//===- bolt/Profile/BoltAddressTranslation.cpp ----------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #include "bolt/Profile/BoltAddressTranslation.h" #include "bolt/Core/BinaryFunction.h" #include "llvm/Support/Errc.h" #include "llvm/Support/Error.h" #include "llvm/Support/LEB128.h" #define DEBUG_TYPE "bolt-bat" namespace llvm { namespace bolt { const char *BoltAddressTranslation::SECTION_NAME = ".note.bolt_bat"; void BoltAddressTranslation::writeEntriesForBB(MapTy &Map, const BinaryBasicBlock &BB, uint64_t FuncAddress) { const uint64_t BBOutputOffset = BB.getOutputAddressRange().first - FuncAddress; const uint32_t BBInputOffset = BB.getInputOffset(); // Every output BB must track back to an input BB for profile collection // in bolted binaries. If we are missing an offset, it means this block was // created by a pass. We will skip writing any entries for it, and this means // any traffic happening in this block will map to the previous block in the // layout. This covers the case where an input basic block is split into two, // and the second one lacks any offset. if (BBInputOffset == BinaryBasicBlock::INVALID_OFFSET) return; LLVM_DEBUG(dbgs() << "BB " << BB.getName() << "\n"); LLVM_DEBUG(dbgs() << " Key: " << Twine::utohexstr(BBOutputOffset) << " Val: " << Twine::utohexstr(BBInputOffset) << "\n"); // In case of conflicts (same Key mapping to different Vals), the last // update takes precedence. Of course it is not ideal to have conflicts and // those happen when we have an empty BB that either contained only // NOPs or a jump to the next block (successor). Either way, the successor // and this deleted block will both share the same output address (the same // key), and we need to map back. We choose here to privilege the successor by // allowing it to overwrite the previously inserted key in the map. Map[BBOutputOffset] = BBInputOffset << 1; const auto &IOAddressMap = BB.getFunction()->getBinaryContext().getIOAddressMap(); for (const auto &[InputOffset, Sym] : BB.getLocSyms()) { const auto InputAddress = BB.getFunction()->getAddress() + InputOffset; const auto OutputAddress = IOAddressMap.lookup(InputAddress); assert(OutputAddress && "Unknown instruction address"); const auto OutputOffset = *OutputAddress - FuncAddress; // Is this the first instruction in the BB? No need to duplicate the entry. if (OutputOffset == BBOutputOffset) continue; LLVM_DEBUG(dbgs() << " Key: " << Twine::utohexstr(OutputOffset) << " Val: " << Twine::utohexstr(InputOffset) << " (branch)\n"); Map.insert(std::pair(OutputOffset, (InputOffset << 1) | BRANCHENTRY)); } } void BoltAddressTranslation::write(const BinaryContext &BC, raw_ostream &OS) { LLVM_DEBUG(dbgs() << "BOLT-DEBUG: Writing BOLT Address Translation Tables\n"); for (auto &BFI : BC.getBinaryFunctions()) { const BinaryFunction &Function = BFI.second; // We don't need a translation table if the body of the function hasn't // changed if (Function.isIgnored() || (!BC.HasRelocations && !Function.isSimple())) continue; LLVM_DEBUG(dbgs() << "Function name: " << Function.getPrintName() << "\n"); LLVM_DEBUG(dbgs() << " Address reference: 0x" << Twine::utohexstr(Function.getOutputAddress()) << "\n"); MapTy Map; for (const BinaryBasicBlock *const BB : Function.getLayout().getMainFragment()) writeEntriesForBB(Map, *BB, Function.getOutputAddress()); Maps.emplace(Function.getOutputAddress(), std::move(Map)); if (!Function.isSplit()) continue; // Split maps LLVM_DEBUG(dbgs() << " Cold part\n"); for (const FunctionFragment &FF : Function.getLayout().getSplitFragments()) { Map.clear(); for (const BinaryBasicBlock *const BB : FF) writeEntriesForBB(Map, *BB, FF.getAddress()); Maps.emplace(FF.getAddress(), std::move(Map)); ColdPartSource.emplace(FF.getAddress(), Function.getOutputAddress()); } } // Output addresses are delta-encoded uint64_t PrevAddress = 0; writeMaps(Maps, PrevAddress, OS); writeMaps(Maps, PrevAddress, OS); outs() << "BOLT-INFO: Wrote " << Maps.size() << " BAT maps\n"; } template void BoltAddressTranslation::writeMaps(std::map &Maps, uint64_t &PrevAddress, raw_ostream &OS) { const uint32_t NumFuncs = llvm::count_if(llvm::make_first_range(Maps), [&](const uint64_t Address) { return Cold == ColdPartSource.count(Address); }); encodeULEB128(NumFuncs, OS); LLVM_DEBUG(dbgs() << "Writing " << NumFuncs << (Cold ? " cold" : "") << " functions for BAT.\n"); size_t PrevIndex = 0; for (auto &MapEntry : Maps) { const uint64_t Address = MapEntry.first; // Only process cold fragments in cold mode, and vice versa. if (Cold != ColdPartSource.count(Address)) continue; MapTy &Map = MapEntry.second; const uint32_t NumEntries = Map.size(); LLVM_DEBUG(dbgs() << "Writing " << NumEntries << " entries for 0x" << Twine::utohexstr(Address) << ".\n"); encodeULEB128(Address - PrevAddress, OS); PrevAddress = Address; if (Cold) { size_t HotIndex = std::distance(ColdPartSource.begin(), ColdPartSource.find(Address)); encodeULEB128(HotIndex - PrevIndex, OS); PrevIndex = HotIndex; } encodeULEB128(NumEntries, OS); uint64_t InOffset = 0; // Output and Input addresses and delta-encoded for (std::pair &KeyVal : Map) { const uint64_t OutputAddress = KeyVal.first + Address; encodeULEB128(OutputAddress - PrevAddress, OS); PrevAddress = OutputAddress; encodeSLEB128(KeyVal.second - InOffset, OS); InOffset = KeyVal.second; } } } std::error_code BoltAddressTranslation::parse(StringRef Buf) { DataExtractor DE = DataExtractor(Buf, true, 8); uint64_t Offset = 0; if (Buf.size() < 12) return make_error_code(llvm::errc::io_error); const uint32_t NameSz = DE.getU32(&Offset); const uint32_t DescSz = DE.getU32(&Offset); const uint32_t Type = DE.getU32(&Offset); if (Type != BinarySection::NT_BOLT_BAT || Buf.size() + Offset < alignTo(NameSz, 4) + DescSz) return make_error_code(llvm::errc::io_error); StringRef Name = Buf.slice(Offset, Offset + NameSz); Offset = alignTo(Offset + NameSz, 4); if (Name.substr(0, 4) != "BOLT") return make_error_code(llvm::errc::io_error); Error Err(Error::success()); std::vector HotFuncs; uint64_t PrevAddress = 0; parseMaps(HotFuncs, PrevAddress, DE, Offset, Err); parseMaps(HotFuncs, PrevAddress, DE, Offset, Err); outs() << "BOLT-INFO: Parsed " << Maps.size() << " BAT entries\n"; return errorToErrorCode(std::move(Err)); } template void BoltAddressTranslation::parseMaps(std::vector &HotFuncs, uint64_t &PrevAddress, DataExtractor &DE, uint64_t &Offset, Error &Err) { const uint32_t NumFunctions = DE.getULEB128(&Offset, &Err); LLVM_DEBUG(dbgs() << "Parsing " << NumFunctions << (Cold ? " cold" : "") << " functions\n"); size_t HotIndex = 0; for (uint32_t I = 0; I < NumFunctions; ++I) { const uint64_t Address = PrevAddress + DE.getULEB128(&Offset, &Err); PrevAddress = Address; if (Cold) { HotIndex += DE.getULEB128(&Offset, &Err); ColdPartSource.emplace(Address, HotFuncs[HotIndex]); } else { HotFuncs.push_back(Address); } const uint32_t NumEntries = DE.getULEB128(&Offset, &Err); MapTy Map; LLVM_DEBUG(dbgs() << "Parsing " << NumEntries << " entries for 0x" << Twine::utohexstr(Address) << "\n"); uint64_t InputOffset = 0; for (uint32_t J = 0; J < NumEntries; ++J) { const uint64_t OutputDelta = DE.getULEB128(&Offset, &Err); const uint64_t OutputAddress = PrevAddress + OutputDelta; const uint64_t OutputOffset = OutputAddress - Address; PrevAddress = OutputAddress; const int64_t InputDelta = DE.getSLEB128(&Offset, &Err); InputOffset += InputDelta; Map.insert(std::pair(OutputOffset, InputOffset)); LLVM_DEBUG( dbgs() << formatv("{0:x} -> {1:x} ({2}/{3}b -> {4}/{5}b), {6:x}\n", OutputOffset, InputOffset, OutputDelta, encodeULEB128(OutputDelta, nulls()), InputDelta, encodeSLEB128(InputDelta, nulls()), OutputAddress)); } Maps.insert(std::pair(Address, Map)); } } void BoltAddressTranslation::dump(raw_ostream &OS) { const size_t NumTables = Maps.size(); OS << "BAT tables for " << NumTables << " functions:\n"; for (const auto &MapEntry : Maps) { OS << "Function Address: 0x" << Twine::utohexstr(MapEntry.first) << "\n"; OS << "BB mappings:\n"; for (const auto &Entry : MapEntry.second) { const bool IsBranch = Entry.second & BRANCHENTRY; const uint32_t Val = Entry.second >> 1; // dropping BRANCHENTRY bit OS << "0x" << Twine::utohexstr(Entry.first) << " -> " << "0x" << Twine::utohexstr(Val); if (IsBranch) OS << " (branch)"; OS << "\n"; } OS << "\n"; } const size_t NumColdParts = ColdPartSource.size(); if (!NumColdParts) return; OS << NumColdParts << " cold mappings:\n"; for (const auto &Entry : ColdPartSource) { OS << "0x" << Twine::utohexstr(Entry.first) << " -> " << Twine::utohexstr(Entry.second) << "\n"; } OS << "\n"; } uint64_t BoltAddressTranslation::translate(uint64_t FuncAddress, uint64_t Offset, bool IsBranchSrc) const { auto Iter = Maps.find(FuncAddress); if (Iter == Maps.end()) return Offset; const MapTy &Map = Iter->second; auto KeyVal = Map.upper_bound(Offset); if (KeyVal == Map.begin()) return Offset; --KeyVal; const uint32_t Val = KeyVal->second >> 1; // dropping BRANCHENTRY bit // Branch source addresses are translated to the first instruction of the // source BB to avoid accounting for modifications BOLT may have made in the // BB regarding deletion/addition of instructions. if (IsBranchSrc) return Val; return Offset - KeyVal->first + Val; } std::optional BoltAddressTranslation::getFallthroughsInTrace(uint64_t FuncAddress, uint64_t From, uint64_t To) const { SmallVector, 16> Res; // Filter out trivial case if (From >= To) return Res; From -= FuncAddress; To -= FuncAddress; auto Iter = Maps.find(FuncAddress); if (Iter == Maps.end()) return std::nullopt; const MapTy &Map = Iter->second; auto FromIter = Map.upper_bound(From); if (FromIter == Map.begin()) return Res; // Skip instruction entries, to create fallthroughs we are only interested in // BB boundaries do { if (FromIter == Map.begin()) return Res; --FromIter; } while (FromIter->second & BRANCHENTRY); auto ToIter = Map.upper_bound(To); if (ToIter == Map.begin()) return Res; --ToIter; if (FromIter->first >= ToIter->first) return Res; for (auto Iter = FromIter; Iter != ToIter;) { const uint32_t Src = Iter->first; if (Iter->second & BRANCHENTRY) { ++Iter; continue; } ++Iter; while (Iter->second & BRANCHENTRY && Iter != ToIter) ++Iter; if (Iter->second & BRANCHENTRY) break; Res.emplace_back(Src, Iter->first); } return Res; } uint64_t BoltAddressTranslation::fetchParentAddress(uint64_t Address) const { auto Iter = ColdPartSource.find(Address); if (Iter == ColdPartSource.end()) return 0; return Iter->second; } bool BoltAddressTranslation::enabledFor( llvm::object::ELFObjectFileBase *InputFile) const { for (const SectionRef &Section : InputFile->sections()) { Expected SectionNameOrErr = Section.getName(); if (Error E = SectionNameOrErr.takeError()) continue; if (SectionNameOrErr.get() == SECTION_NAME) return true; } return false; } } // namespace bolt } // namespace llvm