//===- OptimizedBufferization.cpp - special cases for bufferization -------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // In some special cases we can bufferize hlfir expressions in a more optimal // way so as to avoid creating temporaries. This pass handles these. It should // be run before the catch-all bufferization pass. // // This requires constant subexpression elimination to have already been run. //===----------------------------------------------------------------------===// #include "flang/Optimizer/Analysis/AliasAnalysis.h" #include "flang/Optimizer/Builder/FIRBuilder.h" #include "flang/Optimizer/Builder/HLFIRTools.h" #include "flang/Optimizer/Dialect/FIROps.h" #include "flang/Optimizer/Dialect/FIRType.h" #include "flang/Optimizer/HLFIR/HLFIRDialect.h" #include "flang/Optimizer/HLFIR/HLFIROps.h" #include "flang/Optimizer/HLFIR/Passes.h" #include "flang/Optimizer/OpenMP/Passes.h" #include "flang/Optimizer/Transforms/Utils.h" #include "mlir/Dialect/Func/IR/FuncOps.h" #include "mlir/IR/Dominance.h" #include "mlir/IR/PatternMatch.h" #include "mlir/Interfaces/SideEffectInterfaces.h" #include "mlir/Pass/Pass.h" #include "mlir/Support/LLVM.h" #include "mlir/Transforms/GreedyPatternRewriteDriver.h" #include "llvm/ADT/TypeSwitch.h" #include #include #include #include namespace hlfir { #define GEN_PASS_DEF_OPTIMIZEDBUFFERIZATION #include "flang/Optimizer/HLFIR/Passes.h.inc" } // namespace hlfir #define DEBUG_TYPE "opt-bufferization" namespace { /// This transformation should match in place modification of arrays. /// It should match code of the form /// %array = some.operation // array has shape %shape /// %expr = hlfir.elemental %shape : [...] { /// bb0(%arg0: index) /// %0 = hlfir.designate %array(%arg0) /// [...] // no other reads or writes to %array /// hlfir.yield_element %element /// } /// hlfir.assign %expr to %array /// hlfir.destroy %expr /// /// Or /// /// %read_array = some.operation // shape %shape /// %expr = hlfir.elemental %shape : [...] { /// bb0(%arg0: index) /// %0 = hlfir.designate %read_array(%arg0) /// [...] /// hlfir.yield_element %element /// } /// %write_array = some.operation // with shape %shape /// [...] // operations which don't effect write_array /// hlfir.assign %expr to %write_array /// hlfir.destroy %expr /// /// In these cases, it is safe to turn the elemental into a do loop and modify /// elements of %array in place without creating an extra temporary for the /// elemental. We must check that there are no reads from the array at indexes /// which might conflict with the assignment or any writes. For now we will keep /// that strict and say that all reads must be at the elemental index (it is /// probably safe to read from higher indices if lowering to an ordered loop). class ElementalAssignBufferization : public mlir::OpRewritePattern { private: struct MatchInfo { mlir::Value array; hlfir::AssignOp assign; hlfir::DestroyOp destroy; }; /// determines if the transformation can be applied to this elemental static std::optional findMatch(hlfir::ElementalOp elemental); /// Returns the array indices for the given hlfir.designate. /// It recognizes the computations used to transform the one-based indices /// into the array's lb-based indices, and returns the one-based indices /// in these cases. static llvm::SmallVector getDesignatorIndices(hlfir::DesignateOp designate); public: using mlir::OpRewritePattern::OpRewritePattern; llvm::LogicalResult matchAndRewrite(hlfir::ElementalOp elemental, mlir::PatternRewriter &rewriter) const override; }; /// recursively collect all effects between start and end (including start, not /// including end) start must properly dominate end, start and end must be in /// the same block. If any operations with unknown effects are found, /// std::nullopt is returned static std::optional> getEffectsBetween(mlir::Operation *start, mlir::Operation *end) { mlir::SmallVector ret; if (start == end) return ret; assert(start->getBlock() && end->getBlock() && "TODO: block arguments"); assert(start->getBlock() == end->getBlock()); assert(mlir::DominanceInfo{}.properlyDominates(start, end)); mlir::Operation *nextOp = start; while (nextOp && nextOp != end) { std::optional> effects = mlir::getEffectsRecursively(nextOp); if (!effects) return std::nullopt; ret.append(*effects); nextOp = nextOp->getNextNode(); } return ret; } /// If effect is a read or write on val, return whether it aliases. /// Otherwise return mlir::AliasResult::NoAlias static mlir::AliasResult containsReadOrWriteEffectOn(const mlir::MemoryEffects::EffectInstance &effect, mlir::Value val) { fir::AliasAnalysis aliasAnalysis; if (mlir::isa( effect.getEffect())) { mlir::Value accessedVal = effect.getValue(); if (mlir::isa(effect.getResource())) return mlir::AliasResult::NoAlias; if (!accessedVal) return mlir::AliasResult::MayAlias; if (accessedVal == val) return mlir::AliasResult::MustAlias; // if the accessed value might alias val mlir::AliasResult res = aliasAnalysis.alias(val, accessedVal); if (!res.isNo()) return res; // FIXME: alias analysis of fir.load // follow this common pattern: // %ref = hlfir.designate %array(%index) // %val = fir.load $ref if (auto designate = accessedVal.getDefiningOp()) { if (designate.getMemref() == val) return mlir::AliasResult::MustAlias; // if the designate is into an array that might alias val res = aliasAnalysis.alias(val, designate.getMemref()); if (!res.isNo()) return res; } } return mlir::AliasResult::NoAlias; } // Helper class for analyzing two array slices represented // by two hlfir.designate operations. class ArraySectionAnalyzer { public: // The result of the analyzis is one of the values below. enum class SlicesOverlapKind { // Slices overlap is unknown. Unknown, // Slices are definitely identical. DefinitelyIdentical, // Slices are definitely disjoint. DefinitelyDisjoint, // Slices may be either disjoint or identical, // i.e. there is definitely no partial overlap. EitherIdenticalOrDisjoint }; // Analyzes two hlfir.designate results and returns the overlap kind. // The callers may use this method when the alias analysis reports // an alias of some kind, so that we can run Fortran specific analysis // on the array slices to see if they are identical or disjoint. // Note that the alias analysis are not able to give such an answer // about the references. static SlicesOverlapKind analyze(mlir::Value ref1, mlir::Value ref2); private: struct SectionDesc { // An array section is described by tuple. // If the designator's subscript is not a triple, then // the section descriptor is constructed as . mlir::Value lb, ub, stride; SectionDesc(mlir::Value lb, mlir::Value ub, mlir::Value stride) : lb(lb), ub(ub), stride(stride) { assert(lb && "lower bound or index must be specified"); normalize(); } // Normalize the section descriptor: // 1. If UB is nullptr, then it is set to LB. // 2. If LB==UB, then stride does not matter, // so it is reset to nullptr. // 3. If STRIDE==1, then it is reset to nullptr. void normalize() { if (!ub) ub = lb; if (lb == ub) stride = nullptr; if (stride) if (auto val = fir::getIntIfConstant(stride)) if (*val == 1) stride = nullptr; } bool operator==(const SectionDesc &other) const { return lb == other.lb && ub == other.ub && stride == other.stride; } }; // Given an operand_iterator over the indices operands, // read the subscript values and return them as SectionDesc // updating the iterator. If isTriplet is true, // the subscript is a triplet, and the result is . // Otherwise, the subscript is a scalar index, and the result // is . static SectionDesc readSectionDesc(mlir::Operation::operand_iterator &it, bool isTriplet) { if (isTriplet) return {*it++, *it++, *it++}; return {*it++, nullptr, nullptr}; } // Return the ordered lower and upper bounds of the section. // If stride is known to be non-negative, then the ordered // bounds match the of the descriptor. // If stride is known to be negative, then the ordered // bounds are of the descriptor. // If stride is unknown, we cannot deduce any order, // so the result is static std::pair getOrderedBounds(const SectionDesc &desc) { mlir::Value stride = desc.stride; // Null stride means stride=1. if (!stride) return {desc.lb, desc.ub}; // Reverse the bounds, if stride is negative. if (auto val = fir::getIntIfConstant(stride)) { if (*val >= 0) return {desc.lb, desc.ub}; else return {desc.ub, desc.lb}; } return {nullptr, nullptr}; } // Given two array sections and // , return true only if the sections // are known to be disjoint. // // For example, for any positive constant C: // X:Y does not overlap with (Y+C):Z // X:Y does not overlap with Z:(X-C) static bool areDisjointSections(const SectionDesc &desc1, const SectionDesc &desc2) { auto [lb1, ub1] = getOrderedBounds(desc1); auto [lb2, ub2] = getOrderedBounds(desc2); if (!lb1 || !lb2) return false; // Note that this comparison must be made on the ordered bounds, // otherwise 'a(x:y:1) = a(z:x-1:-1) + 1' may be incorrectly treated // as not overlapping (x=2, y=10, z=9). if (isLess(ub1, lb2) || isLess(ub2, lb1)) return true; return false; } // Given two array sections and // , return true only if the sections // are known to be identical. // // For example: // // // // These sections are identical, from the point of which array // elements are being addresses, even though the shape // of the array slices might be different. static bool areIdenticalSections(const SectionDesc &desc1, const SectionDesc &desc2) { if (desc1 == desc2) return true; return false; } // Return true, if v1 is known to be less than v2. static bool isLess(mlir::Value v1, mlir::Value v2); }; ArraySectionAnalyzer::SlicesOverlapKind ArraySectionAnalyzer::analyze(mlir::Value ref1, mlir::Value ref2) { if (ref1 == ref2) return SlicesOverlapKind::DefinitelyIdentical; auto des1 = ref1.getDefiningOp(); auto des2 = ref2.getDefiningOp(); // We only support a pair of designators right now. if (!des1 || !des2) return SlicesOverlapKind::Unknown; if (des1.getMemref() != des2.getMemref()) { // If the bases are different, then there is unknown overlap. LLVM_DEBUG(llvm::dbgs() << "No identical base for:\n" << des1 << "and:\n" << des2 << "\n"); return SlicesOverlapKind::Unknown; } // Require all components of the designators to be the same. // It might be too strict, e.g. we may probably allow for // different type parameters. if (des1.getComponent() != des2.getComponent() || des1.getComponentShape() != des2.getComponentShape() || des1.getSubstring() != des2.getSubstring() || des1.getComplexPart() != des2.getComplexPart() || des1.getTypeparams() != des2.getTypeparams()) { LLVM_DEBUG(llvm::dbgs() << "Different designator specs for:\n" << des1 << "and:\n" << des2 << "\n"); return SlicesOverlapKind::Unknown; } // Analyze the subscripts. auto des1It = des1.getIndices().begin(); auto des2It = des2.getIndices().begin(); bool identicalTriplets = true; bool identicalIndices = true; for (auto [isTriplet1, isTriplet2] : llvm::zip(des1.getIsTriplet(), des2.getIsTriplet())) { SectionDesc desc1 = readSectionDesc(des1It, isTriplet1); SectionDesc desc2 = readSectionDesc(des2It, isTriplet2); // See if we can prove that any of the sections do not overlap. // This is mostly a Polyhedron/nf performance hack that looks for // particular relations between the lower and upper bounds // of the array sections, e.g. for any positive constant C: // X:Y does not overlap with (Y+C):Z // X:Y does not overlap with Z:(X-C) if (areDisjointSections(desc1, desc2)) return SlicesOverlapKind::DefinitelyDisjoint; if (!areIdenticalSections(desc1, desc2)) { if (isTriplet1 || isTriplet2) { // For example: // hlfir.designate %6#0 (%c2:%c7999:%c1, %c1:%c120:%c1, %0) // hlfir.designate %6#0 (%c2:%c7999:%c1, %c1:%c120:%c1, %1) // // If all the triplets (section speficiers) are the same, then // we do not care if %0 is equal to %1 - the slices are either // identical or completely disjoint. // // Also, treat these as identical sections: // hlfir.designate %6#0 (%c2:%c2:%c1) // hlfir.designate %6#0 (%c2) identicalTriplets = false; LLVM_DEBUG(llvm::dbgs() << "Triplet mismatch for:\n" << des1 << "and:\n" << des2 << "\n"); } else { identicalIndices = false; LLVM_DEBUG(llvm::dbgs() << "Indices mismatch for:\n" << des1 << "and:\n" << des2 << "\n"); } } } if (identicalTriplets) { if (identicalIndices) return SlicesOverlapKind::DefinitelyIdentical; else return SlicesOverlapKind::EitherIdenticalOrDisjoint; } LLVM_DEBUG(llvm::dbgs() << "Different sections for:\n" << des1 << "and:\n" << des2 << "\n"); return SlicesOverlapKind::Unknown; } bool ArraySectionAnalyzer::isLess(mlir::Value v1, mlir::Value v2) { auto removeConvert = [](mlir::Value v) -> mlir::Operation * { auto *op = v.getDefiningOp(); while (auto conv = mlir::dyn_cast_or_null(op)) op = conv.getValue().getDefiningOp(); return op; }; auto isPositiveConstant = [](mlir::Value v) -> bool { if (auto val = fir::getIntIfConstant(v)) return *val > 0; return false; }; auto *op1 = removeConvert(v1); auto *op2 = removeConvert(v2); if (!op1 || !op2) return false; // Check if they are both constants. if (auto val1 = fir::getIntIfConstant(op1->getResult(0))) if (auto val2 = fir::getIntIfConstant(op2->getResult(0))) return *val1 < *val2; // Handle some variable cases (C > 0): // v2 = v1 + C // v2 = C + v1 // v1 = v2 - C if (auto addi = mlir::dyn_cast(op2)) if ((addi.getLhs().getDefiningOp() == op1 && isPositiveConstant(addi.getRhs())) || (addi.getRhs().getDefiningOp() == op1 && isPositiveConstant(addi.getLhs()))) return true; if (auto subi = mlir::dyn_cast(op1)) if (subi.getLhs().getDefiningOp() == op2 && isPositiveConstant(subi.getRhs())) return true; return false; } llvm::SmallVector ElementalAssignBufferization::getDesignatorIndices( hlfir::DesignateOp designate) { mlir::Value memref = designate.getMemref(); // If the object is a box, then the indices may be adjusted // according to the box's lower bound(s). Scan through // the computations to try to find the one-based indices. if (mlir::isa(memref.getType())) { // Look for the following pattern: // %13 = fir.load %12 : !fir.ref // %14:3 = fir.box_dims %13, %c0 : (!fir.box<...>, index) -> ... // %17 = arith.subi %14#0, %c1 : index // %18 = arith.addi %arg2, %17 : index // %19 = hlfir.designate %13 (%18) : (!fir.box<...>, index) -> ... // // %arg2 is a one-based index. auto isNormalizedLb = [memref](mlir::Value v, unsigned dim) { // Return true, if v and dim are such that: // %14:3 = fir.box_dims %13, %dim : (!fir.box<...>, index) -> ... // %17 = arith.subi %14#0, %c1 : index // %19 = hlfir.designate %13 (...) : (!fir.box<...>, index) -> ... if (auto subOp = mlir::dyn_cast_or_null(v.getDefiningOp())) { auto cst = fir::getIntIfConstant(subOp.getRhs()); if (!cst || *cst != 1) return false; if (auto dimsOp = mlir::dyn_cast_or_null( subOp.getLhs().getDefiningOp())) { if (memref != dimsOp.getVal() || dimsOp.getResult(0) != subOp.getLhs()) return false; auto dimsOpDim = fir::getIntIfConstant(dimsOp.getDim()); return dimsOpDim && dimsOpDim == dim; } } return false; }; llvm::SmallVector newIndices; for (auto index : llvm::enumerate(designate.getIndices())) { if (auto addOp = mlir::dyn_cast_or_null( index.value().getDefiningOp())) { for (unsigned opNum = 0; opNum < 2; ++opNum) if (isNormalizedLb(addOp->getOperand(opNum), index.index())) { newIndices.push_back(addOp->getOperand((opNum + 1) % 2)); break; } // If new one-based index was not added, exit early. if (newIndices.size() <= index.index()) break; } } // If any of the indices is not adjusted to the array's lb, // then return the original designator indices. if (newIndices.size() != designate.getIndices().size()) return designate.getIndices(); return newIndices; } return designate.getIndices(); } std::optional ElementalAssignBufferization::findMatch(hlfir::ElementalOp elemental) { mlir::Operation::user_range users = elemental->getUsers(); // the only uses of the elemental should be the assignment and the destroy if (std::distance(users.begin(), users.end()) != 2) { LLVM_DEBUG(llvm::dbgs() << "Too many uses of the elemental\n"); return std::nullopt; } // If the ElementalOp must produce a temporary (e.g. for // finalization purposes), then we cannot inline it. if (hlfir::elementalOpMustProduceTemp(elemental)) { LLVM_DEBUG(llvm::dbgs() << "ElementalOp must produce a temp\n"); return std::nullopt; } MatchInfo match; for (mlir::Operation *user : users) mlir::TypeSwitch(user) .Case([&](hlfir::AssignOp op) { match.assign = op; }) .Case([&](hlfir::DestroyOp op) { match.destroy = op; }); if (!match.assign || !match.destroy) { LLVM_DEBUG(llvm::dbgs() << "Couldn't find assign or destroy\n"); return std::nullopt; } // the array is what the elemental is assigned into // TODO: this could be extended to also allow hlfir.expr by first bufferizing // the incoming expression match.array = match.assign.getLhs(); mlir::Type arrayType = mlir::dyn_cast( fir::unwrapPassByRefType(match.array.getType())); if (!arrayType) { LLVM_DEBUG(llvm::dbgs() << "AssignOp's result is not an array\n"); return std::nullopt; } // require that the array elements are trivial // TODO: this is just to make the pass easier to think about. Not an inherent // limitation mlir::Type eleTy = hlfir::getFortranElementType(arrayType); if (!fir::isa_trivial(eleTy)) { LLVM_DEBUG(llvm::dbgs() << "AssignOp's data type is not trivial\n"); return std::nullopt; } // The array must have the same shape as the elemental. // // f2018 10.2.1.2 (3) requires the lhs and rhs of an assignment to be // conformable unless the lhs is an allocatable array. In HLFIR we can // see this from the presence or absence of the realloc attribute on // hlfir.assign. If it is not a realloc assignment, we can trust that // the shapes do conform. // // TODO: the lhs's shape is dynamic, so it is hard to prove that // there is no reallocation of the lhs due to the assignment. // We can probably try generating multiple versions of the code // with checking for the shape match, length parameters match, etc. if (match.assign.isAllocatableAssignment()) { LLVM_DEBUG(llvm::dbgs() << "AssignOp may involve (re)allocation of LHS\n"); return std::nullopt; } // the transformation wants to apply the elemental in a do-loop at the // hlfir.assign, check there are no effects which make this unsafe // keep track of any values written to in the elemental, as these can't be // read from between the elemental and the assignment // likewise, values read in the elemental cannot be written to between the // elemental and the assign mlir::SmallVector notToBeAccessedBeforeAssign; // any accesses to the array between the array and the assignment means it // would be unsafe to move the elemental to the assignment notToBeAccessedBeforeAssign.push_back(match.array); // 1) side effects in the elemental body - it isn't sufficient to just look // for ordered elementals because we also cannot support out of order reads std::optional> effects = getEffectsBetween(&elemental.getBody()->front(), elemental.getBody()->getTerminator()); if (!effects) { LLVM_DEBUG(llvm::dbgs() << "operation with unknown effects inside elemental\n"); return std::nullopt; } for (const mlir::MemoryEffects::EffectInstance &effect : *effects) { mlir::AliasResult res = containsReadOrWriteEffectOn(effect, match.array); if (res.isNo()) { if (mlir::isa( effect.getEffect())) if (effect.getValue()) notToBeAccessedBeforeAssign.push_back(effect.getValue()); // this is safe in the elemental continue; } // don't allow any aliasing writes in the elemental if (mlir::isa(effect.getEffect())) { LLVM_DEBUG(llvm::dbgs() << "write inside the elemental body\n"); return std::nullopt; } // allow if and only if the reads are from the elemental indices, in order // => each iteration doesn't read values written by other iterations // don't allow reads from a different value which may alias: fir alias // analysis isn't precise enough to tell us if two aliasing arrays overlap // exactly or only partially. If they overlap partially, a designate at the // elemental indices could be accessing different elements: e.g. we could // designate two slices of the same array at different start indexes. These // two MustAlias but index 1 of one array isn't the same element as index 1 // of the other array. if (!res.isPartial()) { if (auto designate = effect.getValue().getDefiningOp()) { ArraySectionAnalyzer::SlicesOverlapKind overlap = ArraySectionAnalyzer::analyze(match.array, designate.getMemref()); if (overlap == ArraySectionAnalyzer::SlicesOverlapKind::DefinitelyDisjoint) continue; if (overlap == ArraySectionAnalyzer::SlicesOverlapKind::Unknown) { LLVM_DEBUG(llvm::dbgs() << "possible read conflict: " << designate << " at " << elemental.getLoc() << "\n"); return std::nullopt; } auto indices = getDesignatorIndices(designate); auto elementalIndices = elemental.getIndices(); if (indices.size() == elementalIndices.size() && std::equal(indices.begin(), indices.end(), elementalIndices.begin(), elementalIndices.end())) continue; LLVM_DEBUG(llvm::dbgs() << "possible read conflict: " << designate << " at " << elemental.getLoc() << "\n"); return std::nullopt; } } LLVM_DEBUG(llvm::dbgs() << "disallowed side-effect: " << effect.getValue() << " for " << elemental.getLoc() << "\n"); return std::nullopt; } // 2) look for conflicting effects between the elemental and the assignment effects = getEffectsBetween(elemental->getNextNode(), match.assign); if (!effects) { LLVM_DEBUG( llvm::dbgs() << "operation with unknown effects between elemental and assign\n"); return std::nullopt; } for (const mlir::MemoryEffects::EffectInstance &effect : *effects) { // not safe to access anything written in the elemental as this write // will be moved to the assignment for (mlir::Value val : notToBeAccessedBeforeAssign) { mlir::AliasResult res = containsReadOrWriteEffectOn(effect, val); if (!res.isNo()) { LLVM_DEBUG(llvm::dbgs() << "diasllowed side-effect: " << effect.getValue() << " for " << elemental.getLoc() << "\n"); return std::nullopt; } } } return match; } llvm::LogicalResult ElementalAssignBufferization::matchAndRewrite( hlfir::ElementalOp elemental, mlir::PatternRewriter &rewriter) const { std::optional match = findMatch(elemental); if (!match) return rewriter.notifyMatchFailure( elemental, "cannot prove safety of ElementalAssignBufferization"); mlir::Location loc = elemental->getLoc(); fir::FirOpBuilder builder(rewriter, elemental.getOperation()); auto extents = hlfir::getIndexExtents(loc, builder, elemental.getShape()); // create the loop at the assignment builder.setInsertionPoint(match->assign); // Generate a loop nest looping around the hlfir.elemental shape and clone // hlfir.elemental region inside the inner loop hlfir::LoopNest loopNest = hlfir::genLoopNest(loc, builder, extents, !elemental.isOrdered(), flangomp::shouldUseWorkshareLowering(elemental)); builder.setInsertionPointToStart(loopNest.body); auto yield = hlfir::inlineElementalOp(loc, builder, elemental, loopNest.oneBasedIndices); hlfir::Entity elementValue{yield.getElementValue()}; rewriter.eraseOp(yield); // Assign the element value to the array element for this iteration. auto arrayElement = hlfir::getElementAt( loc, builder, hlfir::Entity{match->array}, loopNest.oneBasedIndices); builder.create( loc, elementValue, arrayElement, /*realloc=*/false, /*keep_lhs_length_if_realloc=*/false, match->assign.getTemporaryLhs()); rewriter.eraseOp(match->assign); rewriter.eraseOp(match->destroy); rewriter.eraseOp(elemental); return mlir::success(); } /// Expand hlfir.assign of a scalar RHS to array LHS into a loop nest /// of element-by-element assignments: /// hlfir.assign %cst to %0 : f32, !fir.ref> /// into: /// fir.do_loop %arg0 = %c1 to %c6 step %c1 unordered { /// fir.do_loop %arg1 = %c1 to %c6 step %c1 unordered { /// %1 = hlfir.designate %0 (%arg1, %arg0) : /// (!fir.ref>, index, index) -> !fir.ref /// hlfir.assign %cst to %1 : f32, !fir.ref /// } /// } class BroadcastAssignBufferization : public mlir::OpRewritePattern { private: public: using mlir::OpRewritePattern::OpRewritePattern; llvm::LogicalResult matchAndRewrite(hlfir::AssignOp assign, mlir::PatternRewriter &rewriter) const override; }; llvm::LogicalResult BroadcastAssignBufferization::matchAndRewrite( hlfir::AssignOp assign, mlir::PatternRewriter &rewriter) const { // Since RHS is a scalar and LHS is an array, LHS must be allocated // in a conforming Fortran program, and LHS cannot be reallocated // as a result of the assignment. So we can ignore isAllocatableAssignment // and do the transformation always. mlir::Value rhs = assign.getRhs(); if (!fir::isa_trivial(rhs.getType())) return rewriter.notifyMatchFailure( assign, "AssignOp's RHS is not a trivial scalar"); hlfir::Entity lhs{assign.getLhs()}; if (!lhs.isArray()) return rewriter.notifyMatchFailure(assign, "AssignOp's LHS is not an array"); mlir::Type eleTy = lhs.getFortranElementType(); if (!fir::isa_trivial(eleTy)) return rewriter.notifyMatchFailure( assign, "AssignOp's LHS data type is not trivial"); mlir::Location loc = assign->getLoc(); fir::FirOpBuilder builder(rewriter, assign.getOperation()); builder.setInsertionPoint(assign); lhs = hlfir::derefPointersAndAllocatables(loc, builder, lhs); mlir::Value shape = hlfir::genShape(loc, builder, lhs); llvm::SmallVector extents = hlfir::getIndexExtents(loc, builder, shape); hlfir::LoopNest loopNest = hlfir::genLoopNest(loc, builder, extents, /*isUnordered=*/true, flangomp::shouldUseWorkshareLowering(assign)); builder.setInsertionPointToStart(loopNest.body); auto arrayElement = hlfir::getElementAt(loc, builder, lhs, loopNest.oneBasedIndices); builder.create(loc, rhs, arrayElement); rewriter.eraseOp(assign); return mlir::success(); } using GenBodyFn = std::function &)>; static mlir::Value generateReductionLoop(fir::FirOpBuilder &builder, mlir::Location loc, mlir::Value init, mlir::Value shape, GenBodyFn genBody) { auto extents = hlfir::getIndexExtents(loc, builder, shape); mlir::Value reduction = init; mlir::IndexType idxTy = builder.getIndexType(); mlir::Value oneIdx = builder.createIntegerConstant(loc, idxTy, 1); // Create a reduction loop nest. We use one-based indices so that they can be // passed to the elemental, and reverse the order so that they can be // generated in column-major order for better performance. llvm::SmallVector indices(extents.size(), mlir::Value{}); for (unsigned i = 0; i < extents.size(); ++i) { auto loop = builder.create( loc, oneIdx, extents[extents.size() - i - 1], oneIdx, false, /*finalCountValue=*/false, reduction); reduction = loop.getRegionIterArgs()[0]; indices[extents.size() - i - 1] = loop.getInductionVar(); // Set insertion point to the loop body so that the next loop // is inserted inside the current one. builder.setInsertionPointToStart(loop.getBody()); } // Generate the body reduction = genBody(builder, loc, reduction, indices); // Unwind the loop nest. for (unsigned i = 0; i < extents.size(); ++i) { auto result = builder.create(loc, reduction); auto loop = mlir::cast(result->getParentOp()); reduction = loop.getResult(0); // Set insertion point after the loop operation that we have // just processed. builder.setInsertionPointAfter(loop.getOperation()); } return reduction; } auto makeMinMaxInitValGenerator(bool isMax) { return [isMax](fir::FirOpBuilder builder, mlir::Location loc, mlir::Type elementType) -> mlir::Value { if (auto ty = mlir::dyn_cast(elementType)) { const llvm::fltSemantics &sem = ty.getFloatSemantics(); llvm::APFloat limit = llvm::APFloat::getInf(sem, /*Negative=*/isMax); return builder.createRealConstant(loc, elementType, limit); } unsigned bits = elementType.getIntOrFloatBitWidth(); int64_t limitInt = isMax ? llvm::APInt::getSignedMinValue(bits).getSExtValue() : llvm::APInt::getSignedMaxValue(bits).getSExtValue(); return builder.createIntegerConstant(loc, elementType, limitInt); }; } mlir::Value generateMinMaxComparison(fir::FirOpBuilder builder, mlir::Location loc, mlir::Value elem, mlir::Value reduction, bool isMax) { if (mlir::isa(reduction.getType())) { // For FP reductions we want the first smallest value to be used, that // is not NaN. A OGL/OLT condition will usually work for this unless all // the values are Nan or Inf. This follows the same logic as // NumericCompare for Minloc/Maxlox in extrema.cpp. mlir::Value cmp = builder.create( loc, isMax ? mlir::arith::CmpFPredicate::OGT : mlir::arith::CmpFPredicate::OLT, elem, reduction); mlir::Value cmpNan = builder.create( loc, mlir::arith::CmpFPredicate::UNE, reduction, reduction); mlir::Value cmpNan2 = builder.create( loc, mlir::arith::CmpFPredicate::OEQ, elem, elem); cmpNan = builder.create(loc, cmpNan, cmpNan2); return builder.create(loc, cmp, cmpNan); } else if (mlir::isa(reduction.getType())) { return builder.create( loc, isMax ? mlir::arith::CmpIPredicate::sgt : mlir::arith::CmpIPredicate::slt, elem, reduction); } llvm_unreachable("unsupported type"); } /// Given a reduction operation with an elemental/designate source, attempt to /// generate a do-loop to perform the operation inline. /// %e = hlfir.elemental %shape unordered /// %r = hlfir.count %e /// => /// %r = for.do_loop %arg = 1 to bound(%shape) step 1 iter_args(%arg2 = init) /// %i = /// %c = %i /// fir.result %c template class ReductionConversion : public mlir::OpRewritePattern { public: using mlir::OpRewritePattern::OpRewritePattern; llvm::LogicalResult matchAndRewrite(Op op, mlir::PatternRewriter &rewriter) const override { mlir::Location loc = op.getLoc(); // Select source and validate its arguments. mlir::Value source; bool valid = false; if constexpr (std::is_same_v || std::is_same_v || std::is_same_v) { source = op.getMask(); valid = !op.getDim(); } else if constexpr (std::is_same_v || std::is_same_v) { source = op.getArray(); valid = !op.getDim() && !op.getMask(); } else if constexpr (std::is_same_v || std::is_same_v) { source = op.getArray(); valid = !op.getDim() && !op.getMask() && !op.getBack(); } if (!valid) return rewriter.notifyMatchFailure( op, "Currently does not accept optional arguments"); hlfir::ElementalOp elemental; hlfir::DesignateOp designate; mlir::Value shape; if ((elemental = source.template getDefiningOp())) { shape = elemental.getOperand(0); } else if ((designate = source.template getDefiningOp())) { shape = designate.getShape(); } else { return rewriter.notifyMatchFailure(op, "Did not find valid argument"); } auto inlineSource = [elemental, &designate]( fir::FirOpBuilder builder, mlir::Location loc, const llvm::SmallVectorImpl &indices) -> mlir::Value { if (elemental) { // Inline the elemental and get the value from it. auto yield = inlineElementalOp(loc, builder, elemental, indices); auto tmp = yield.getElementValue(); yield->erase(); return tmp; } if (designate) { // Create a designator over designator, then load the reference. auto resEntity = hlfir::Entity{designate.getResult()}; auto tmp = builder.create( loc, getVariableElementType(resEntity), designate, indices); return builder.create(loc, tmp); } llvm_unreachable("unsupported type"); }; fir::KindMapping kindMap = fir::getKindMapping(op->template getParentOfType()); fir::FirOpBuilder builder{op, kindMap}; mlir::Value init; GenBodyFn genBodyFn; if constexpr (std::is_same_v) { init = builder.createIntegerConstant(loc, builder.getI1Type(), 0); genBodyFn = [inlineSource](fir::FirOpBuilder builder, mlir::Location loc, mlir::Value reduction, const llvm::SmallVectorImpl &indices) -> mlir::Value { // Conditionally set the reduction variable. mlir::Value cond = builder.create( loc, builder.getI1Type(), inlineSource(builder, loc, indices)); return builder.create(loc, reduction, cond); }; } else if constexpr (std::is_same_v) { init = builder.createIntegerConstant(loc, builder.getI1Type(), 1); genBodyFn = [inlineSource](fir::FirOpBuilder builder, mlir::Location loc, mlir::Value reduction, const llvm::SmallVectorImpl &indices) -> mlir::Value { // Conditionally set the reduction variable. mlir::Value cond = builder.create( loc, builder.getI1Type(), inlineSource(builder, loc, indices)); return builder.create(loc, reduction, cond); }; } else if constexpr (std::is_same_v) { init = builder.createIntegerConstant(loc, op.getType(), 0); genBodyFn = [inlineSource](fir::FirOpBuilder builder, mlir::Location loc, mlir::Value reduction, const llvm::SmallVectorImpl &indices) -> mlir::Value { // Conditionally add one to the current value mlir::Value cond = builder.create( loc, builder.getI1Type(), inlineSource(builder, loc, indices)); mlir::Value one = builder.createIntegerConstant(loc, reduction.getType(), 1); mlir::Value add1 = builder.create(loc, reduction, one); return builder.create(loc, cond, add1, reduction); }; } else if constexpr (std::is_same_v || std::is_same_v) { // TODO: implement minloc/maxloc conversion. return rewriter.notifyMatchFailure( op, "Currently minloc/maxloc is not handled"); } else if constexpr (std::is_same_v || std::is_same_v) { bool isMax = std::is_same_v; init = makeMinMaxInitValGenerator(isMax)(builder, loc, op.getType()); genBodyFn = [inlineSource, isMax](fir::FirOpBuilder builder, mlir::Location loc, mlir::Value reduction, const llvm::SmallVectorImpl &indices) -> mlir::Value { mlir::Value val = inlineSource(builder, loc, indices); mlir::Value cmp = generateMinMaxComparison(builder, loc, val, reduction, isMax); return builder.create(loc, cmp, val, reduction); }; } else { llvm_unreachable("unsupported type"); } mlir::Value res = generateReductionLoop(builder, loc, init, shape, genBodyFn); if (res.getType() != op.getType()) res = builder.create(loc, op.getType(), res); // Check if the op was the only user of the source (apart from a destroy), // and remove it if so. mlir::Operation *sourceOp = source.getDefiningOp(); mlir::Operation::user_range srcUsers = sourceOp->getUsers(); hlfir::DestroyOp srcDestroy; if (std::distance(srcUsers.begin(), srcUsers.end()) == 2) { srcDestroy = mlir::dyn_cast(*srcUsers.begin()); if (!srcDestroy) srcDestroy = mlir::dyn_cast(*++srcUsers.begin()); } rewriter.replaceOp(op, res); if (srcDestroy) { rewriter.eraseOp(srcDestroy); rewriter.eraseOp(sourceOp); } return mlir::success(); } }; // Look for minloc(mask=elemental) and generate the minloc loop with // inlined elemental. // %e = hlfir.elemental %shape ({ ... }) // %m = hlfir.minloc %array mask %e template class ReductionMaskConversion : public mlir::OpRewritePattern { public: using mlir::OpRewritePattern::OpRewritePattern; llvm::LogicalResult matchAndRewrite(Op mloc, mlir::PatternRewriter &rewriter) const override { if (!mloc.getMask() || mloc.getDim() || mloc.getBack()) return rewriter.notifyMatchFailure(mloc, "Did not find valid minloc/maxloc"); bool isMax = std::is_same_v; auto elemental = mloc.getMask().template getDefiningOp(); if (!elemental || hlfir::elementalOpMustProduceTemp(elemental)) return rewriter.notifyMatchFailure(mloc, "Did not find elemental"); mlir::Value array = mloc.getArray(); unsigned rank = mlir::cast(mloc.getType()).getShape()[0]; mlir::Type arrayType = array.getType(); if (!mlir::isa(arrayType)) return rewriter.notifyMatchFailure( mloc, "Currently requires a boxed type input"); mlir::Type elementType = hlfir::getFortranElementType(arrayType); if (!fir::isa_trivial(elementType)) return rewriter.notifyMatchFailure( mloc, "Character arrays are currently not handled"); mlir::Location loc = mloc.getLoc(); fir::FirOpBuilder builder{rewriter, mloc.getOperation()}; mlir::Value resultArr = builder.createTemporary( loc, fir::SequenceType::get( rank, hlfir::getFortranElementType(mloc.getType()))); auto init = makeMinMaxInitValGenerator(isMax); auto genBodyOp = [&rank, &resultArr, &elemental, isMax]( fir::FirOpBuilder builder, mlir::Location loc, mlir::Type elementType, mlir::Value array, mlir::Value flagRef, mlir::Value reduction, const llvm::SmallVectorImpl &indices) -> mlir::Value { // We are in the innermost loop: generate the elemental inline mlir::Value oneIdx = builder.createIntegerConstant(loc, builder.getIndexType(), 1); llvm::SmallVector oneBasedIndices; llvm::transform( indices, std::back_inserter(oneBasedIndices), [&](mlir::Value V) { return builder.create(loc, V, oneIdx); }); hlfir::YieldElementOp yield = hlfir::inlineElementalOp(loc, builder, elemental, oneBasedIndices); mlir::Value maskElem = yield.getElementValue(); yield->erase(); mlir::Type ifCompatType = builder.getI1Type(); mlir::Value ifCompatElem = builder.create(loc, ifCompatType, maskElem); llvm::SmallVector resultsTy = {elementType, elementType}; fir::IfOp maskIfOp = builder.create(loc, elementType, ifCompatElem, /*withElseRegion=*/true); builder.setInsertionPointToStart(&maskIfOp.getThenRegion().front()); // Set flag that mask was true at some point mlir::Value flagSet = builder.createIntegerConstant( loc, mlir::cast(flagRef.getType()).getEleTy(), 1); mlir::Value isFirst = builder.create(loc, flagRef); mlir::Value addr = hlfir::getElementAt(loc, builder, hlfir::Entity{array}, oneBasedIndices); mlir::Value elem = builder.create(loc, addr); // Compare with the max reduction value mlir::Value cmp = generateMinMaxComparison(builder, loc, elem, reduction, isMax); // The condition used for the loop is isFirst || . isFirst = builder.create(loc, cmp.getType(), isFirst); isFirst = builder.create( loc, isFirst, builder.createIntegerConstant(loc, cmp.getType(), 1)); cmp = builder.create(loc, cmp, isFirst); // Set the new coordinate to the result fir::IfOp ifOp = builder.create(loc, elementType, cmp, /*withElseRegion*/ true); builder.setInsertionPointToStart(&ifOp.getThenRegion().front()); builder.create(loc, flagSet, flagRef); mlir::Type resultElemTy = hlfir::getFortranElementType(resultArr.getType()); mlir::Type returnRefTy = builder.getRefType(resultElemTy); mlir::IndexType idxTy = builder.getIndexType(); for (unsigned int i = 0; i < rank; ++i) { mlir::Value index = builder.createIntegerConstant(loc, idxTy, i + 1); mlir::Value resultElemAddr = builder.create( loc, returnRefTy, resultArr, index); mlir::Value fortranIndex = builder.create( loc, resultElemTy, oneBasedIndices[i]); builder.create(loc, fortranIndex, resultElemAddr); } builder.create(loc, elem); builder.setInsertionPointToStart(&ifOp.getElseRegion().front()); builder.create(loc, reduction); builder.setInsertionPointAfter(ifOp); // Close the mask if builder.create(loc, ifOp.getResult(0)); builder.setInsertionPointToStart(&maskIfOp.getElseRegion().front()); builder.create(loc, reduction); builder.setInsertionPointAfter(maskIfOp); return maskIfOp.getResult(0); }; auto getAddrFn = [](fir::FirOpBuilder builder, mlir::Location loc, const mlir::Type &resultElemType, mlir::Value resultArr, mlir::Value index) { mlir::Type resultRefTy = builder.getRefType(resultElemType); mlir::Value oneIdx = builder.createIntegerConstant(loc, builder.getIndexType(), 1); index = builder.create(loc, index, oneIdx); return builder.create(loc, resultRefTy, resultArr, index); }; // Initialize the result mlir::Type resultElemTy = hlfir::getFortranElementType(resultArr.getType()); mlir::Type resultRefTy = builder.getRefType(resultElemTy); mlir::Value returnValue = builder.createIntegerConstant(loc, resultElemTy, 0); for (unsigned int i = 0; i < rank; ++i) { mlir::Value index = builder.createIntegerConstant(loc, builder.getIndexType(), i + 1); mlir::Value resultElemAddr = builder.create( loc, resultRefTy, resultArr, index); builder.create(loc, returnValue, resultElemAddr); } fir::genMinMaxlocReductionLoop(builder, array, init, genBodyOp, getAddrFn, rank, elementType, loc, builder.getI1Type(), resultArr, false); mlir::Value asExpr = builder.create( loc, resultArr, builder.createBool(loc, false)); // Check all the users - the destroy is no longer required, and any assign // can use resultArr directly so that InlineHLFIRAssign pass // can optimize the results. Other operations are replaced with an AsExpr // for the temporary resultArr. llvm::SmallVector destroys; llvm::SmallVector assigns; for (auto user : mloc->getUsers()) { if (auto destroy = mlir::dyn_cast(user)) destroys.push_back(destroy); else if (auto assign = mlir::dyn_cast(user)) assigns.push_back(assign); } // Check if the minloc/maxloc was the only user of the elemental (apart from // a destroy), and remove it if so. mlir::Operation::user_range elemUsers = elemental->getUsers(); hlfir::DestroyOp elemDestroy; if (std::distance(elemUsers.begin(), elemUsers.end()) == 2) { elemDestroy = mlir::dyn_cast(*elemUsers.begin()); if (!elemDestroy) elemDestroy = mlir::dyn_cast(*++elemUsers.begin()); } for (auto d : destroys) rewriter.eraseOp(d); for (auto a : assigns) a.setOperand(0, resultArr); rewriter.replaceOp(mloc, asExpr); if (elemDestroy) { rewriter.eraseOp(elemDestroy); rewriter.eraseOp(elemental); } return mlir::success(); } }; class EvaluateIntoMemoryAssignBufferization : public mlir::OpRewritePattern { public: using mlir::OpRewritePattern::OpRewritePattern; llvm::LogicalResult matchAndRewrite(hlfir::EvaluateInMemoryOp, mlir::PatternRewriter &rewriter) const override; }; static llvm::LogicalResult tryUsingAssignLhsDirectly(hlfir::EvaluateInMemoryOp evalInMem, mlir::PatternRewriter &rewriter) { mlir::Location loc = evalInMem.getLoc(); hlfir::DestroyOp destroy; hlfir::AssignOp assign; for (auto user : llvm::enumerate(evalInMem->getUsers())) { if (user.index() > 2) return mlir::failure(); mlir::TypeSwitch(user.value()) .Case([&](hlfir::AssignOp op) { assign = op; }) .Case([&](hlfir::DestroyOp op) { destroy = op; }); } if (!assign || !destroy || destroy.mustFinalizeExpr() || assign.isAllocatableAssignment()) return mlir::failure(); hlfir::Entity lhs{assign.getLhs()}; // EvaluateInMemoryOp memory is contiguous, so in general, it can only be // replace by the LHS if the LHS is contiguous. if (!lhs.isSimplyContiguous()) return mlir::failure(); // Character assignment may involves truncation/padding, so the LHS // cannot be used to evaluate RHS in place without proving the LHS and // RHS lengths are the same. if (lhs.isCharacter()) return mlir::failure(); fir::AliasAnalysis aliasAnalysis; // The region must not read or write the LHS. // Note that getModRef is used instead of mlir::MemoryEffects because // EvaluateInMemoryOp is typically expected to hold fir.calls and that // Fortran calls cannot be modeled in a useful way with mlir::MemoryEffects: // it is hard/impossible to list all the read/written SSA values in a call, // but it is often possible to tell that an SSA value cannot be accessed, // hence getModRef is needed here and below. Also note that getModRef uses // mlir::MemoryEffects for operations that do not have special handling in // getModRef. if (aliasAnalysis.getModRef(evalInMem.getBody(), lhs).isModOrRef()) return mlir::failure(); // Any variables affected between the hlfir.evalInMem and assignment must not // be read or written inside the region since it will be moved at the // assignment insertion point. auto effects = getEffectsBetween(evalInMem->getNextNode(), assign); if (!effects) { LLVM_DEBUG( llvm::dbgs() << "operation with unknown effects between eval_in_mem and assign\n"); return mlir::failure(); } for (const mlir::MemoryEffects::EffectInstance &effect : *effects) { mlir::Value affected = effect.getValue(); if (!affected || aliasAnalysis.getModRef(evalInMem.getBody(), affected).isModOrRef()) return mlir::failure(); } rewriter.setInsertionPoint(assign); fir::FirOpBuilder builder(rewriter, evalInMem.getOperation()); mlir::Value rawLhs = hlfir::genVariableRawAddress(loc, builder, lhs); hlfir::computeEvaluateOpIn(loc, builder, evalInMem, rawLhs); rewriter.eraseOp(assign); rewriter.eraseOp(destroy); rewriter.eraseOp(evalInMem); return mlir::success(); } llvm::LogicalResult EvaluateIntoMemoryAssignBufferization::matchAndRewrite( hlfir::EvaluateInMemoryOp evalInMem, mlir::PatternRewriter &rewriter) const { if (mlir::succeeded(tryUsingAssignLhsDirectly(evalInMem, rewriter))) return mlir::success(); // Rewrite to temp + as_expr here so that the assign + as_expr pattern can // kick-in for simple types and at least implement the assignment inline // instead of call Assign runtime. fir::FirOpBuilder builder(rewriter, evalInMem.getOperation()); mlir::Location loc = evalInMem.getLoc(); auto [temp, isHeapAllocated] = hlfir::computeEvaluateOpInNewTemp( loc, builder, evalInMem, evalInMem.getShape(), evalInMem.getTypeparams()); rewriter.replaceOpWithNewOp( evalInMem, temp, /*mustFree=*/builder.createBool(loc, isHeapAllocated)); return mlir::success(); } class OptimizedBufferizationPass : public hlfir::impl::OptimizedBufferizationBase< OptimizedBufferizationPass> { public: void runOnOperation() override { mlir::MLIRContext *context = &getContext(); mlir::GreedyRewriteConfig config; // Prevent the pattern driver from merging blocks config.enableRegionSimplification = mlir::GreedySimplifyRegionLevel::Disabled; mlir::RewritePatternSet patterns(context); // TODO: right now the patterns are non-conflicting, // but it might be better to run this pass on hlfir.assign // operations and decide which transformation to apply // at one place (e.g. we may use some heuristics and // choose different optimization strategies). // This requires small code reordering in ElementalAssignBufferization. patterns.insert(context); patterns.insert(context); patterns.insert(context); patterns.insert>(context); patterns.insert>(context); patterns.insert>(context); // TODO: implement basic minloc/maxloc conversion. // patterns.insert>(context); // patterns.insert>(context); patterns.insert>(context); patterns.insert>(context); patterns.insert>(context); patterns.insert>(context); // TODO: implement masked minval/maxval conversion. // patterns.insert>(context); // patterns.insert>(context); if (mlir::failed(mlir::applyPatternsGreedily( getOperation(), std::move(patterns), config))) { mlir::emitError(getOperation()->getLoc(), "failure in HLFIR optimized bufferization"); signalPassFailure(); } } }; } // namespace