//=== StackAddrEscapeChecker.cpp ----------------------------------*- C++ -*--// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file defines stack address leak checker, which checks if an invalid // stack address is stored into a global or heap location. See CERT DCL30-C. // //===----------------------------------------------------------------------===// #include "clang/AST/ExprCXX.h" #include "clang/Basic/SourceManager.h" #include "clang/StaticAnalyzer/Checkers/BuiltinCheckerRegistration.h" #include "clang/StaticAnalyzer/Core/BugReporter/BugType.h" #include "clang/StaticAnalyzer/Core/Checker.h" #include "clang/StaticAnalyzer/Core/CheckerManager.h" #include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h" #include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h" #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h" #include "llvm/ADT/SmallString.h" #include "llvm/Support/raw_ostream.h" using namespace clang; using namespace ento; namespace { class StackAddrEscapeChecker : public Checker, check::EndFunction> { mutable IdentifierInfo *dispatch_semaphore_tII = nullptr; mutable std::unique_ptr BT_stackleak; mutable std::unique_ptr BT_returnstack; mutable std::unique_ptr BT_capturedstackasync; mutable std::unique_ptr BT_capturedstackret; public: enum CheckKind { CK_StackAddrEscapeChecker, CK_StackAddrAsyncEscapeChecker, CK_NumCheckKinds }; bool ChecksEnabled[CK_NumCheckKinds] = {false}; CheckerNameRef CheckNames[CK_NumCheckKinds]; void checkPreCall(const CallEvent &Call, CheckerContext &C) const; void checkPreStmt(const ReturnStmt *RS, CheckerContext &C) const; void checkEndFunction(const ReturnStmt *RS, CheckerContext &Ctx) const; private: void checkReturnedBlockCaptures(const BlockDataRegion &B, CheckerContext &C) const; void checkAsyncExecutedBlockCaptures(const BlockDataRegion &B, CheckerContext &C) const; void EmitStackError(CheckerContext &C, const MemRegion *R, const Expr *RetE) const; bool isSemaphoreCaptured(const BlockDecl &B) const; static SourceRange genName(raw_ostream &os, const MemRegion *R, ASTContext &Ctx); static SmallVector getCapturedStackRegions(const BlockDataRegion &B, CheckerContext &C); static bool isNotInCurrentFrame(const MemRegion *R, CheckerContext &C); }; } // namespace SourceRange StackAddrEscapeChecker::genName(raw_ostream &os, const MemRegion *R, ASTContext &Ctx) { // Get the base region, stripping away fields and elements. R = R->getBaseRegion(); SourceManager &SM = Ctx.getSourceManager(); SourceRange range; os << "Address of "; // Check if the region is a compound literal. if (const auto *CR = dyn_cast(R)) { const CompoundLiteralExpr *CL = CR->getLiteralExpr(); os << "stack memory associated with a compound literal " "declared on line " << SM.getExpansionLineNumber(CL->getBeginLoc()); range = CL->getSourceRange(); } else if (const auto *AR = dyn_cast(R)) { const Expr *ARE = AR->getExpr(); SourceLocation L = ARE->getBeginLoc(); range = ARE->getSourceRange(); os << "stack memory allocated by call to alloca() on line " << SM.getExpansionLineNumber(L); } else if (const auto *BR = dyn_cast(R)) { const BlockDecl *BD = BR->getCodeRegion()->getDecl(); SourceLocation L = BD->getBeginLoc(); range = BD->getSourceRange(); os << "stack-allocated block declared on line " << SM.getExpansionLineNumber(L); } else if (const auto *VR = dyn_cast(R)) { os << "stack memory associated with local variable '" << VR->getString() << '\''; range = VR->getDecl()->getSourceRange(); } else if (const auto *LER = dyn_cast(R)) { QualType Ty = LER->getValueType().getLocalUnqualifiedType(); os << "stack memory associated with temporary object of type '"; Ty.print(os, Ctx.getPrintingPolicy()); os << "' lifetime extended by local variable"; if (const IdentifierInfo *ID = LER->getExtendingDecl()->getIdentifier()) os << " '" << ID->getName() << '\''; range = LER->getExpr()->getSourceRange(); } else if (const auto *TOR = dyn_cast(R)) { QualType Ty = TOR->getValueType().getLocalUnqualifiedType(); os << "stack memory associated with temporary object of type '"; Ty.print(os, Ctx.getPrintingPolicy()); os << "'"; range = TOR->getExpr()->getSourceRange(); } else { llvm_unreachable("Invalid region in ReturnStackAddressChecker."); } return range; } bool StackAddrEscapeChecker::isNotInCurrentFrame(const MemRegion *R, CheckerContext &C) { const StackSpaceRegion *S = cast(R->getMemorySpace()); return S->getStackFrame() != C.getStackFrame(); } bool StackAddrEscapeChecker::isSemaphoreCaptured(const BlockDecl &B) const { if (!dispatch_semaphore_tII) dispatch_semaphore_tII = &B.getASTContext().Idents.get("dispatch_semaphore_t"); for (const auto &C : B.captures()) { const auto *T = C.getVariable()->getType()->getAs(); if (T && T->getDecl()->getIdentifier() == dispatch_semaphore_tII) return true; } return false; } SmallVector StackAddrEscapeChecker::getCapturedStackRegions(const BlockDataRegion &B, CheckerContext &C) { SmallVector Regions; for (auto Var : B.referenced_vars()) { SVal Val = C.getState()->getSVal(Var.getCapturedRegion()); const MemRegion *Region = Val.getAsRegion(); if (Region && isa(Region->getMemorySpace())) Regions.push_back(Region); } return Regions; } void StackAddrEscapeChecker::EmitStackError(CheckerContext &C, const MemRegion *R, const Expr *RetE) const { ExplodedNode *N = C.generateNonFatalErrorNode(); if (!N) return; if (!BT_returnstack) BT_returnstack = std::make_unique( CheckNames[CK_StackAddrEscapeChecker], "Return of address to stack-allocated memory"); // Generate a report for this bug. SmallString<128> buf; llvm::raw_svector_ostream os(buf); SourceRange range = genName(os, R, C.getASTContext()); os << " returned to caller"; auto report = std::make_unique(*BT_returnstack, os.str(), N); report->addRange(RetE->getSourceRange()); if (range.isValid()) report->addRange(range); C.emitReport(std::move(report)); } void StackAddrEscapeChecker::checkAsyncExecutedBlockCaptures( const BlockDataRegion &B, CheckerContext &C) const { // There is a not-too-uncommon idiom // where a block passed to dispatch_async captures a semaphore // and then the thread (which called dispatch_async) is blocked on waiting // for the completion of the execution of the block // via dispatch_semaphore_wait. To avoid false-positives (for now) // we ignore all the blocks which have captured // a variable of the type "dispatch_semaphore_t". if (isSemaphoreCaptured(*B.getDecl())) return; for (const MemRegion *Region : getCapturedStackRegions(B, C)) { // The block passed to dispatch_async may capture another block // created on the stack. However, there is no leak in this situaton, // no matter if ARC or no ARC is enabled: // dispatch_async copies the passed "outer" block (via Block_copy) // and if the block has captured another "inner" block, // the "inner" block will be copied as well. if (isa(Region)) continue; ExplodedNode *N = C.generateNonFatalErrorNode(); if (!N) continue; if (!BT_capturedstackasync) BT_capturedstackasync = std::make_unique( CheckNames[CK_StackAddrAsyncEscapeChecker], "Address of stack-allocated memory is captured"); SmallString<128> Buf; llvm::raw_svector_ostream Out(Buf); SourceRange Range = genName(Out, Region, C.getASTContext()); Out << " is captured by an asynchronously-executed block"; auto Report = std::make_unique( *BT_capturedstackasync, Out.str(), N); if (Range.isValid()) Report->addRange(Range); C.emitReport(std::move(Report)); } } void StackAddrEscapeChecker::checkReturnedBlockCaptures( const BlockDataRegion &B, CheckerContext &C) const { for (const MemRegion *Region : getCapturedStackRegions(B, C)) { if (isNotInCurrentFrame(Region, C)) continue; ExplodedNode *N = C.generateNonFatalErrorNode(); if (!N) continue; if (!BT_capturedstackret) BT_capturedstackret = std::make_unique( CheckNames[CK_StackAddrEscapeChecker], "Address of stack-allocated memory is captured"); SmallString<128> Buf; llvm::raw_svector_ostream Out(Buf); SourceRange Range = genName(Out, Region, C.getASTContext()); Out << " is captured by a returned block"; auto Report = std::make_unique(*BT_capturedstackret, Out.str(), N); if (Range.isValid()) Report->addRange(Range); C.emitReport(std::move(Report)); } } void StackAddrEscapeChecker::checkPreCall(const CallEvent &Call, CheckerContext &C) const { if (!ChecksEnabled[CK_StackAddrAsyncEscapeChecker]) return; if (!Call.isGlobalCFunction("dispatch_after") && !Call.isGlobalCFunction("dispatch_async")) return; for (unsigned Idx = 0, NumArgs = Call.getNumArgs(); Idx < NumArgs; ++Idx) { if (const BlockDataRegion *B = dyn_cast_or_null( Call.getArgSVal(Idx).getAsRegion())) checkAsyncExecutedBlockCaptures(*B, C); } } void StackAddrEscapeChecker::checkPreStmt(const ReturnStmt *RS, CheckerContext &C) const { if (!ChecksEnabled[CK_StackAddrEscapeChecker]) return; const Expr *RetE = RS->getRetValue(); if (!RetE) return; RetE = RetE->IgnoreParens(); SVal V = C.getSVal(RetE); const MemRegion *R = V.getAsRegion(); if (!R) return; if (const BlockDataRegion *B = dyn_cast(R)) checkReturnedBlockCaptures(*B, C); if (!isa(R->getMemorySpace()) || isNotInCurrentFrame(R, C)) return; // Returning a record by value is fine. (In this case, the returned // expression will be a copy-constructor, possibly wrapped in an // ExprWithCleanups node.) if (const ExprWithCleanups *Cleanup = dyn_cast(RetE)) RetE = Cleanup->getSubExpr(); if (isa(RetE) && RetE->getType()->isRecordType()) return; // The CK_CopyAndAutoreleaseBlockObject cast causes the block to be copied // so the stack address is not escaping here. if (const auto *ICE = dyn_cast(RetE)) { if (isa(R) && ICE->getCastKind() == CK_CopyAndAutoreleaseBlockObject) { return; } } EmitStackError(C, R, RetE); } static const MemSpaceRegion *getStackOrGlobalSpaceRegion(const MemRegion *R) { assert(R); if (const auto *MemSpace = R->getMemorySpace()) { if (const auto *SSR = MemSpace->getAs()) return SSR; if (const auto *GSR = MemSpace->getAs()) return GSR; } // If R describes a lambda capture, it will be a symbolic region // referring to a field region of another symbolic region. if (const auto *SymReg = R->getBaseRegion()->getAs()) { if (const auto *OriginReg = SymReg->getSymbol()->getOriginRegion()) return getStackOrGlobalSpaceRegion(OriginReg); } return nullptr; } static const MemRegion *getOriginBaseRegion(const MemRegion *Reg) { Reg = Reg->getBaseRegion(); while (const auto *SymReg = dyn_cast(Reg)) { const auto *OriginReg = SymReg->getSymbol()->getOriginRegion(); if (!OriginReg) break; Reg = OriginReg->getBaseRegion(); } return Reg; } static std::optional printReferrer(const MemRegion *Referrer) { assert(Referrer); const StringRef ReferrerMemorySpace = [](const MemSpaceRegion *Space) { if (isa(Space)) return "static"; if (isa(Space)) return "global"; assert(isa(Space)); // This case covers top-level and inlined analyses. return "caller"; }(getStackOrGlobalSpaceRegion(Referrer)); while (!Referrer->canPrintPretty()) { if (const auto *SymReg = dyn_cast(Referrer); SymReg && SymReg->getSymbol()->getOriginRegion()) { Referrer = SymReg->getSymbol()->getOriginRegion()->getBaseRegion(); } else if (isa(Referrer)) { // Skip members of a class, it is handled in CheckExprLifetime.cpp as // warn_bind_ref_member_to_parameter or // warn_init_ptr_member_to_parameter_addr return std::nullopt; } else if (isa(Referrer)) { // Skip alloca() regions, they indicate advanced memory management // and higher likelihood of CSA false positives. return std::nullopt; } else { assert(false && "Unexpected referrer region type."); return std::nullopt; } } assert(Referrer); assert(Referrer->canPrintPretty()); std::string buf; llvm::raw_string_ostream os(buf); os << ReferrerMemorySpace << " variable "; Referrer->printPretty(os); return buf; } /// Check whether \p Region refers to a freshly minted symbol after an opaque /// function call. static bool isInvalidatedSymbolRegion(const MemRegion *Region) { const auto *SymReg = Region->getAs(); if (!SymReg) return false; SymbolRef Symbol = SymReg->getSymbol(); const auto *DerS = dyn_cast(Symbol); return DerS && isa_and_nonnull(DerS->getParentSymbol()); } void StackAddrEscapeChecker::checkEndFunction(const ReturnStmt *RS, CheckerContext &Ctx) const { if (!ChecksEnabled[CK_StackAddrEscapeChecker]) return; ExplodedNode *Node = Ctx.getPredecessor(); bool ExitingTopFrame = Ctx.getPredecessor()->getLocationContext()->inTopFrame(); if (ExitingTopFrame && Node->getLocation().getTag() == ExprEngine::cleanupNodeTag() && Node->getFirstPred()) { // When finishing analysis of a top-level function, engine proactively // removes dead symbols thus preventing this checker from looking through // the output parameters. Take 1 step back, to the node where these symbols // and their bindings are still present Node = Node->getFirstPred(); } // Iterate over all bindings to global variables and see if it contains // a memory region in the stack space. class CallBack : public StoreManager::BindingsHandler { private: CheckerContext &Ctx; const StackFrameContext *PoppedFrame; const bool TopFrame; /// Look for stack variables referring to popped stack variables. /// Returns true only if it found some dangling stack variables /// referred by an other stack variable from different stack frame. bool checkForDanglingStackVariable(const MemRegion *Referrer, const MemRegion *Referred) { const auto *ReferrerMemSpace = getStackOrGlobalSpaceRegion(Referrer); const auto *ReferredMemSpace = Referred->getMemorySpace()->getAs(); if (!ReferrerMemSpace || !ReferredMemSpace) return false; const auto *ReferrerStackSpace = ReferrerMemSpace->getAs(); if (!ReferrerStackSpace) return false; if (const auto *ReferredFrame = ReferredMemSpace->getStackFrame(); ReferredFrame != PoppedFrame) { return false; } if (ReferrerStackSpace->getStackFrame()->isParentOf(PoppedFrame)) { V.emplace_back(Referrer, Referred); return true; } if (isa(ReferrerMemSpace) && // Not a simple ptr (int*) but something deeper, e.g. int** isa(Referrer->getBaseRegion()) && ReferrerStackSpace->getStackFrame() == PoppedFrame && TopFrame) { // Output parameter of a top-level function V.emplace_back(Referrer, Referred); return true; } return false; } // Keep track of the variables that were invalidated through an opaque // function call. Even if the initial values of such variables were bound to // an address of a local variable, we cannot claim anything now, at the // function exit, so skip them to avoid false positives. void recordInInvalidatedRegions(const MemRegion *Region) { if (isInvalidatedSymbolRegion(Region)) ExcludedRegions.insert(getOriginBaseRegion(Region)); } public: SmallVector, 10> V; // ExcludedRegions are skipped from reporting. // I.e., if a referrer in this set, skip the related bug report. // It is useful to avoid false positive for the variables that were // reset to a conjured value after an opaque function call. llvm::SmallPtrSet ExcludedRegions; CallBack(CheckerContext &CC, bool TopFrame) : Ctx(CC), PoppedFrame(CC.getStackFrame()), TopFrame(TopFrame) {} bool HandleBinding(StoreManager &SMgr, Store S, const MemRegion *Region, SVal Val) override { recordInInvalidatedRegions(Region); const MemRegion *VR = Val.getAsRegion(); if (!VR) return true; if (checkForDanglingStackVariable(Region, VR)) return true; // Check the globals for the same. if (!isa_and_nonnull( getStackOrGlobalSpaceRegion(Region))) return true; if (VR && VR->hasStackStorage() && !isNotInCurrentFrame(VR, Ctx)) V.emplace_back(Region, VR); return true; } }; CallBack Cb(Ctx, ExitingTopFrame); ProgramStateRef State = Node->getState(); State->getStateManager().getStoreManager().iterBindings(State->getStore(), Cb); if (Cb.V.empty()) return; // Generate an error node. ExplodedNode *N = Ctx.generateNonFatalErrorNode(State, Node); if (!N) return; if (!BT_stackleak) BT_stackleak = std::make_unique(CheckNames[CK_StackAddrEscapeChecker], "Stack address leaks outside of stack frame"); for (const auto &P : Cb.V) { const MemRegion *Referrer = P.first->getBaseRegion(); const MemRegion *Referred = P.second; if (Cb.ExcludedRegions.contains(getOriginBaseRegion(Referrer))) { continue; } // Generate a report for this bug. const StringRef CommonSuffix = " upon returning to the caller. This will be a dangling reference"; SmallString<128> Buf; llvm::raw_svector_ostream Out(Buf); const SourceRange Range = genName(Out, Referred, Ctx.getASTContext()); if (isa(Referrer)) { Out << " is still referred to by a temporary object on the stack" << CommonSuffix; auto Report = std::make_unique(*BT_stackleak, Out.str(), N); if (Range.isValid()) Report->addRange(Range); Ctx.emitReport(std::move(Report)); return; } auto ReferrerVariable = printReferrer(Referrer); if (!ReferrerVariable) { continue; } Out << " is still referred to by the " << *ReferrerVariable << CommonSuffix; auto Report = std::make_unique(*BT_stackleak, Out.str(), N); if (Range.isValid()) Report->addRange(Range); Ctx.emitReport(std::move(Report)); } } void ento::registerStackAddrEscapeBase(CheckerManager &mgr) { mgr.registerChecker(); } bool ento::shouldRegisterStackAddrEscapeBase(const CheckerManager &mgr) { return true; } #define REGISTER_CHECKER(name) \ void ento::register##name(CheckerManager &Mgr) { \ StackAddrEscapeChecker *Chk = Mgr.getChecker(); \ Chk->ChecksEnabled[StackAddrEscapeChecker::CK_##name] = true; \ Chk->CheckNames[StackAddrEscapeChecker::CK_##name] = \ Mgr.getCurrentCheckerName(); \ } \ \ bool ento::shouldRegister##name(const CheckerManager &mgr) { return true; } REGISTER_CHECKER(StackAddrEscapeChecker) REGISTER_CHECKER(StackAddrAsyncEscapeChecker)