//===- bolt/Passes/SplitFunctions.cpp - Pass for splitting function code --===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file implements the SplitFunctions pass. // //===----------------------------------------------------------------------===// #include "bolt/Passes/SplitFunctions.h" #include "bolt/Core/BinaryFunction.h" #include "bolt/Core/FunctionLayout.h" #include "bolt/Core/ParallelUtilities.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/FormatVariadic.h" #include #include #include #include #define DEBUG_TYPE "bolt-opts" using namespace llvm; using namespace bolt; namespace { class DeprecatedSplitFunctionOptionParser : public cl::parser { public: explicit DeprecatedSplitFunctionOptionParser(cl::Option &O) : cl::parser(O) {} bool parse(cl::Option &O, StringRef ArgName, StringRef Arg, bool &Value) { if (Arg == "2" || Arg == "3") { Value = true; errs() << formatv("BOLT-WARNING: specifying non-boolean value \"{0}\" " "for option -{1} is deprecated\n", Arg, ArgName); return false; } return cl::parser::parse(O, ArgName, Arg, Value); } }; } // namespace namespace opts { extern cl::OptionCategory BoltOptCategory; extern cl::opt SplitEH; extern cl::opt ExecutionCountThreshold; extern cl::opt RandomSeed; static cl::opt AggressiveSplitting( "split-all-cold", cl::desc("outline as many cold basic blocks as possible"), cl::cat(BoltOptCategory)); static cl::opt SplitAlignThreshold( "split-align-threshold", cl::desc("when deciding to split a function, apply this alignment " "while doing the size comparison (see -split-threshold). " "Default value: 2."), cl::init(2), cl::Hidden, cl::cat(BoltOptCategory)); static cl::opt SplitFunctions("split-functions", cl::desc("split functions into fragments"), cl::cat(BoltOptCategory)); static cl::opt SplitThreshold( "split-threshold", cl::desc("split function only if its main size is reduced by more than " "given amount of bytes. Default value: 0, i.e. split iff the " "size is reduced. Note that on some architectures the size can " "increase after splitting."), cl::init(0), cl::Hidden, cl::cat(BoltOptCategory)); static cl::opt SplitStrategy( "split-strategy", cl::init(SplitFunctionsStrategy::Profile2), cl::values(clEnumValN(SplitFunctionsStrategy::Profile2, "profile2", "split each function into a hot and cold fragment " "using profiling information")), cl::values(clEnumValN( SplitFunctionsStrategy::Random2, "random2", "split each function into a hot and cold fragment at a randomly chosen " "split point (ignoring any available profiling information)")), cl::values(clEnumValN( SplitFunctionsStrategy::All, "all", "split all basic blocks of each function into fragments such that each " "fragment contains exactly a single basic block")), cl::desc("strategy used to partition blocks into fragments"), cl::cat(BoltOptCategory)); } // namespace opts namespace { struct SplitProfile2 { bool canSplit(const BinaryFunction &BF) { if (!BF.hasValidProfile()) return false; bool AllCold = true; for (const BinaryBasicBlock &BB : BF) { const uint64_t ExecCount = BB.getExecutionCount(); if (ExecCount == BinaryBasicBlock::COUNT_NO_PROFILE) return false; if (ExecCount != 0) AllCold = false; } return !AllCold; } bool canOutline(const BinaryBasicBlock &BB) { return BB.getExecutionCount() == 0; } template void partition(const It Start, const It End) const { std::for_each(Start, End, [](BinaryBasicBlock *const BB) { assert(BB->canOutline() && "Moving a block that is not outlineable to cold fragment"); BB->setFragmentNum(FragmentNum::cold()); }); } }; struct SplitRandom2 { std::minstd_rand0 *Gen; explicit SplitRandom2(std::minstd_rand0 &Gen) : Gen(&Gen) {} bool canSplit(const BinaryFunction &BF) { return true; } bool canOutline(const BinaryBasicBlock &BB) { return true; } template void partition(It Start, It End) const { using DiffT = typename std::iterator_traits::difference_type; const DiffT NumOutlineableBlocks = End - Start; // We want to split at least one block unless there are not blocks that can // be outlined const auto MinimumSplit = std::min(NumOutlineableBlocks, 1); std::uniform_int_distribution Dist(MinimumSplit, NumOutlineableBlocks); const DiffT NumColdBlocks = Dist(*Gen); std::for_each(End - NumColdBlocks, End, [](BinaryBasicBlock *BB) { BB->setFragmentNum(FragmentNum::cold()); }); LLVM_DEBUG(dbgs() << formatv("BOLT-DEBUG: randomly chose last {0} (out of " "{1} possible) blocks to split\n", NumColdBlocks, End - Start)); } }; struct SplitAll { bool canSplit(const BinaryFunction &BF) { return true; } bool canOutline(const BinaryBasicBlock &BB) { return true; } template void partition(It Start, It End) const { unsigned Fragment = 1; std::for_each(Start, End, [&](BinaryBasicBlock *const BB) { assert(BB->canOutline() && "Moving a block that is not outlineable to cold fragment"); BB->setFragmentNum(FragmentNum(Fragment++)); }); } }; } // namespace namespace llvm { namespace bolt { bool SplitFunctions::shouldOptimize(const BinaryFunction &BF) const { // Apply execution count threshold if (BF.getKnownExecutionCount() < opts::ExecutionCountThreshold) return false; return BinaryFunctionPass::shouldOptimize(BF); } void SplitFunctions::runOnFunctions(BinaryContext &BC) { if (!opts::SplitFunctions) return; std::minstd_rand0 RandGen(opts::RandomSeed.getValue()); ParallelUtilities::WorkFuncTy WorkFun; bool ForceSequential = false; switch (opts::SplitStrategy) { case SplitFunctionsStrategy::Profile2: WorkFun = [&](BinaryFunction &BF) { splitFunction(BF); }; break; case SplitFunctionsStrategy::Random2: WorkFun = [&](BinaryFunction &BF) { splitFunction(BF, SplitRandom2(RandGen)); }; // If we split functions randomly, we need to ensure that across runs with // the same input, we generate random numbers for each function in the same // order. ForceSequential = true; break; case SplitFunctionsStrategy::All: WorkFun = [&](BinaryFunction &BF) { splitFunction(BF); }; break; } ParallelUtilities::PredicateTy SkipFunc = [&](const BinaryFunction &BF) { return !shouldOptimize(BF); }; ParallelUtilities::runOnEachFunction( BC, ParallelUtilities::SchedulingPolicy::SP_BB_LINEAR, WorkFun, SkipFunc, "SplitFunctions", ForceSequential); if (SplitBytesHot + SplitBytesCold > 0) outs() << "BOLT-INFO: splitting separates " << SplitBytesHot << " hot bytes from " << SplitBytesCold << " cold bytes " << format("(%.2lf%% of split functions is hot).\n", 100.0 * SplitBytesHot / (SplitBytesHot + SplitBytesCold)); } template void SplitFunctions::splitFunction(BinaryFunction &BF, Strategy S) { if (BF.empty()) return; if (!S.canSplit(BF)) return; FunctionLayout &Layout = BF.getLayout(); BinaryFunction::BasicBlockOrderType PreSplitLayout(Layout.block_begin(), Layout.block_end()); BinaryContext &BC = BF.getBinaryContext(); size_t OriginalHotSize; size_t HotSize; size_t ColdSize; if (BC.isX86()) { std::tie(OriginalHotSize, ColdSize) = BC.calculateEmittedSize(BF); LLVM_DEBUG(dbgs() << "Estimated size for function " << BF << " pre-split is <0x" << Twine::utohexstr(OriginalHotSize) << ", 0x" << Twine::utohexstr(ColdSize) << ">\n"); } BinaryFunction::BasicBlockOrderType NewLayout(Layout.block_begin(), Layout.block_end()); // Never outline the first basic block. NewLayout.front()->setCanOutline(false); for (BinaryBasicBlock *const BB : NewLayout) { if (!BB->canOutline()) continue; if (!S.canOutline(*BB)) { BB->setCanOutline(false); continue; } // Do not split extra entry points in aarch64. They can be referred by // using ADRs and when this happens, these blocks cannot be placed far // away due to the limited range in ADR instruction. if (BC.isAArch64() && BB->isEntryPoint()) { BB->setCanOutline(false); continue; } if (BF.hasEHRanges() && !opts::SplitEH) { // We cannot move landing pads (or rather entry points for landing pads). if (BB->isLandingPad()) { BB->setCanOutline(false); continue; } // We cannot move a block that can throw since exception-handling // runtime cannot deal with split functions. However, if we can guarantee // that the block never throws, it is safe to move the block to // decrease the size of the function. for (MCInst &Instr : *BB) { if (BC.MIB->isInvoke(Instr)) { BB->setCanOutline(false); break; } } } } if (opts::AggressiveSplitting) { // All blocks with 0 count that we can move go to the end of the function. // Even if they were natural to cluster formation and were seen in-between // hot basic blocks. stable_sort(NewLayout, [&](BinaryBasicBlock *A, BinaryBasicBlock *B) { return A->canOutline() < B->canOutline(); }); } else if (BF.hasEHRanges() && !opts::SplitEH) { // Typically functions with exception handling have landing pads at the end. // We cannot move beginning of landing pads, but we can move 0-count blocks // comprising landing pads to the end and thus facilitate splitting. auto FirstLP = NewLayout.begin(); while ((*FirstLP)->isLandingPad()) ++FirstLP; std::stable_sort(FirstLP, NewLayout.end(), [&](BinaryBasicBlock *A, BinaryBasicBlock *B) { return A->canOutline() < B->canOutline(); }); } // Identify the last block that must not be split into a fragment. Every block // after this block can be split. Note that when the iterator points to the // block that cannot be outlined, then reverse_iterator::base() points to the // block after it. const BinaryFunction::BasicBlockOrderType::reverse_iterator FirstOutlineable = llvm::find_if(reverse(NewLayout), [](const BinaryBasicBlock *const BB) { return !BB->canOutline(); }); S.partition(FirstOutlineable.base(), NewLayout.end()); BF.getLayout().update(NewLayout); // For shared objects, invoke instructions and corresponding landing pads // have to be placed in the same fragment. When we split them, create // trampoline landing pads that will redirect the execution to real LPs. TrampolineSetType Trampolines; if (!BC.HasFixedLoadAddress && BF.hasEHRanges() && BF.isSplit()) Trampolines = createEHTrampolines(BF); // Check the new size to see if it's worth splitting the function. if (BC.isX86() && BF.isSplit()) { std::tie(HotSize, ColdSize) = BC.calculateEmittedSize(BF); LLVM_DEBUG(dbgs() << "Estimated size for function " << BF << " post-split is <0x" << Twine::utohexstr(HotSize) << ", 0x" << Twine::utohexstr(ColdSize) << ">\n"); if (alignTo(OriginalHotSize, opts::SplitAlignThreshold) <= alignTo(HotSize, opts::SplitAlignThreshold) + opts::SplitThreshold) { LLVM_DEBUG(dbgs() << "Reversing splitting of function " << BF << ":\n 0x" << Twine::utohexstr(HotSize) << ", 0x" << Twine::utohexstr(ColdSize) << " -> 0x" << Twine::utohexstr(OriginalHotSize) << '\n'); // Reverse the action of createEHTrampolines(). The trampolines will be // placed immediately before the matching destination resulting in no // extra code. if (PreSplitLayout.size() != BF.size()) PreSplitLayout = mergeEHTrampolines(BF, PreSplitLayout, Trampolines); for (BinaryBasicBlock &BB : BF) BB.setFragmentNum(FragmentNum::main()); BF.getLayout().update(PreSplitLayout); } else { SplitBytesHot += HotSize; SplitBytesCold += ColdSize; } } } SplitFunctions::TrampolineSetType SplitFunctions::createEHTrampolines(BinaryFunction &BF) const { const auto &MIB = BF.getBinaryContext().MIB; // Map real landing pads to the corresponding trampolines. TrampolineSetType LPTrampolines; // Iterate over the copy of basic blocks since we are adding new blocks to the // function which will invalidate its iterators. std::vector Blocks(BF.pbegin(), BF.pend()); for (BinaryBasicBlock *BB : Blocks) { for (MCInst &Instr : *BB) { const Optional EHInfo = MIB->getEHInfo(Instr); if (!EHInfo || !EHInfo->first) continue; const MCSymbol *LPLabel = EHInfo->first; BinaryBasicBlock *LPBlock = BF.getBasicBlockForLabel(LPLabel); if (BB->isCold() == LPBlock->isCold()) continue; const MCSymbol *TrampolineLabel = nullptr; auto Iter = LPTrampolines.find(LPLabel); if (Iter != LPTrampolines.end()) { TrampolineLabel = Iter->second; } else { // Create a trampoline basic block in the same fragment as the thrower. // Note: there's no need to insert the jump instruction, it will be // added by fixBranches(). BinaryBasicBlock *TrampolineBB = BF.addBasicBlock(); TrampolineBB->setIsCold(BB->isCold()); TrampolineBB->setExecutionCount(LPBlock->getExecutionCount()); TrampolineBB->addSuccessor(LPBlock, TrampolineBB->getExecutionCount()); TrampolineBB->setCFIState(LPBlock->getCFIState()); TrampolineLabel = TrampolineBB->getLabel(); LPTrampolines.insert(std::make_pair(LPLabel, TrampolineLabel)); } // Substitute the landing pad with the trampoline. MIB->updateEHInfo(Instr, MCPlus::MCLandingPad(TrampolineLabel, EHInfo->second)); } } if (LPTrampolines.empty()) return LPTrampolines; // All trampoline blocks were added to the end of the function. Place them at // the end of corresponding fragments. BinaryFunction::BasicBlockOrderType NewLayout(BF.getLayout().block_begin(), BF.getLayout().block_end()); stable_sort(NewLayout, [&](BinaryBasicBlock *A, BinaryBasicBlock *B) { return A->isCold() < B->isCold(); }); BF.getLayout().update(NewLayout); // Conservatively introduce branch instructions. BF.fixBranches(); // Update exception-handling CFG for the function. BF.recomputeLandingPads(); return LPTrampolines; } SplitFunctions::BasicBlockOrderType SplitFunctions::mergeEHTrampolines( BinaryFunction &BF, SplitFunctions::BasicBlockOrderType &Layout, const SplitFunctions::TrampolineSetType &Trampolines) const { BasicBlockOrderType MergedLayout; for (BinaryBasicBlock *BB : Layout) { auto Iter = Trampolines.find(BB->getLabel()); if (Iter != Trampolines.end()) { BinaryBasicBlock *LPBlock = BF.getBasicBlockForLabel(Iter->second); assert(LPBlock && "Could not find matching landing pad block."); MergedLayout.push_back(LPBlock); } MergedLayout.push_back(BB); } return MergedLayout; } } // namespace bolt } // namespace llvm