//===-- BoxedProcedure.cpp ------------------------------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #include "PassDetail.h" #include "flang/Optimizer/Builder/FIRBuilder.h" #include "flang/Optimizer/Builder/LowLevelIntrinsics.h" #include "flang/Optimizer/CodeGen/CodeGen.h" #include "flang/Optimizer/Dialect/FIRDialect.h" #include "flang/Optimizer/Dialect/FIROps.h" #include "flang/Optimizer/Dialect/FIRType.h" #include "flang/Optimizer/Support/FIRContext.h" #include "flang/Optimizer/Support/FatalError.h" #include "mlir/IR/PatternMatch.h" #include "mlir/Pass/Pass.h" #include "mlir/Transforms/DialectConversion.h" #define DEBUG_TYPE "flang-procedure-pointer" using namespace fir; namespace { /// Options to the procedure pointer pass. struct BoxedProcedureOptions { // Lower the boxproc abstraction to function pointers and thunks where // required. bool useThunks = true; }; /// This type converter rewrites all `!fir.boxproc` types to `Func` types. class BoxprocTypeRewriter : public mlir::TypeConverter { public: using mlir::TypeConverter::convertType; /// Does the type \p ty need to be converted? /// Any type that is a `!fir.boxproc` in whole or in part will need to be /// converted to a function type to lower the IR to function pointer form in /// the default implementation performed in this pass. Other implementations /// are possible, so those may convert `!fir.boxproc` to some other type or /// not at all depending on the implementation target's characteristics and /// preference. bool needsConversion(mlir::Type ty) { if (ty.isa()) return true; if (auto funcTy = ty.dyn_cast()) { for (auto t : funcTy.getInputs()) if (needsConversion(t)) return true; for (auto t : funcTy.getResults()) if (needsConversion(t)) return true; return false; } if (auto tupleTy = ty.dyn_cast()) { for (auto t : tupleTy.getTypes()) if (needsConversion(t)) return true; return false; } if (auto recTy = ty.dyn_cast()) { if (llvm::is_contained(visitedTypes, recTy)) return false; bool result = false; visitedTypes.push_back(recTy); for (auto t : recTy.getTypeList()) { if (needsConversion(t.second)) { result = true; break; } } visitedTypes.pop_back(); return result; } if (auto boxTy = ty.dyn_cast()) return needsConversion(boxTy.getEleTy()); if (isa_ref_type(ty)) return needsConversion(unwrapRefType(ty)); if (auto t = ty.dyn_cast()) return needsConversion(unwrapSequenceType(ty)); return false; } BoxprocTypeRewriter(mlir::Location location) : loc{location} { addConversion([](mlir::Type ty) { return ty; }); addConversion( [&](BoxProcType boxproc) { return convertType(boxproc.getEleTy()); }); addConversion([&](mlir::TupleType tupTy) { llvm::SmallVector memTys; for (auto ty : tupTy.getTypes()) memTys.push_back(convertType(ty)); return mlir::TupleType::get(tupTy.getContext(), memTys); }); addConversion([&](mlir::FunctionType funcTy) { llvm::SmallVector inTys; llvm::SmallVector resTys; for (auto ty : funcTy.getInputs()) inTys.push_back(convertType(ty)); for (auto ty : funcTy.getResults()) resTys.push_back(convertType(ty)); return mlir::FunctionType::get(funcTy.getContext(), inTys, resTys); }); addConversion([&](ReferenceType ty) { return ReferenceType::get(convertType(ty.getEleTy())); }); addConversion([&](PointerType ty) { return PointerType::get(convertType(ty.getEleTy())); }); addConversion( [&](HeapType ty) { return HeapType::get(convertType(ty.getEleTy())); }); addConversion( [&](BoxType ty) { return BoxType::get(convertType(ty.getEleTy())); }); addConversion([&](SequenceType ty) { // TODO: add ty.getLayoutMap() as needed. return SequenceType::get(ty.getShape(), convertType(ty.getEleTy())); }); addConversion([&](RecordType ty) -> mlir::Type { if (!needsConversion(ty)) return ty; // FIR record types can have recursive references, so conversion is a bit // more complex than the other types. This conversion is not needed // presently, so just emit a TODO message. Need to consider the uniqued // name of the record, etc. Also, fir::RecordType::get returns the // existing type being translated. So finalize() will not change it, and // the translation would not do anything. So the type needs to be mutated, // and this might require special care to comply with MLIR infrastructure. // TODO: this will be needed to support derived type containing procedure // pointer components. fir::emitFatalError( loc, "not yet implemented: record type with a boxproc type"); return RecordType::get(ty.getContext(), "*fixme*"); }); addArgumentMaterialization(materializeProcedure); addSourceMaterialization(materializeProcedure); addTargetMaterialization(materializeProcedure); } static mlir::Value materializeProcedure(mlir::OpBuilder &builder, BoxProcType type, mlir::ValueRange inputs, mlir::Location loc) { assert(inputs.size() == 1); return builder.create(loc, unwrapRefType(type.getEleTy()), inputs[0]); } void setLocation(mlir::Location location) { loc = location; } private: llvm::SmallVector visitedTypes; mlir::Location loc; }; /// A `boxproc` is an abstraction for a Fortran procedure reference. Typically, /// Fortran procedures can be referenced directly through a function pointer. /// However, Fortran has one-level dynamic scoping between a host procedure and /// its internal procedures. This allows internal procedures to directly access /// and modify the state of the host procedure's variables. /// /// There are any number of possible implementations possible. /// /// The implementation used here is to convert `boxproc` values to function /// pointers everywhere. If a `boxproc` value includes a frame pointer to the /// host procedure's data, then a thunk will be created at runtime to capture /// the frame pointer during execution. In LLVM IR, the frame pointer is /// designated with the `nest` attribute. The thunk's address will then be used /// as the call target instead of the original function's address directly. class BoxedProcedurePass : public BoxedProcedurePassBase { public: BoxedProcedurePass() { options = {true}; } BoxedProcedurePass(bool useThunks) { options = {useThunks}; } inline mlir::ModuleOp getModule() { return getOperation(); } void runOnOperation() override final { if (options.useThunks) { auto *context = &getContext(); mlir::IRRewriter rewriter(context); BoxprocTypeRewriter typeConverter(mlir::UnknownLoc::get(context)); mlir::Dialect *firDialect = context->getLoadedDialect("fir"); getModule().walk([&](mlir::Operation *op) { typeConverter.setLocation(op->getLoc()); if (auto addr = mlir::dyn_cast(op)) { auto ty = addr.getVal().getType(); if (typeConverter.needsConversion(ty) || ty.isa()) { // Rewrite all `fir.box_addr` ops on values of type `!fir.boxproc` // or function type to be `fir.convert` ops. rewriter.setInsertionPoint(addr); rewriter.replaceOpWithNewOp( addr, typeConverter.convertType(addr.getType()), addr.getVal()); } } else if (auto func = mlir::dyn_cast(op)) { mlir::FunctionType ty = func.getFunctionType(); if (typeConverter.needsConversion(ty)) { rewriter.startRootUpdate(func); auto toTy = typeConverter.convertType(ty).cast(); if (!func.empty()) for (auto e : llvm::enumerate(toTy.getInputs())) { unsigned i = e.index(); auto &block = func.front(); block.insertArgument(i, e.value(), func.getLoc()); block.getArgument(i + 1).replaceAllUsesWith( block.getArgument(i)); block.eraseArgument(i + 1); } func.setType(toTy); rewriter.finalizeRootUpdate(func); } } else if (auto embox = mlir::dyn_cast(op)) { // Rewrite all `fir.emboxproc` ops to either `fir.convert` or a thunk // as required. mlir::Type toTy = embox.getType().cast().getEleTy(); rewriter.setInsertionPoint(embox); if (embox.getHost()) { // Create the thunk. auto module = embox->getParentOfType(); fir::KindMapping kindMap = getKindMapping(module); FirOpBuilder builder(rewriter, kindMap); auto loc = embox.getLoc(); mlir::Type i8Ty = builder.getI8Type(); mlir::Type i8Ptr = builder.getRefType(i8Ty); mlir::Type buffTy = SequenceType::get({32}, i8Ty); auto buffer = builder.create(loc, buffTy); mlir::Value closure = builder.createConvert(loc, i8Ptr, embox.getHost()); mlir::Value tramp = builder.createConvert(loc, i8Ptr, buffer); mlir::Value func = builder.createConvert(loc, i8Ptr, embox.getFunc()); builder.create( loc, factory::getLlvmInitTrampoline(builder), llvm::ArrayRef{tramp, func, closure}); auto adjustCall = builder.create( loc, factory::getLlvmAdjustTrampoline(builder), llvm::ArrayRef{tramp}); rewriter.replaceOpWithNewOp(embox, toTy, adjustCall.getResult(0)); } else { // Just forward the function as a pointer. rewriter.replaceOpWithNewOp(embox, toTy, embox.getFunc()); } } else if (auto mem = mlir::dyn_cast(op)) { auto ty = mem.getType(); if (typeConverter.needsConversion(ty)) { rewriter.setInsertionPoint(mem); auto toTy = typeConverter.convertType(unwrapRefType(ty)); bool isPinned = mem.getPinned(); llvm::StringRef uniqName = mem.getUniqName().value_or(llvm::StringRef()); llvm::StringRef bindcName = mem.getBindcName().value_or(llvm::StringRef()); rewriter.replaceOpWithNewOp( mem, toTy, uniqName, bindcName, isPinned, mem.getTypeparams(), mem.getShape()); } } else if (auto mem = mlir::dyn_cast(op)) { auto ty = mem.getType(); if (typeConverter.needsConversion(ty)) { rewriter.setInsertionPoint(mem); auto toTy = typeConverter.convertType(unwrapRefType(ty)); llvm::StringRef uniqName = mem.getUniqName().value_or(llvm::StringRef()); llvm::StringRef bindcName = mem.getBindcName().value_or(llvm::StringRef()); rewriter.replaceOpWithNewOp( mem, toTy, uniqName, bindcName, mem.getTypeparams(), mem.getShape()); } } else if (auto coor = mlir::dyn_cast(op)) { auto ty = coor.getType(); mlir::Type baseTy = coor.getBaseType(); if (typeConverter.needsConversion(ty) || typeConverter.needsConversion(baseTy)) { rewriter.setInsertionPoint(coor); auto toTy = typeConverter.convertType(ty); auto toBaseTy = typeConverter.convertType(baseTy); rewriter.replaceOpWithNewOp(coor, toTy, coor.getRef(), coor.getCoor(), toBaseTy); } } else if (auto index = mlir::dyn_cast(op)) { auto ty = index.getType(); mlir::Type onTy = index.getOnType(); if (typeConverter.needsConversion(ty) || typeConverter.needsConversion(onTy)) { rewriter.setInsertionPoint(index); auto toTy = typeConverter.convertType(ty); auto toOnTy = typeConverter.convertType(onTy); rewriter.replaceOpWithNewOp( index, toTy, index.getFieldId(), toOnTy, index.getTypeparams()); } } else if (auto index = mlir::dyn_cast(op)) { auto ty = index.getType(); mlir::Type onTy = index.getOnType(); if (typeConverter.needsConversion(ty) || typeConverter.needsConversion(onTy)) { rewriter.setInsertionPoint(index); auto toTy = typeConverter.convertType(ty); auto toOnTy = typeConverter.convertType(onTy); rewriter.replaceOpWithNewOp( mem, toTy, index.getFieldId(), toOnTy, index.getTypeparams()); } } else if (op->getDialect() == firDialect) { rewriter.startRootUpdate(op); for (auto i : llvm::enumerate(op->getResultTypes())) if (typeConverter.needsConversion(i.value())) { auto toTy = typeConverter.convertType(i.value()); op->getResult(i.index()).setType(toTy); } rewriter.finalizeRootUpdate(op); } }); } // TODO: any alternative implementation. Note: currently, the default code // gen will not be able to handle boxproc and will give an error. } private: BoxedProcedureOptions options; }; } // namespace std::unique_ptr fir::createBoxedProcedurePass() { return std::make_unique(); } std::unique_ptr fir::createBoxedProcedurePass(bool useThunks) { return std::make_unique(useThunks); }