//===-- lib/Evaluate/check-expression.cpp ---------------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #include "flang/Evaluate/check-expression.h" #include "flang/Evaluate/intrinsics.h" #include "flang/Evaluate/traverse.h" #include "flang/Evaluate/type.h" #include "flang/Semantics/symbol.h" #include "flang/Semantics/tools.h" #include #include namespace Fortran::evaluate { // Constant expression predicate IsConstantExpr(). // This code determines whether an expression is a "constant expression" // in the sense of section 10.1.12. This is not the same thing as being // able to fold it (yet) into a known constant value; specifically, // the expression may reference derived type kind parameters whose values // are not yet known. class IsConstantExprHelper : public AllTraverse { public: using Base = AllTraverse; IsConstantExprHelper() : Base{*this} {} using Base::operator(); template bool operator()(const TypeParamInquiry &inq) const { return IsKindTypeParameter(inq.parameter()); } bool operator()(const semantics::Symbol &symbol) const { return IsNamedConstant(symbol) || IsImpliedDoIndex(symbol); } bool operator()(const CoarrayRef &) const { return false; } bool operator()(const semantics::ParamValue ¶m) const { return param.isExplicit() && (*this)(param.GetExplicit()); } template bool operator()(const FunctionRef &call) const { if (const auto *intrinsic{std::get_if(&call.proc().u)}) { return intrinsic->name == "kind"; // TODO: other inquiry intrinsics } else { return false; } } bool operator()(const StructureConstructor &constructor) const { for (const auto &[symRef, expr] : constructor) { if (IsAllocatable(*symRef)) { return IsNullPointer(expr.value()); } else if (IsPointer(*symRef)) { return IsNullPointer(expr.value()) || IsInitialDataTarget(expr.value()); } else if (!(*this)(expr.value())) { return false; } } return true; } bool operator()(const Component &component) const { return (*this)(component.base()); } // Forbid integer division by zero in constants. template bool operator()( const Divide> &division) const { using T = Type; if (const auto divisor{GetScalarConstantValue(division.right())}) { return !divisor->IsZero() && (*this)(division.left()); } else { return false; } } }; template bool IsConstantExpr(const A &x) { return IsConstantExprHelper{}(x); } template bool IsConstantExpr(const Expr &); template bool IsConstantExpr(const Expr &); template bool IsConstantExpr(const Expr &); // Object pointer initialization checking predicate IsInitialDataTarget(). // This code determines whether an expression is allowable as the static // data address used to initialize a pointer with "=> x". See C765. // If messages are requested, errors may be generated without returning // a false result. class IsInitialDataTargetHelper : public AllTraverse { public: using Base = AllTraverse; using Base::operator(); explicit IsInitialDataTargetHelper(parser::ContextualMessages *m) : Base{*this}, messages_{m} {} bool operator()(const BOZLiteralConstant &) const { return false; } bool operator()(const NullPointer &) const { return true; } template bool operator()(const Constant &) const { return false; } bool operator()(const semantics::Symbol &symbol) const { const Symbol &ultimate{symbol.GetUltimate()}; if (IsAllocatable(ultimate)) { if (messages_) { messages_->Say( "An initial data target may not be a reference to an ALLOCATABLE '%s'"_err_en_US, ultimate.name()); } else { return false; } } else if (ultimate.Corank() > 0) { if (messages_) { messages_->Say( "An initial data target may not be a reference to a coarray '%s'"_err_en_US, ultimate.name()); } else { return false; } } else if (!ultimate.attrs().test(semantics::Attr::TARGET)) { if (messages_) { messages_->Say( "An initial data target may not be a reference to an object '%s' that lacks the TARGET attribute"_err_en_US, ultimate.name()); } else { return false; } } else if (!IsSaved(ultimate)) { if (messages_) { messages_->Say( "An initial data target may not be a reference to an object '%s' that lacks the SAVE attribute"_err_en_US, ultimate.name()); } else { return false; } } return true; } bool operator()(const StaticDataObject &) const { return false; } template bool operator()(const TypeParamInquiry &) const { return false; } bool operator()(const Triplet &x) const { return IsConstantExpr(x.lower()) && IsConstantExpr(x.upper()) && IsConstantExpr(x.stride()); } bool operator()(const Subscript &x) const { return std::visit(common::visitors{ [&](const Triplet &t) { return (*this)(t); }, [&](const auto &y) { return y.value().Rank() == 0 && IsConstantExpr(y.value()); }, }, x.u); } bool operator()(const CoarrayRef &) const { return false; } bool operator()(const Substring &x) const { return IsConstantExpr(x.lower()) && IsConstantExpr(x.upper()) && (*this)(x.parent()); } bool operator()(const DescriptorInquiry &) const { return false; } template bool operator()(const ArrayConstructor &) const { return false; } bool operator()(const StructureConstructor &) const { return false; } template bool operator()(const FunctionRef &) { return false; } template bool operator()(const Operation &) const { return false; } template bool operator()(const Parentheses &x) const { return (*this)(x.left()); } bool operator()(const Relational &) const { return false; } private: parser::ContextualMessages *messages_; }; bool IsInitialDataTarget( const Expr &x, parser::ContextualMessages *messages) { return IsInitialDataTargetHelper{messages}(x); } // Specification expression validation (10.1.11(2), C1010) class CheckSpecificationExprHelper : public AnyTraverse> { public: using Result = std::optional; using Base = AnyTraverse; explicit CheckSpecificationExprHelper( const semantics::Scope &s, const IntrinsicProcTable &table) : Base{*this}, scope_{s}, table_{table} {} using Base::operator(); Result operator()(const ProcedureDesignator &) const { return "dummy procedure argument"; } Result operator()(const CoarrayRef &) const { return "coindexed reference"; } Result operator()(const semantics::Symbol &symbol) const { if (semantics::IsNamedConstant(symbol)) { return std::nullopt; } else if (scope_.IsDerivedType() && IsVariableName(symbol)) { // C750, C754 return "derived type component or type parameter value not allowed to " "reference variable '"s + symbol.name().ToString() + "'"; } else if (IsDummy(symbol)) { if (symbol.attrs().test(semantics::Attr::OPTIONAL)) { return "reference to OPTIONAL dummy argument '"s + symbol.name().ToString() + "'"; } else if (symbol.attrs().test(semantics::Attr::INTENT_OUT)) { return "reference to INTENT(OUT) dummy argument '"s + symbol.name().ToString() + "'"; } else if (symbol.has()) { return std::nullopt; } else { return "dummy procedure argument"; } } else if (symbol.has() || symbol.has() || symbol.owner().kind() == semantics::Scope::Kind::Module) { return std::nullopt; } else if (const auto *object{ symbol.detailsIf()}) { // TODO: what about EQUIVALENCE with data in COMMON? // TODO: does this work for blank COMMON? if (object->commonBlock()) { return std::nullopt; } } for (const semantics::Scope *s{&scope_}; !s->IsGlobal();) { s = &s->parent(); if (s == &symbol.owner()) { return std::nullopt; } } return "reference to local entity '"s + symbol.name().ToString() + "'"; } Result operator()(const Component &x) const { // Don't look at the component symbol. return (*this)(x.base()); } Result operator()(const DescriptorInquiry &) const { // Subtle: Uses of SIZE(), LBOUND(), &c. that are valid in specification // expressions will have been converted to expressions over descriptor // inquiries by Fold(). return std::nullopt; } template Result operator()(const TypeParamInquiry &inq) const { if (scope_.IsDerivedType() && !IsConstantExpr(inq) && inq.parameter().owner() != scope_) { // C750, C754 return "non-constant reference to a type parameter inquiry not " "allowed for derived type components or type parameter values"; } return std::nullopt; } template Result operator()(const FunctionRef &x) const { if (const auto *symbol{x.proc().GetSymbol()}) { if (!semantics::IsPureProcedure(*symbol)) { return "reference to impure function '"s + symbol->name().ToString() + "'"; } if (semantics::IsStmtFunction(*symbol)) { return "reference to statement function '"s + symbol->name().ToString() + "'"; } if (scope_.IsDerivedType()) { // C750, C754 return "reference to function '"s + symbol->name().ToString() + "' not allowed for derived type components or type parameter" " values"; } // TODO: other checks for standard module procedures } else { const SpecificIntrinsic &intrin{DEREF(x.proc().GetSpecificIntrinsic())}; if (scope_.IsDerivedType()) { // C750, C754 if ((table_.IsIntrinsic(intrin.name) && badIntrinsicsForComponents_.find(intrin.name) != badIntrinsicsForComponents_.end()) || IsProhibitedFunction(intrin.name)) { return "reference to intrinsic '"s + intrin.name + "' not allowed for derived type components or type parameter" " values"; } if (table_.GetIntrinsicClass(intrin.name) == IntrinsicClass::inquiryFunction && !IsConstantExpr(x)) { return "non-constant reference to inquiry intrinsic '"s + intrin.name + "' not allowed for derived type components or type" " parameter values"; } } else if (intrin.name == "present") { return std::nullopt; // no need to check argument(s) } if (IsConstantExpr(x)) { // inquiry functions may not need to check argument(s) return std::nullopt; } } return (*this)(x.arguments()); } private: const semantics::Scope &scope_; const IntrinsicProcTable &table_; const std::set badIntrinsicsForComponents_{ "allocated", "associated", "extends_type_of", "present", "same_type_as"}; static bool IsProhibitedFunction(std::string name) { return false; } }; template void CheckSpecificationExpr(const A &x, parser::ContextualMessages &messages, const semantics::Scope &scope, const IntrinsicProcTable &table) { if (auto why{CheckSpecificationExprHelper{scope, table}(x)}) { messages.Say("Invalid specification expression: %s"_err_en_US, *why); } } template void CheckSpecificationExpr(const Expr &, parser::ContextualMessages &, const semantics::Scope &, const IntrinsicProcTable &); template void CheckSpecificationExpr(const Expr &, parser::ContextualMessages &, const semantics::Scope &, const IntrinsicProcTable &); template void CheckSpecificationExpr(const Expr &, parser::ContextualMessages &, const semantics::Scope &, const IntrinsicProcTable &); template void CheckSpecificationExpr(const std::optional> &, parser::ContextualMessages &, const semantics::Scope &, const IntrinsicProcTable &); template void CheckSpecificationExpr(const std::optional> &, parser::ContextualMessages &, const semantics::Scope &, const IntrinsicProcTable &); template void CheckSpecificationExpr( const std::optional> &, parser::ContextualMessages &, const semantics::Scope &, const IntrinsicProcTable &); // IsSimplyContiguous() -- 9.5.4 class IsSimplyContiguousHelper : public AnyTraverse> { public: using Result = std::optional; // tri-state using Base = AnyTraverse; explicit IsSimplyContiguousHelper(const IntrinsicProcTable &t) : Base{*this}, table_{t} {} using Base::operator(); Result operator()(const semantics::Symbol &symbol) const { if (symbol.attrs().test(semantics::Attr::CONTIGUOUS) || symbol.Rank() == 0) { return true; } else if (semantics::IsPointer(symbol)) { return false; } else if (const auto *details{ symbol.detailsIf()}) { // N.B. ALLOCATABLEs are deferred shape, not assumed, and // are obviously contiguous. return !details->IsAssumedShape() && !details->IsAssumedRank(); } else { return false; } } Result operator()(const ArrayRef &x) const { const auto &symbol{x.GetLastSymbol()}; if (!(*this)(symbol)) { return false; } else if (auto rank{CheckSubscripts(x.subscript())}) { // a(:)%b(1,1) is not contiguous; a(1)%b(:,:) is return *rank > 0 || x.Rank() == 0; } else { return false; } } Result operator()(const CoarrayRef &x) const { return CheckSubscripts(x.subscript()).has_value(); } Result operator()(const Component &x) const { return x.base().Rank() == 0 && (*this)(x.GetLastSymbol()); } Result operator()(const ComplexPart &) const { return false; } Result operator()(const Substring &) const { return false; } template Result operator()(const FunctionRef &x) const { if (auto chars{ characteristics::Procedure::Characterize(x.proc(), table_)}) { if (chars->functionResult) { const auto &result{*chars->functionResult}; return !result.IsProcedurePointer() && result.attrs.test(characteristics::FunctionResult::Attr::Pointer) && result.attrs.test( characteristics::FunctionResult::Attr::Contiguous); } } return false; } private: // If the subscripts can possibly be on a simply-contiguous array reference, // return the rank. static std::optional CheckSubscripts( const std::vector &subscript) { bool anyTriplet{false}; int rank{0}; for (auto j{subscript.size()}; j-- > 0;) { if (const auto *triplet{std::get_if(&subscript[j].u)}) { if (!triplet->IsStrideOne()) { return std::nullopt; } else if (anyTriplet) { if (triplet->lower() || triplet->upper()) { // all triplets before the last one must be just ":" return std::nullopt; } } else { anyTriplet = true; } ++rank; } else if (anyTriplet || subscript[j].Rank() > 0) { return std::nullopt; } } return rank; } const IntrinsicProcTable &table_; }; template bool IsSimplyContiguous(const A &x, const IntrinsicProcTable &table) { if (IsVariable(x)) { auto known{IsSimplyContiguousHelper{table}(x)}; return known && *known; } else { return true; // not a variable } } template bool IsSimplyContiguous( const Expr &, const IntrinsicProcTable &); } // namespace Fortran::evaluate