived)) { // C705 messages_.Say("The parent type is not extensible"_err_en_US); } if (!symbol.attrs().test(Attr::ABSTRACT) && parentDerived && parentDerived->typeSymbol().attrs().test(Attr::ABSTRACT)) { ScopeComponentIterator components{*parentDerived}; for (const Symbol &component : components) { if (component.attrs().test(Attr::DEFERRED)) { if (symbol.scope()->FindComponent(component.name()) == &component) { SayWithDeclaration(component, "Non-ABSTRACT extension of ABSTRACT derived type '%s' lacks a binding for DEFERRED procedure '%s'"_err_en_US, parentDerived->typeSymbol().name(), component.name()); } } } } } } void CheckHelper::CheckGeneric( const Symbol &symbol, const GenericDetails &details) { const SymbolVector &specifics{details.specificProcs()}; const auto &bindingNames{details.bindingNames()}; std::optional> procs{Characterize(specifics)}; if (!procs) { return; } bool ok{true}; if (details.kind().IsIntrinsicOperator()) { for (std::size_t i{0}; i < specifics.size(); ++i) { auto restorer{messages_.SetLocation(bindingNames[i])}; ok &= CheckDefinedOperator( symbol.name(), details.kind(), specifics[i], (*procs)[i]); } } if (details.kind().IsAssignment()) { for (std::size_t i{0}; i < specifics.size(); ++i) { auto restorer{messages_.SetLocation(bindingNames[i])}; ok &= CheckDefinedAssignment(specifics[i], (*procs)[i]); } } if (ok) { CheckSpecificsAreDistinguishable(symbol, details, *procs); } } // Check that the specifics of this generic are distinguishable from each other void CheckHelper::CheckSpecificsAreDistinguishable(const Symbol &generic, const GenericDetails &details, const std::vector &procs) { const SymbolVector &specifics{details.specificProcs()}; std::size_t count{specifics.size()}; if (count < 2) { return; } GenericKind kind{details.kind()}; auto distinguishable{kind.IsAssignment() || kind.IsOperator() ? evaluate::characteristics::DistinguishableOpOrAssign : evaluate::characteristics::Distinguishable}; for (std::size_t i1{0}; i1 < count - 1; ++i1) { auto &proc1{procs[i1]}; for (std::size_t i2{i1 + 1}; i2 < count; ++i2) { auto &proc2{procs[i2]}; if (!distinguishable(proc1, proc2)) { SayNotDistinguishable( generic.name(), kind, specifics[i1], specifics[i2]); } } } } void CheckHelper::SayNotDistinguishable(const SourceName &name, GenericKind kind, const Symbol &proc1, const Symbol &proc2) { auto &&text{kind.IsDefinedOperator() ? "Generic operator '%s' may not have specific procedures '%s'" " and '%s' as their interfaces are not distinguishable"_err_en_US : "Generic '%s' may not have specific procedures '%s'" " and '%s' as their interfaces are not distinguishable"_err_en_US}; auto &msg{ context_.Say(name, std::move(text), name, proc1.name(), proc2.name())}; evaluate::AttachDeclaration(msg, proc1); evaluate::AttachDeclaration(msg, proc2); } static bool ConflictsWithIntrinsicAssignment(const Procedure &proc) { auto lhs{std::get(proc.dummyArguments[0].u).type}; auto rhs{std::get(proc.dummyArguments[1].u).type}; return Tristate::No == IsDefinedAssignment(lhs.type(), lhs.Rank(), rhs.type(), rhs.Rank()); } static bool ConflictsWithIntrinsicOperator( const GenericKind &kind, const Procedure &proc) { auto arg0{std::get(proc.dummyArguments[0].u).type}; auto type0{arg0.type()}; if (proc.dummyArguments.size() == 1) { // unary return std::visit( common::visitors{ [&](common::NumericOperator) { return IsIntrinsicNumeric(type0); }, [&](common::LogicalOperator) { return IsIntrinsicLogical(type0); }, [](const auto &) -> bool { DIE("bad generic kind"); }, }, kind.u); } else { // binary int rank0{arg0.Rank()}; auto arg1{std::get(proc.dummyArguments[1].u).type}; auto type1{arg1.type()}; int rank1{arg1.Rank()}; return std::visit( common::visitors{ [&](common::NumericOperator) { return IsIntrinsicNumeric(type0, rank0, type1, rank1); }, [&](common::LogicalOperator) { return IsIntrinsicLogical(type0, rank0, type1, rank1); }, [&](common::RelationalOperator opr) { return IsIntrinsicRelational(opr, type0, rank0, type1, rank1); }, [&](GenericKind::OtherKind x) { CHECK(x == GenericKind::OtherKind::Concat); return IsIntrinsicConcat(type0, rank0, type1, rank1); }, [](const auto &) -> bool { DIE("bad generic kind"); }, }, kind.u); } } // Check if this procedure can be used for defined operators (see 15.4.3.4.2). bool CheckHelper::CheckDefinedOperator(const SourceName &opName, const GenericKind &kind, const Symbol &specific, const Procedure &proc) { std::optional msg; if (specific.attrs().test(Attr::NOPASS)) { // C774 msg = "%s procedure '%s' may not have NOPASS attribute"_err_en_US; } else if (!proc.functionResult.has_value()) { msg = "%s procedure '%s' must be a function"_err_en_US; } else if (proc.functionResult->IsAssumedLengthCharacter()) { msg = "%s function '%s' may not have assumed-length CHARACTER(*)" " result"_err_en_US; } else if (auto m{CheckNumberOfArgs(kind, proc.dummyArguments.size())}) { msg = std::move(m); } else if (!CheckDefinedOperatorArg(opName, specific, proc, 0) | !CheckDefinedOperatorArg(opName, specific, proc, 1)) { return false; // error was reported } else if (ConflictsWithIntrinsicOperator(kind, proc)) { msg = "%s function '%s' conflicts with intrinsic operator"_err_en_US; } else { return true; // OK } SayWithDeclaration(specific, std::move(msg.value()), parser::ToUpperCaseLetters(opName.ToString()), specific.name()); return false; } // If the number of arguments is wrong for this intrinsic operator, return // false and return the error message in msg. std::optional CheckHelper::CheckNumberOfArgs( const GenericKind &kind, std::size_t nargs) { std::size_t min{2}, max{2}; // allowed number of args; default is binary std::visit( common::visitors{ [&](const common::NumericOperator &x) { if (x == common::NumericOperator::Add || x == common::NumericOperator::Subtract) { min = 1; // + and - are unary or binary } }, [&](const common::LogicalOperator &x) { if (x == common::LogicalOperator::Not) { min = 1; // .NOT. is unary max = 1; } }, [](const common::RelationalOperator &) { // all are binary }, [](const GenericKind::OtherKind &x) { CHECK(x == GenericKind::OtherKind::Concat); }, [](const auto &) { DIE("expected intrinsic operator"); }, }, kind.u); if (nargs >= min && nargs <= max) { return std::nullopt; } else if (max == 1) { return "%s function '%s' must have one dummy argument"_err_en_US; } else if (min == 2) { return "%s function '%s' must have two dummy arguments"_err_en_US; } else { return "%s function '%s' must have one or two dummy arguments"_err_en_US; } } bool CheckHelper::CheckDefinedOperatorArg(const SourceName &opName, const Symbol &symbol, const Procedure &proc, std::size_t pos) { if (pos >= proc.dummyArguments.size()) { return true; } auto &arg{proc.dummyArguments.at(pos)}; std::optional msg; if (arg.IsOptional()) { msg = "In %s function '%s', dummy argument '%s' may not be" " OPTIONAL"_err_en_US; } else if (const auto *dataObject{std::get_if(&arg.u)}; dataObject == nullptr) { msg = "In %s function '%s', dummy argument '%s' must be a" " data object"_err_en_US; } else if (dataObject->intent != common::Intent::In && !dataObject->attrs.test(DummyDataObject::Attr::Value)) { msg = "In %s function '%s', dummy argument '%s' must have INTENT(IN)" " or VALUE attribute"_err_en_US; } if (msg) { SayWithDeclaration(symbol, std::move(*msg), parser::ToUpperCaseLetters(opName.ToString()), symbol.name(), arg.name); return false; } return true; } // Check if this procedure can be used for defined assignment (see 15.4.3.4.3). bool CheckHelper::CheckDefinedAssignment( const Symbol &specific, const Procedure &proc) { std::optional msg; if (specific.attrs().test(Attr::NOPASS)) { // C774 msg = "Defined assignment procedure '%s' may not have" " NOPASS attribute"_err_en_US; } else if (!proc.IsSubroutine()) { msg = "Defined assignment procedure '%s' must be a subroutine"_err_en_US; } else if (proc.dummyArguments.size() != 2) { msg = "Defined assignment subroutine '%s' must have" " two dummy arguments"_err_en_US; } else if (!CheckDefinedAssignmentArg(specific, proc.dummyArguments[0], 0) | !CheckDefinedAssignmentArg(specific, proc.dummyArguments[1], 1)) { return false; // error was reported } else if (ConflictsWithIntrinsicAssignment(proc)) { msg = "Defined assignment subroutine '%s' conflicts with" " intrinsic assignment"_err_en_US; } else { return true; // OK } SayWithDeclaration(specific, std::move(msg.value()), specific.name()); return false; } bool CheckHelper::CheckDefinedAssignmentArg( const Symbol &symbol, const DummyArgument &arg, int pos) { std::optional msg; if (arg.IsOptional()) { msg = "In defined assignment subroutine '%s', dummy argument '%s'" " may not be OPTIONAL"_err_en_US; } else if (const auto *dataObject{std::get_if(&arg.u)}) { if (pos == 0) { if (dataObject->intent != common::Intent::Out && dataObject->intent != common::Intent::InOut) { msg = "In defined assignment subroutine '%s', first dummy argument '%s'" " must have INTENT(OUT) or INTENT(INOUT)"_err_en_US; } } else if (pos == 1) { if (dataObject->intent != common::Intent::In && !dataObject->attrs.test(DummyDataObject::Attr::Value)) { msg = "In defined assignment subroutine '%s', second dummy" " argument '%s' must have INTENT(IN) or VALUE attribute"_err_en_US; } } else { DIE("pos must be 0 or 1"); } } else { msg = "In defined assignment subroutine '%s', dummy argument '%s'" " must be a data object"_err_en_US; } if (msg) { SayWithDeclaration(symbol, std::move(*msg), symbol.name(), arg.name); return false; } return true; } // Report a conflicting attribute error if symbol has both of these attributes bool CheckHelper::CheckConflicting(const Symbol &symbol, Attr a1, Attr a2) { if (symbol.attrs().test(a1) && symbol.attrs().test(a2)) { messages_.Say("'%s' may not have both the %s and %s attributes"_err_en_US, symbol.name(), EnumToString(a1), EnumToString(a2)); return true; } else { return false; } } std::optional> CheckHelper::Characterize( const SymbolVector &specifics) { std::vector result; for (const Symbol &specific : specifics) { auto proc{Procedure::Characterize(specific, context_.intrinsics())}; if (!proc || context_.HasError(specific)) { return std::nullopt; } result.emplace_back(*proc); } return result; } void CheckHelper::CheckVolatile(const Symbol &symbol, bool isAssociated, const DerivedTypeSpec *derived) { // C866 - C868 if (IsIntentIn(symbol)) { messages_.Say( "VOLATILE attribute may not apply to an INTENT(IN) argument"_err_en_US); } if (IsProcedure(symbol)) { messages_.Say("VOLATILE attribute may apply only to a variable"_err_en_US); } if (isAssociated) { const Symbol &ultimate{symbol.GetUltimate()}; if (IsCoarray(ultimate)) { messages_.Say( "VOLATILE attribute may not apply to a coarray accessed by USE or host association"_err_en_US); } if (derived) { if (FindCoarrayUltimateComponent(*derived)) { messages_.Say( "VOLATILE attribute may not apply to a type with a coarray ultimate component accessed by USE or host association"_err_en_US); } } } } void CheckHelper::CheckPointer(const Symbol &symbol) { // C852 CheckConflicting(symbol, Attr::POINTER, Attr::TARGET); CheckConflicting(symbol, Attr::POINTER, Attr::ALLOCATABLE); CheckConflicting(symbol, Attr::POINTER, Attr::INTRINSIC); if (symbol.Corank() > 0) { messages_.Say( "'%s' may not have the POINTER attribute because it is a coarray"_err_en_US, symbol.name()); } } // C760 constraints on the passed-object dummy argument void CheckHelper::CheckPassArg( const Symbol &proc, const Symbol *interface, const WithPassArg &details) { if (proc.attrs().test(Attr::NOPASS)) { return; } const auto &name{proc.name()}; if (!interface) { messages_.Say(name, "Procedure component '%s' must have NOPASS attribute or explicit interface"_err_en_US, name); return; } const auto *subprogram{interface->detailsIf()}; if (!subprogram) { messages_.Say(name, "Procedure component '%s' has invalid interface '%s'"_err_en_US, name, interface->name()); return; } std::optional passName{details.passName()}; const auto &dummyArgs{subprogram->dummyArgs()}; if (!passName) { if (dummyArgs.empty()) { messages_.Say(name, proc.has() ? "Procedure component '%s' with no dummy arguments" " must have NOPASS attribute"_err_en_US : "Procedure binding '%s' with no dummy arguments" " must have NOPASS attribute"_err_en_US, name); return; } passName = dummyArgs[0]->name(); } std::optional passArgIndex{}; for (std::size_t i{0}; i < dummyArgs.size(); ++i) { if (dummyArgs[i] && dummyArgs[i]->name() == *passName) { passArgIndex = i; break; } } if (!passArgIndex) { messages_.Say(*passName, "'%s' is not a dummy argument of procedure interface '%s'"_err_en_US, *passName, interface->name()); return; } const Symbol &passArg{*dummyArgs[*passArgIndex]}; std::optional msg; if (!passArg.has()) { msg = "Passed-object dummy argument '%s' of procedure '%s'" " must be a data object"_err_en_US; } else if (passArg.attrs().test(Attr::POINTER)) { msg = "Passed-object dummy argument '%s' of procedure '%s'" " may not have the POINTER attribute"_err_en_US; } else if (passArg.attrs().test(Attr::ALLOCATABLE)) { msg = "Passed-object dummy argument '%s' of procedure '%s'" " may not have the ALLOCATABLE attribute"_err_en_US; } else if (passArg.attrs().test(Attr::VALUE)) { msg = "Passed-object dummy argument '%s' of procedure '%s'" " may not have the VALUE attribute"_err_en_US; } else if (passArg.Rank() > 0) { msg = "Passed-object dummy argument '%s' of procedure '%s'" " must be scalar"_err_en_US; } if (msg) { messages_.Say(name, std::move(*msg), passName.value(), name); return; } const DeclTypeSpec *type{passArg.GetType()}; if (!type) { return; // an error already occurred } const Symbol &typeSymbol{*proc.owner().GetSymbol()}; const DerivedTypeSpec *derived{type->AsDerived()}; if (!derived || derived->typeSymbol() != typeSymbol) { messages_.Say(name, "Passed-object dummy argument '%s' of procedure '%s'" " must be of type '%s' but is '%s'"_err_en_US, passName.value(), name, typeSymbol.name(), type->AsFortran()); return; } if (IsExtensibleType(derived) != type->IsPolymorphic()) { messages_.Say(name, type->IsPolymorphic() ? "Passed-object dummy argument '%s' of procedure '%s'" " may not be polymorphic because '%s' is not extensible"_err_en_US : "Passed-object dummy argument '%s' of procedure '%s'" " must be polymorphic because '%s' is extensible"_err_en_US, passName.value(), name, typeSymbol.name()); return; } for (const auto &[paramName, paramValue] : derived->parameters()) { if (paramValue.isLen() && !paramValue.isAssumed()) { messages_.Say(name, "Passed-object dummy argument '%s' of procedure '%s'" " has non-assumed length parameter '%s'"_err_en_US, passName.value(), name, paramName); } } } void CheckHelper::CheckProcBinding( const Symbol &symbol, const ProcBindingDetails &binding) { const Scope &dtScope{symbol.owner()}; CHECK(dtScope.kind() == Scope::Kind::DerivedType); if (const Symbol * dtSymbol{dtScope.symbol()}) { if (symbol.attrs().test(Attr::DEFERRED)) { if (!dtSymbol->attrs().test(Attr::ABSTRACT)) { SayWithDeclaration(*dtSymbol, "Procedure bound to non-ABSTRACT derived type '%s' may not be DEFERRED"_err_en_US, dtSymbol->name()); } if (symbol.attrs().test(Attr::NON_OVERRIDABLE)) { messages_.Say( "Type-bound procedure '%s' may not be both DEFERRED and NON_OVERRIDABLE"_err_en_US, symbol.name()); } } } if (const Symbol * overridden{FindOverriddenBinding(symbol)}) { if (overridden->attrs().test(Attr::NON_OVERRIDABLE)) { SayWithDeclaration(*overridden, "Override of NON_OVERRIDABLE '%s' is not permitted"_err_en_US, symbol.name()); } if (const auto *overriddenBinding{ overridden->detailsIf()}) { if (!IsPureProcedure(symbol) && IsPureProcedure(*overridden)) { SayWithDeclaration(*overridden, "An overridden pure type-bound procedure binding must also be pure"_err_en_US); return; } if (!binding.symbol().attrs().test(Attr::ELEMENTAL) && overriddenBinding->symbol().attrs().test(Attr::ELEMENTAL)) { SayWithDeclaration(*overridden, "A type-bound procedure and its override must both, or neither, be ELEMENTAL"_err_en_US); return; } bool isNopass{symbol.attrs().test(Attr::NOPASS)}; if (isNopass != overridden->attrs().test(Attr::NOPASS)) { SayWithDeclaration(*overridden, isNopass ? "A NOPASS type-bound procedure may not override a passed-argument procedure"_err_en_US : "A passed-argument type-bound procedure may not override a NOPASS procedure"_err_en_US); } else { auto bindingChars{evaluate::characteristics::Procedure::Characterize( binding.symbol(), context_.intrinsics())}; auto overriddenChars{evaluate::characteristics::Procedure::Characterize( overriddenBinding->symbol(), context_.intrinsics())}; if (bindingChars && overriddenChars) { if (isNopass) { if (!bindingChars->CanOverride(*overriddenChars, std::nullopt)) { SayWithDeclaration(*overridden, "A type-bound procedure and its override must have compatible interfaces"_err_en_US); } } else { int passIndex{bindingChars->FindPassIndex(binding.passName())}; int overriddenPassIndex{ overriddenChars->FindPassIndex(overriddenBinding->passName())}; if (passIndex != overriddenPassIndex) { SayWithDeclaration(*overridden, "A type-bound procedure and its override must use the same PASS argument"_err_en_US); } else if (!bindingChars->CanOverride( *overriddenChars, passIndex)) { SayWithDeclaration(*overridden, "A type-bound procedure and its override must have compatible interfaces apart from their passed argument"_err_en_US); } } } } if (symbol.attrs().test(Attr::PRIVATE) && overridden->attrs().test(Attr::PUBLIC)) { SayWithDeclaration(*overridden, "A PRIVATE procedure may not override a PUBLIC procedure"_err_en_US); } } else { SayWithDeclaration(*overridden, "A type-bound procedure binding may not have the same name as a parent component"_err_en_US); } } CheckPassArg(symbol, &binding.symbol(), binding); } void CheckHelper::Check(const Scope &scope) { scope_ = &scope; common::Restorer restorer{innermostSymbol_}; if (const Symbol * symbol{scope.symbol()}) { innermostSymbol_ = symbol; } else if (scope.IsDerivedType()) { return; // PDT instantiations have null symbol() } for (const auto &set : scope.equivalenceSets()) { CheckEquivalenceSet(set); } for (const auto &pair : scope) { Check(*pair.second); } for (const Scope &child : scope.children()) { Check(child); } if (scope.kind() == Scope::Kind::BlockData) { CheckBlockData(scope); } } void CheckHelper::CheckEquivalenceSet(const EquivalenceSet &set) { auto iter{ std::find_if(set.begin(), set.end(), [](const EquivalenceObject &object) { return FindCommonBlockContaining(object.symbol) != nullptr; })}; if (iter != set.end()) { const Symbol &commonBlock{DEREF(FindCommonBlockContaining(iter->symbol))}; for (auto &object : set) { if (&object != &*iter) { if (auto *details{object.symbol.detailsIf()}) { if (details->commonBlock()) { if (details->commonBlock() != &commonBlock) { // 8.10.3 paragraph 1 if (auto *msg{messages_.Say(object.symbol.name(), "Two objects in the same EQUIVALENCE set may not be members of distinct COMMON blocks"_err_en_US)}) { msg->Attach(iter->symbol.name(), "Other object in EQUIVALENCE set"_en_US) .Attach(details->commonBlock()->name(), "COMMON block containing '%s'"_en_US, object.symbol.name()) .Attach(commonBlock.name(), "COMMON block containing '%s'"_en_US, iter->symbol.name()); } } } else { // Mark all symbols in the equivalence set with the same COMMON // block to prevent spurious error messages about initialization // in BLOCK DATA outside COMMON details->set_commonBlock(commonBlock); } } } } } // TODO: Move C8106 (&al.) checks here from resolve-names-utils.cpp } void CheckHelper::CheckBlockData(const Scope &scope) { // BLOCK DATA subprograms should contain only named common blocks. // C1415 presents a list of statements that shouldn't appear in // BLOCK DATA, but so long as the subprogram contains no executable // code and allocates no storage outside named COMMON, we're happy // (e.g., an ENUM is strictly not allowed). for (const auto &pair : scope) { const Symbol &symbol{*pair.second}; if (!(symbol.has() || symbol.has() || symbol.has() || symbol.has() || symbol.has() || symbol.has() || (symbol.has() && !symbol.attrs().test(Attr::POINTER)))) { messages_.Say(symbol.name(), "'%s' may not appear in a BLOCK DATA subprogram"_err_en_US, symbol.name()); } } } void CheckDeclarations(SemanticsContext &context) { CheckHelper{context}.Check(); } }