//===-- lib/Evaluate/type.cpp ---------------------------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #include "flang/Evaluate/type.h" #include "flang/Common/idioms.h" #include "flang/Evaluate/expression.h" #include "flang/Evaluate/fold.h" #include "flang/Evaluate/target.h" #include "flang/Parser/characters.h" #include "flang/Semantics/scope.h" #include "flang/Semantics/symbol.h" #include "flang/Semantics/tools.h" #include "flang/Semantics/type.h" #include #include #include // IsDescriptor() predicate: true when a symbol is implemented // at runtime with a descriptor. namespace Fortran::semantics { static bool IsDescriptor(const DeclTypeSpec *type) { if (type) { if (auto dynamicType{evaluate::DynamicType::From(*type)}) { return dynamicType->RequiresDescriptor(); } } return false; } static bool IsDescriptor(const ObjectEntityDetails &details) { if (IsDescriptor(details.type()) || details.IsAssumedRank()) { return true; } for (const ShapeSpec &shapeSpec : details.shape()) { if (const auto &ub{shapeSpec.ubound().GetExplicit()}) { if (!IsConstantExpr(*ub)) { return true; } } else { return shapeSpec.ubound().isColon(); } } return false; } bool IsDescriptor(const Symbol &symbol) { return common::visit( common::visitors{ [&](const ObjectEntityDetails &d) { return IsAllocatableOrPointer(symbol) || IsDescriptor(d); }, [&](const ProcEntityDetails &d) { return false; }, [&](const EntityDetails &d) { return IsDescriptor(d.type()); }, [](const AssocEntityDetails &d) { if (const auto &expr{d.expr()}) { if (expr->Rank() > 0) { return true; } if (const auto dynamicType{expr->GetType()}) { if (dynamicType->RequiresDescriptor()) { return true; } } } return false; }, [](const SubprogramDetails &d) { return d.isFunction() && IsDescriptor(d.result()); }, [](const UseDetails &d) { return IsDescriptor(d.symbol()); }, [](const HostAssocDetails &d) { return IsDescriptor(d.symbol()); }, [](const auto &) { return false; }, }, symbol.details()); } bool IsPassedViaDescriptor(const Symbol &symbol) { if (!IsDescriptor(symbol)) { return false; } if (IsAllocatableOrPointer(symbol)) { return true; } if (semantics::IsAssumedSizeArray(symbol)) { return false; } if (const auto *object{ symbol.GetUltimate().detailsIf()}) { if (object->isDummy()) { if (object->type() && object->type()->category() == DeclTypeSpec::Character) { return false; } bool isExplicitShape{true}; for (const ShapeSpec &shapeSpec : object->shape()) { if (!shapeSpec.lbound().GetExplicit() || !shapeSpec.ubound().GetExplicit()) { isExplicitShape = false; break; } } if (isExplicitShape) { return false; // explicit shape but non-constant bounds } } } return true; } } // namespace Fortran::semantics namespace Fortran::evaluate { DynamicType::DynamicType(int k, const semantics::ParamValue &pv) : category_{TypeCategory::Character}, kind_{k} { CHECK(IsValidKindOfIntrinsicType(category_, kind_)); if (auto n{ToInt64(pv.GetExplicit())}) { knownLength_ = *n > 0 ? *n : 0; } else { charLengthParamValue_ = &pv; } } template inline bool PointeeComparison(const A *x, const A *y) { return x == y || (x && y && *x == *y); } bool DynamicType::operator==(const DynamicType &that) const { return category_ == that.category_ && kind_ == that.kind_ && PointeeComparison(charLengthParamValue_, that.charLengthParamValue_) && knownLength().has_value() == that.knownLength().has_value() && (!knownLength() || *knownLength() == *that.knownLength()) && PointeeComparison(derived_, that.derived_); } std::optional> DynamicType::GetCharLength() const { if (category_ == TypeCategory::Character) { if (knownLength()) { return AsExpr(Constant(*knownLength())); } else if (charLengthParamValue_) { if (auto length{charLengthParamValue_->GetExplicit()}) { return ConvertToType(std::move(*length)); } } } return std::nullopt; } std::size_t DynamicType::GetAlignment( const TargetCharacteristics &targetCharacteristics) const { if (category_ == TypeCategory::Derived) { switch (GetDerivedTypeSpec().category()) { SWITCH_COVERS_ALL_CASES case semantics::DerivedTypeSpec::Category::DerivedType: if (derived_ && derived_->scope()) { return derived_->scope()->alignment().value_or(1); } break; case semantics::DerivedTypeSpec::Category::IntrinsicVector: case semantics::DerivedTypeSpec::Category::PairVector: case semantics::DerivedTypeSpec::Category::QuadVector: if (derived_ && derived_->scope()) { return derived_->scope()->size(); } else { common::die("Missing scope for Vector type."); } } } else { return targetCharacteristics.GetAlignment(category_, kind()); } return 1; // needs to be after switch to dodge a bogus gcc warning } std::optional> DynamicType::MeasureSizeInBytes( FoldingContext &context, bool aligned, std::optional charLength) const { switch (category_) { case TypeCategory::Integer: case TypeCategory::Unsigned: case TypeCategory::Real: case TypeCategory::Complex: case TypeCategory::Logical: return Expr{ context.targetCharacteristics().GetByteSize(category_, kind())}; case TypeCategory::Character: if (auto len{charLength ? Expr{Constant{ *charLength}} : GetCharLength()}) { return Fold(context, Expr{ context.targetCharacteristics().GetByteSize(category_, kind())} * std::move(*len)); } break; case TypeCategory::Derived: if (!IsPolymorphic() && derived_ && derived_->scope()) { auto size{derived_->scope()->size()}; auto align{aligned ? derived_->scope()->alignment().value_or(0) : 0}; auto alignedSize{align > 0 ? ((size + align - 1) / align) * align : size}; return Expr{ static_cast(alignedSize)}; } break; } return std::nullopt; } bool DynamicType::IsAssumedLengthCharacter() const { return category_ == TypeCategory::Character && charLengthParamValue_ && charLengthParamValue_->isAssumed(); } bool DynamicType::IsNonConstantLengthCharacter() const { if (category_ != TypeCategory::Character) { return false; } else if (knownLength()) { return false; } else if (!charLengthParamValue_) { return true; } else if (const auto &expr{charLengthParamValue_->GetExplicit()}) { return !IsConstantExpr(*expr); } else { return true; } } bool DynamicType::IsTypelessIntrinsicArgument() const { return category_ == TypeCategory::Integer && kind_ == TypelessKind; } bool DynamicType::IsLengthlessIntrinsicType() const { return common::IsNumericTypeCategory(category_) || category_ == TypeCategory::Logical; } const semantics::DerivedTypeSpec *GetDerivedTypeSpec( const std::optional &type) { return type ? GetDerivedTypeSpec(*type) : nullptr; } const semantics::DerivedTypeSpec *GetDerivedTypeSpec(const DynamicType &type) { if (type.category() == TypeCategory::Derived && !type.IsUnlimitedPolymorphic()) { return &type.GetDerivedTypeSpec(); } else { return nullptr; } } static const semantics::Symbol *FindParentComponent( const semantics::DerivedTypeSpec &derived) { const semantics::Symbol &typeSymbol{derived.typeSymbol()}; const semantics::Scope *scope{derived.scope()}; if (!scope) { scope = typeSymbol.scope(); } if (scope) { const auto &dtDetails{typeSymbol.get()}; // TODO: Combine with semantics::DerivedTypeDetails::GetParentComponent if (auto extends{dtDetails.GetParentComponentName()}) { if (auto iter{scope->find(*extends)}; iter != scope->cend()) { if (const semantics::Symbol & symbol{*iter->second}; symbol.test(semantics::Symbol::Flag::ParentComp)) { return &symbol; } } } } return nullptr; } const semantics::DerivedTypeSpec *GetParentTypeSpec( const semantics::DerivedTypeSpec &derived) { if (const semantics::Symbol * parent{FindParentComponent(derived)}) { return &parent->get() .type() ->derivedTypeSpec(); } else { return nullptr; } } // Compares two derived type representations to see whether they both // represent the "same type" in the sense of section F'2023 7.5.2.4. using SetOfDerivedTypePairs = std::set>; static bool AreSameDerivedType(const semantics::DerivedTypeSpec &, const semantics::DerivedTypeSpec &, bool ignoreTypeParameterValues, bool ignoreLenParameters, bool ignoreSequence, SetOfDerivedTypePairs &inProgress); // F2023 7.5.3.2 static bool AreSameComponent(const semantics::Symbol &x, const semantics::Symbol &y, bool ignoreSequence, SetOfDerivedTypePairs &inProgress) { if (x.attrs() != y.attrs()) { return false; } if (x.attrs().test(semantics::Attr::PRIVATE)) { return false; } if (x.size() && y.size()) { if (x.offset() != y.offset() || x.size() != y.size()) { return false; } } const auto *xObj{x.detailsIf()}; const auto *yObj{y.detailsIf()}; const auto *xProc{x.detailsIf()}; const auto *yProc{y.detailsIf()}; if (!xObj != !yObj || !xProc != !yProc) { return false; } auto xType{DynamicType::From(x)}; auto yType{DynamicType::From(y)}; if (xType && yType) { if (xType->category() == TypeCategory::Derived) { if (yType->category() != TypeCategory::Derived || !xType->IsUnlimitedPolymorphic() != !yType->IsUnlimitedPolymorphic() || (!xType->IsUnlimitedPolymorphic() && !AreSameDerivedType(xType->GetDerivedTypeSpec(), yType->GetDerivedTypeSpec(), false, false, ignoreSequence, inProgress))) { return false; } } else if (!xType->IsTkLenCompatibleWith(*yType)) { return false; } } else if (xType || yType || !(xProc && yProc)) { return false; } if (xProc) { // TODO: compare argument types, &c. } return true; } // TODO: These utilities were cloned out of Semantics to avoid a cyclic // dependency and should be repackaged into then "namespace semantics" // part of Evaluate/tools.cpp. static const semantics::Symbol *GetParentComponent( const semantics::DerivedTypeDetails &details, const semantics::Scope &scope) { if (auto extends{details.GetParentComponentName()}) { if (auto iter{scope.find(*extends)}; iter != scope.cend()) { if (const Symbol & symbol{*iter->second}; symbol.test(semantics::Symbol::Flag::ParentComp)) { return &symbol; } } } return nullptr; } static const semantics::Symbol *GetParentComponent( const semantics::Symbol *symbol, const semantics::Scope &scope) { if (symbol) { if (const auto *dtDetails{ symbol->detailsIf()}) { return GetParentComponent(*dtDetails, scope); } } return nullptr; } static const semantics::DerivedTypeSpec *GetParentTypeSpec( const semantics::Symbol *symbol, const semantics::Scope &scope) { if (const Symbol * parentComponent{GetParentComponent(symbol, scope)}) { return &parentComponent->get() .type() ->derivedTypeSpec(); } else { return nullptr; } } static const semantics::Scope *GetDerivedTypeParent( const semantics::Scope *scope) { if (scope) { CHECK(scope->IsDerivedType()); if (const auto *parent{GetParentTypeSpec(scope->GetSymbol(), *scope)}) { return parent->scope(); } } return nullptr; } static const semantics::Symbol *FindComponent( const semantics::Scope *scope, parser::CharBlock name) { if (!scope) { return nullptr; } CHECK(scope->IsDerivedType()); auto found{scope->find(name)}; if (found != scope->end()) { return &*found->second; } else { return FindComponent(GetDerivedTypeParent(scope), name); } } static bool AreTypeParamCompatible(const semantics::DerivedTypeSpec &x, const semantics::DerivedTypeSpec &y, bool ignoreLenParameters) { const auto *xScope{x.typeSymbol().scope()}; const auto *yScope{y.typeSymbol().scope()}; for (const auto &[paramName, value] : x.parameters()) { const auto *yValue{y.FindParameter(paramName)}; if (!yValue) { return false; } const auto *xParm{FindComponent(xScope, paramName)}; const auto *yParm{FindComponent(yScope, paramName)}; if (xParm && yParm) { const auto *xTPD{xParm->detailsIf()}; const auto *yTPD{yParm->detailsIf()}; if (xTPD && yTPD) { if (xTPD->attr() != yTPD->attr()) { return false; } if (!ignoreLenParameters || xTPD->attr() != common::TypeParamAttr::Len) { auto xExpr{value.GetExplicit()}; auto yExpr{yValue->GetExplicit()}; if (xExpr && yExpr) { auto xVal{ToInt64(*xExpr)}; auto yVal{ToInt64(*yExpr)}; if (xVal && yVal && *xVal != *yVal) { return false; } } } } } } for (const auto &[paramName, _] : y.parameters()) { if (!x.FindParameter(paramName)) { return false; // y has more parameters than x } } return true; } // F2023 7.5.3.2 static bool AreSameDerivedType(const semantics::DerivedTypeSpec &x, const semantics::DerivedTypeSpec &y, bool ignoreTypeParameterValues, bool ignoreLenParameters, bool ignoreSequence, SetOfDerivedTypePairs &inProgress) { if (&x == &y) { return true; } if (!ignoreTypeParameterValues && !AreTypeParamCompatible(x, y, ignoreLenParameters)) { return false; } const auto &xSymbol{x.typeSymbol().GetUltimate()}; const auto &ySymbol{y.typeSymbol().GetUltimate()}; if (xSymbol == ySymbol) { return true; } if (xSymbol.name() != ySymbol.name()) { return false; } auto thisQuery{std::make_pair(&x, &y)}; if (inProgress.find(thisQuery) != inProgress.end()) { return true; // recursive use of types in components } inProgress.insert(thisQuery); const auto &xDetails{xSymbol.get()}; const auto &yDetails{ySymbol.get()}; if (xDetails.sequence() != yDetails.sequence() || xSymbol.attrs().test(semantics::Attr::BIND_C) != ySymbol.attrs().test(semantics::Attr::BIND_C)) { return false; } if (!ignoreSequence && !(xDetails.sequence() && yDetails.sequence()) && !(xSymbol.attrs().test(semantics::Attr::BIND_C) && ySymbol.attrs().test(semantics::Attr::BIND_C))) { // PGI does not enforce this requirement; all other Fortran // compilers do with a hard error when violations are caught. return false; } // Compare the component lists in their orders of declaration. auto xEnd{xDetails.componentNames().cend()}; auto yComponentName{yDetails.componentNames().cbegin()}; auto yEnd{yDetails.componentNames().cend()}; for (auto xComponentName{xDetails.componentNames().cbegin()}; xComponentName != xEnd; ++xComponentName, ++yComponentName) { if (yComponentName == yEnd || *xComponentName != *yComponentName || !xSymbol.scope() || !ySymbol.scope()) { return false; } const auto xLookup{xSymbol.scope()->find(*xComponentName)}; const auto yLookup{ySymbol.scope()->find(*yComponentName)}; if (xLookup == xSymbol.scope()->end() || yLookup == ySymbol.scope()->end() || !AreSameComponent( *xLookup->second, *yLookup->second, ignoreSequence, inProgress)) { return false; } } return yComponentName == yEnd; } bool AreSameDerivedType( const semantics::DerivedTypeSpec &x, const semantics::DerivedTypeSpec &y) { SetOfDerivedTypePairs inProgress; return AreSameDerivedType(x, y, false, false, false, inProgress); } bool AreSameDerivedTypeIgnoringTypeParameters( const semantics::DerivedTypeSpec &x, const semantics::DerivedTypeSpec &y) { SetOfDerivedTypePairs inProgress; return AreSameDerivedType(x, y, true, true, false, inProgress); } bool AreSameDerivedTypeIgnoringSequence( const semantics::DerivedTypeSpec &x, const semantics::DerivedTypeSpec &y) { SetOfDerivedTypePairs inProgress; return AreSameDerivedType(x, y, false, false, true, inProgress); } static bool AreSameDerivedType( const semantics::DerivedTypeSpec *x, const semantics::DerivedTypeSpec *y) { return x == y || (x && y && AreSameDerivedType(*x, *y)); } bool DynamicType::IsEquivalentTo(const DynamicType &that) const { return category_ == that.category_ && kind_ == that.kind_ && (charLengthParamValue_ == that.charLengthParamValue_ || (charLengthParamValue_ && that.charLengthParamValue_ && charLengthParamValue_->IsEquivalentInInterface( *that.charLengthParamValue_))) && knownLength().has_value() == that.knownLength().has_value() && (!knownLength() || *knownLength() == *that.knownLength()) && AreSameDerivedType(derived_, that.derived_); } static bool AreCompatibleDerivedTypes(const semantics::DerivedTypeSpec *x, const semantics::DerivedTypeSpec *y, bool isPolymorphic, bool ignoreTypeParameterValues, bool ignoreLenTypeParameters) { if (!x || !y) { return false; } else { SetOfDerivedTypePairs inProgress; if (AreSameDerivedType(*x, *y, ignoreTypeParameterValues, ignoreLenTypeParameters, false, inProgress)) { return true; } else { return isPolymorphic && AreCompatibleDerivedTypes(x, GetParentTypeSpec(*y), true, ignoreTypeParameterValues, ignoreLenTypeParameters); } } } static bool AreCompatibleTypes(const DynamicType &x, const DynamicType &y, bool ignoreTypeParameterValues, bool ignoreLengths) { if (x.IsUnlimitedPolymorphic()) { return true; } else if (y.IsUnlimitedPolymorphic()) { return false; } else if (x.category() != y.category()) { return false; } else if (x.category() == TypeCategory::Character) { const auto xLen{x.knownLength()}; const auto yLen{y.knownLength()}; return x.kind() == y.kind() && (ignoreLengths || !xLen || !yLen || *xLen == *yLen); } else if (x.category() != TypeCategory::Derived) { if (x.IsTypelessIntrinsicArgument()) { return y.IsTypelessIntrinsicArgument(); } else { return !y.IsTypelessIntrinsicArgument() && x.kind() == y.kind(); } } else { const auto *xdt{GetDerivedTypeSpec(x)}; const auto *ydt{GetDerivedTypeSpec(y)}; return AreCompatibleDerivedTypes( xdt, ydt, x.IsPolymorphic(), ignoreTypeParameterValues, false); } } // See 7.3.2.3 (5) & 15.5.2.4 bool DynamicType::IsTkCompatibleWith(const DynamicType &that) const { return AreCompatibleTypes(*this, that, false, true); } bool DynamicType::IsTkCompatibleWith( const DynamicType &that, common::IgnoreTKRSet ignoreTKR) const { if (ignoreTKR.test(common::IgnoreTKR::Type) && (category() == TypeCategory::Derived || that.category() == TypeCategory::Derived || category() != that.category())) { return true; } else if (ignoreTKR.test(common::IgnoreTKR::Kind) && category() == that.category()) { return true; } else { return AreCompatibleTypes(*this, that, false, true); } } bool DynamicType::IsTkLenCompatibleWith(const DynamicType &that) const { return AreCompatibleTypes(*this, that, false, false); } // 16.9.165 std::optional DynamicType::SameTypeAs(const DynamicType &that) const { bool x{AreCompatibleTypes(*this, that, true, true)}; bool y{AreCompatibleTypes(that, *this, true, true)}; if (!x && !y) { return false; } else if (x && y && !IsPolymorphic() && !that.IsPolymorphic()) { return true; } else { return std::nullopt; } } // 16.9.76 std::optional DynamicType::ExtendsTypeOf(const DynamicType &that) const { if (IsUnlimitedPolymorphic() || that.IsUnlimitedPolymorphic()) { return std::nullopt; // unknown } const auto *thisDts{evaluate::GetDerivedTypeSpec(*this)}; const auto *thatDts{evaluate::GetDerivedTypeSpec(that)}; if (!thisDts || !thatDts) { return std::nullopt; } else if (!AreCompatibleDerivedTypes(thatDts, thisDts, true, true, true)) { // Note that I check *thisDts, not its parent, so that EXTENDS_TYPE_OF() // is .true. when they are the same type. This is technically // an implementation-defined case in the standard, but every other // compiler works this way. if (IsPolymorphic() && AreCompatibleDerivedTypes(thisDts, thatDts, true, true, true)) { // 'that' is *this or an extension of *this, and so runtime *this // could be an extension of 'that' return std::nullopt; } else { return false; } } else if (that.IsPolymorphic()) { return std::nullopt; // unknown } else { return true; } } std::optional DynamicType::From( const semantics::DeclTypeSpec &type) { if (const auto *intrinsic{type.AsIntrinsic()}) { if (auto kind{ToInt64(intrinsic->kind())}) { TypeCategory category{intrinsic->category()}; if (IsValidKindOfIntrinsicType(category, *kind)) { if (category == TypeCategory::Character) { const auto &charType{type.characterTypeSpec()}; return DynamicType{static_cast(*kind), charType.length()}; } else { return DynamicType{category, static_cast(*kind)}; } } } } else if (const auto *derived{type.AsDerived()}) { return DynamicType{ *derived, type.category() == semantics::DeclTypeSpec::ClassDerived}; } else if (type.category() == semantics::DeclTypeSpec::ClassStar) { return DynamicType::UnlimitedPolymorphic(); } else if (type.category() == semantics::DeclTypeSpec::TypeStar) { return DynamicType::AssumedType(); } else { common::die("DynamicType::From(DeclTypeSpec): failed"); } return std::nullopt; } std::optional DynamicType::From(const semantics::Symbol &symbol) { return From(symbol.GetType()); // Symbol -> DeclTypeSpec -> DynamicType } DynamicType DynamicType::ResultTypeForMultiply(const DynamicType &that) const { switch (category_) { case TypeCategory::Integer: switch (that.category_) { case TypeCategory::Integer: return DynamicType{TypeCategory::Integer, std::max(kind(), that.kind())}; case TypeCategory::Real: case TypeCategory::Complex: return that; default: CRASH_NO_CASE; } break; case TypeCategory::Unsigned: switch (that.category_) { case TypeCategory::Unsigned: return DynamicType{TypeCategory::Unsigned, std::max(kind(), that.kind())}; default: CRASH_NO_CASE; } break; case TypeCategory::Real: switch (that.category_) { case TypeCategory::Integer: return *this; case TypeCategory::Real: return DynamicType{TypeCategory::Real, std::max(kind(), that.kind())}; case TypeCategory::Complex: return DynamicType{TypeCategory::Complex, std::max(kind(), that.kind())}; default: CRASH_NO_CASE; } break; case TypeCategory::Complex: switch (that.category_) { case TypeCategory::Integer: return *this; case TypeCategory::Real: case TypeCategory::Complex: return DynamicType{TypeCategory::Complex, std::max(kind(), that.kind())}; default: CRASH_NO_CASE; } break; case TypeCategory::Logical: switch (that.category_) { case TypeCategory::Logical: return DynamicType{TypeCategory::Logical, std::max(kind(), that.kind())}; default: CRASH_NO_CASE; } break; default: CRASH_NO_CASE; } return *this; } bool DynamicType::RequiresDescriptor() const { return IsPolymorphic() || IsNonConstantLengthCharacter() || (derived_ && CountNonConstantLenParameters(*derived_) > 0); } bool DynamicType::HasDeferredTypeParameter() const { if (derived_) { for (const auto &pair : derived_->parameters()) { if (pair.second.isDeferred()) { return true; } } } return charLengthParamValue_ && charLengthParamValue_->isDeferred(); } bool SomeKind::operator==( const SomeKind &that) const { return PointeeComparison(derivedTypeSpec_, that.derivedTypeSpec_); } int SelectedCharKind(const std::string &s, int defaultKind) { // F'2023 16.9.180 auto lower{parser::ToLowerCaseLetters(s)}; auto n{lower.size()}; while (n > 0 && lower[0] == ' ') { lower.erase(0, 1); --n; } while (n > 0 && lower[n - 1] == ' ') { lower.erase(--n, 1); } if (lower == "ascii") { return 1; } else if (lower == "ucs-2") { return 2; } else if (lower == "iso_10646" || lower == "ucs-4") { return 4; } else if (lower == "default") { return defaultKind; } else { return -1; } } std::optional ComparisonType( const DynamicType &t1, const DynamicType &t2) { switch (t1.category()) { case TypeCategory::Integer: switch (t2.category()) { case TypeCategory::Integer: return DynamicType{TypeCategory::Integer, std::max(t1.kind(), t2.kind())}; case TypeCategory::Real: case TypeCategory::Complex: return t2; default: return std::nullopt; } case TypeCategory::Real: switch (t2.category()) { case TypeCategory::Integer: return t1; case TypeCategory::Real: case TypeCategory::Complex: return DynamicType{t2.category(), std::max(t1.kind(), t2.kind())}; default: return std::nullopt; } case TypeCategory::Complex: switch (t2.category()) { case TypeCategory::Integer: return t1; case TypeCategory::Real: case TypeCategory::Complex: return DynamicType{TypeCategory::Complex, std::max(t1.kind(), t2.kind())}; default: return std::nullopt; } case TypeCategory::Character: switch (t2.category()) { case TypeCategory::Character: return DynamicType{ TypeCategory::Character, std::max(t1.kind(), t2.kind())}; default: return std::nullopt; } case TypeCategory::Logical: switch (t2.category()) { case TypeCategory::Logical: return DynamicType{TypeCategory::Logical, LogicalResult::kind}; default: return std::nullopt; } default: return std::nullopt; } } std::optional IsInteroperableIntrinsicType(const DynamicType &type, const common::LanguageFeatureControl *features, bool checkCharLength) { switch (type.category()) { case TypeCategory::Integer: case TypeCategory::Unsigned: return true; case TypeCategory::Real: case TypeCategory::Complex: return type.kind() >= 4 /* not a short or half float */ || !features || features->IsEnabled(common::LanguageFeature::CUDA); case TypeCategory::Logical: return type.kind() == 1; // C_BOOL case TypeCategory::Character: if (type.kind() != 1) { // C_CHAR return false; } else if (checkCharLength) { if (type.knownLength()) { return *type.knownLength() == 1; } else { return std::nullopt; } } else { return true; } default: // Derived types are tested in Semantics/check-declarations.cpp return false; } } bool IsCUDAIntrinsicType(const DynamicType &type) { switch (type.category()) { case TypeCategory::Integer: case TypeCategory::Logical: return type.kind() <= 8; case TypeCategory::Real: return type.kind() >= 2 && type.kind() <= 8; case TypeCategory::Complex: return type.kind() == 2 || type.kind() == 4 || type.kind() == 8; case TypeCategory::Character: return type.kind() == 1; default: // Derived types are tested in Semantics/check-declarations.cpp return false; } } DynamicType DynamicType::DropNonConstantCharacterLength() const { if (charLengthParamValue_ && charLengthParamValue_->isExplicit()) { if (std::optional len{knownLength()}) { return DynamicType(kind_, *len); } else { return DynamicType(category_, kind_); } } return *this; } } // namespace Fortran::evaluate