//===-- PolymorphicOpConversion.cpp ---------------------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #include "flang/Optimizer/Dialect/FIRDialect.h" #include "flang/Optimizer/Dialect/FIROps.h" #include "flang/Optimizer/Dialect/FIROpsSupport.h" #include "flang/Optimizer/Dialect/Support/FIRContext.h" #include "flang/Optimizer/Dialect/Support/KindMapping.h" #include "flang/Optimizer/Support/InternalNames.h" #include "flang/Optimizer/Support/TypeCode.h" #include "flang/Optimizer/Transforms/Passes.h" #include "flang/Runtime/derived-api.h" #include "mlir/Dialect/Affine/IR/AffineOps.h" #include "mlir/Dialect/ControlFlow/IR/ControlFlowOps.h" #include "mlir/Dialect/Func/IR/FuncOps.h" #include "mlir/Pass/Pass.h" #include "mlir/Transforms/DialectConversion.h" #include "llvm/ADT/SmallSet.h" #include "llvm/Support/CommandLine.h" #include namespace fir { #define GEN_PASS_DEF_POLYMORPHICOPCONVERSION #include "flang/Optimizer/Transforms/Passes.h.inc" } // namespace fir using namespace fir; using namespace mlir; namespace { /// SelectTypeOp converted to an if-then-else chain /// /// This lowers the test conditions to calls into the runtime. class SelectTypeConv : public OpConversionPattern { public: using OpConversionPattern::OpConversionPattern; SelectTypeConv(mlir::MLIRContext *ctx, std::mutex *moduleMutex) : mlir::OpConversionPattern(ctx), moduleMutex(moduleMutex) {} mlir::LogicalResult matchAndRewrite(fir::SelectTypeOp selectType, OpAdaptor adaptor, mlir::ConversionPatternRewriter &rewriter) const override; private: // Generate comparison of type descriptor addresses. mlir::Value genTypeDescCompare(mlir::Location loc, mlir::Value selector, mlir::Type ty, mlir::ModuleOp mod, mlir::PatternRewriter &rewriter) const; static int getTypeCode(mlir::Type ty, fir::KindMapping &kindMap); mlir::LogicalResult genTypeLadderStep(mlir::Location loc, mlir::Value selector, mlir::Attribute attr, mlir::Block *dest, std::optional destOps, mlir::ModuleOp mod, mlir::PatternRewriter &rewriter, fir::KindMapping &kindMap) const; llvm::SmallSet collectAncestors(fir::DispatchTableOp dt, mlir::ModuleOp mod) const; // Mutex used to guard insertion of mlir::func::FuncOp in the module. std::mutex *moduleMutex; }; /// Convert FIR structured control flow ops to CFG ops. class PolymorphicOpConversion : public fir::impl::PolymorphicOpConversionBase { public: mlir::LogicalResult initialize(mlir::MLIRContext *ctx) override { moduleMutex = new std::mutex(); return mlir::success(); } void runOnOperation() override { auto *context = &getContext(); mlir::RewritePatternSet patterns(context); patterns.insert(context, moduleMutex); mlir::ConversionTarget target(*context); target.addLegalDialect(); // apply the patterns target.addIllegalOp(); target.markUnknownOpDynamicallyLegal([](Operation *) { return true; }); if (mlir::failed(mlir::applyPartialConversion(getOperation(), target, std::move(patterns)))) { mlir::emitError(mlir::UnknownLoc::get(context), "error in converting to CFG\n"); signalPassFailure(); } } private: std::mutex *moduleMutex; }; } // namespace mlir::LogicalResult SelectTypeConv::matchAndRewrite( fir::SelectTypeOp selectType, OpAdaptor adaptor, mlir::ConversionPatternRewriter &rewriter) const { auto operands = adaptor.getOperands(); auto typeGuards = selectType.getCases(); unsigned typeGuardNum = typeGuards.size(); auto selector = selectType.getSelector(); auto loc = selectType.getLoc(); auto mod = selectType.getOperation()->getParentOfType(); fir::KindMapping kindMap = fir::getKindMapping(mod); // Order type guards so the condition and branches are done to respect the // Execution of SELECT TYPE construct as described in the Fortran 2018 // standard 11.1.11.2 point 4. // 1. If a TYPE IS type guard statement matches the selector, the block // following that statement is executed. // 2. Otherwise, if exactly one CLASS IS type guard statement matches the // selector, the block following that statement is executed. // 3. Otherwise, if several CLASS IS type guard statements match the // selector, one of these statements will inevitably specify a type that // is an extension of all the types specified in the others; the block // following that statement is executed. // 4. Otherwise, if there is a CLASS DEFAULT type guard statement, the block // following that statement is executed. // 5. Otherwise, no block is executed. llvm::SmallVector orderedTypeGuards; llvm::SmallVector orderedClassIsGuards; unsigned defaultGuard = typeGuardNum - 1; // The following loop go through the type guards in the fir.select_type // operation and sort them into two lists. // - All the TYPE IS type guard are added in order to the orderedTypeGuards // list. This list is used at the end to generate the if-then-else ladder. // - CLASS IS type guard are added in a separate list. If a CLASS IS type // guard type extends a type already present, the type guard is inserted // before in the list to respect point 3. above. Otherwise it is just // added in order at the end. for (unsigned t = 0; t < typeGuardNum; ++t) { if (auto a = typeGuards[t].dyn_cast()) { orderedTypeGuards.push_back(t); continue; } if (auto a = typeGuards[t].dyn_cast()) { if (auto recTy = a.getType().dyn_cast()) { auto dt = mod.lookupSymbol(recTy.getName()); assert(dt && "dispatch table not found"); llvm::SmallSet ancestors = collectAncestors(dt, mod); if (!ancestors.empty()) { auto it = orderedClassIsGuards.begin(); while (it != orderedClassIsGuards.end()) { fir::SubclassAttr sAttr = typeGuards[*it].dyn_cast(); if (auto ty = sAttr.getType().dyn_cast()) { if (ancestors.contains(ty.getName())) break; } ++it; } if (it != orderedClassIsGuards.end()) { // Parent type is present so place it before. orderedClassIsGuards.insert(it, t); continue; } } } orderedClassIsGuards.push_back(t); } } orderedTypeGuards.append(orderedClassIsGuards); orderedTypeGuards.push_back(defaultGuard); assert(orderedTypeGuards.size() == typeGuardNum && "ordered type guard size doesn't match number of type guards"); for (unsigned idx : orderedTypeGuards) { auto *dest = selectType.getSuccessor(idx); std::optional destOps = selectType.getSuccessorOperands(operands, idx); if (typeGuards[idx].dyn_cast()) rewriter.replaceOpWithNewOp(selectType, dest); else if (mlir::failed(genTypeLadderStep(loc, selector, typeGuards[idx], dest, destOps, mod, rewriter, kindMap))) return mlir::failure(); } return mlir::success(); } mlir::LogicalResult SelectTypeConv::genTypeLadderStep( mlir::Location loc, mlir::Value selector, mlir::Attribute attr, mlir::Block *dest, std::optional destOps, mlir::ModuleOp mod, mlir::PatternRewriter &rewriter, fir::KindMapping &kindMap) const { mlir::Value cmp; // TYPE IS type guard comparison are all done inlined. if (auto a = attr.dyn_cast()) { if (fir::isa_trivial(a.getType()) || a.getType().isa()) { // For type guard statement with Intrinsic type spec the type code of // the descriptor is compared. int code = getTypeCode(a.getType(), kindMap); if (code == 0) return mlir::emitError(loc) << "type code unavailable for " << a.getType(); mlir::Value typeCode = rewriter.create( loc, rewriter.getI8IntegerAttr(code)); mlir::Value selectorTypeCode = rewriter.create( loc, rewriter.getI8Type(), selector); cmp = rewriter.create( loc, mlir::arith::CmpIPredicate::eq, selectorTypeCode, typeCode); } else { // Flang inline the kind parameter in the type descriptor so we can // directly check if the type descriptor addresses are identical for // the TYPE IS type guard statement. mlir::Value res = genTypeDescCompare(loc, selector, a.getType(), mod, rewriter); if (!res) return mlir::failure(); cmp = res; } // CLASS IS type guard statement is done with a runtime call. } else if (auto a = attr.dyn_cast()) { // Retrieve the type descriptor from the type guard statement record type. assert(a.getType().isa() && "expect fir.record type"); fir::RecordType recTy = a.getType().dyn_cast(); std::string typeDescName = fir::NameUniquer::getTypeDescriptorName(recTy.getName()); auto typeDescGlobal = mod.lookupSymbol(typeDescName); auto typeDescAddr = rewriter.create( loc, fir::ReferenceType::get(typeDescGlobal.getType()), typeDescGlobal.getSymbol()); mlir::Type typeDescTy = ReferenceType::get(rewriter.getNoneType()); mlir::Value typeDesc = rewriter.create(loc, typeDescTy, typeDescAddr); // Prepare the selector descriptor for the runtime call. mlir::Type descNoneTy = fir::BoxType::get(rewriter.getNoneType()); mlir::Value descSelector = rewriter.create(loc, descNoneTy, selector); // Generate runtime call. llvm::StringRef fctName = RTNAME_STRING(ClassIs); mlir::func::FuncOp callee; { // Since conversion is done in parallel for each fir.select_type // operation, the runtime function insertion must be threadsafe. std::lock_guard lock(*moduleMutex); callee = fir::createFuncOp(rewriter.getUnknownLoc(), mod, fctName, rewriter.getFunctionType({descNoneTy, typeDescTy}, rewriter.getI1Type())); } cmp = rewriter .create(loc, callee, mlir::ValueRange{descSelector, typeDesc}) .getResult(0); } auto *thisBlock = rewriter.getInsertionBlock(); auto *newBlock = rewriter.createBlock(dest->getParent(), mlir::Region::iterator(dest)); rewriter.setInsertionPointToEnd(thisBlock); if (destOps.has_value()) rewriter.create(loc, cmp, dest, destOps.value(), newBlock, std::nullopt); else rewriter.create(loc, cmp, dest, newBlock); rewriter.setInsertionPointToEnd(newBlock); return mlir::success(); } // Generate comparison of type descriptor addresses. mlir::Value SelectTypeConv::genTypeDescCompare(mlir::Location loc, mlir::Value selector, mlir::Type ty, mlir::ModuleOp mod, mlir::PatternRewriter &rewriter) const { assert(ty.isa() && "expect fir.record type"); fir::RecordType recTy = ty.dyn_cast(); std::string typeDescName = fir::NameUniquer::getTypeDescriptorName(recTy.getName()); auto typeDescGlobal = mod.lookupSymbol(typeDescName); if (!typeDescGlobal) return {}; auto typeDescAddr = rewriter.create( loc, fir::ReferenceType::get(typeDescGlobal.getType()), typeDescGlobal.getSymbol()); auto intPtrTy = rewriter.getIndexType(); mlir::Type tdescType = fir::TypeDescType::get(mlir::NoneType::get(rewriter.getContext())); mlir::Value selectorTdescAddr = rewriter.create(loc, tdescType, selector); auto typeDescInt = rewriter.create(loc, intPtrTy, typeDescAddr); auto selectorTdescInt = rewriter.create(loc, intPtrTy, selectorTdescAddr); return rewriter.create( loc, mlir::arith::CmpIPredicate::eq, typeDescInt, selectorTdescInt); } int SelectTypeConv::getTypeCode(mlir::Type ty, fir::KindMapping &kindMap) { if (auto intTy = ty.dyn_cast()) return fir::integerBitsToTypeCode(intTy.getWidth()); if (auto floatTy = ty.dyn_cast()) return fir::realBitsToTypeCode(floatTy.getWidth()); if (auto logicalTy = ty.dyn_cast()) return fir::logicalBitsToTypeCode( kindMap.getLogicalBitsize(logicalTy.getFKind())); if (fir::isa_complex(ty)) { if (auto cmplxTy = ty.dyn_cast()) return fir::complexBitsToTypeCode( cmplxTy.getElementType().cast().getWidth()); auto cmplxTy = ty.cast(); return fir::complexBitsToTypeCode( kindMap.getRealBitsize(cmplxTy.getFKind())); } if (auto charTy = ty.dyn_cast()) return fir::characterBitsToTypeCode( kindMap.getCharacterBitsize(charTy.getFKind())); return 0; } llvm::SmallSet SelectTypeConv::collectAncestors(fir::DispatchTableOp dt, mlir::ModuleOp mod) const { llvm::SmallSet ancestors; if (!dt.getParent().has_value()) return ancestors; while (dt.getParent().has_value()) { ancestors.insert(*dt.getParent()); dt = mod.lookupSymbol(*dt.getParent()); } return ancestors; } std::unique_ptr fir::createPolymorphicOpConversionPass() { return std::make_unique(); }