/* * Copyright (c) University of British Columbia, 1984 * Copyright (c) 1990 The Regents of the University of California. * All rights reserved. * * This code is derived from software contributed to Berkeley by * the Laboratory for Computation Vision and the Computer Science Department * of the University of British Columbia. * * %sccs.include.redist.c% * * @(#)pk_input.c 7.9 (Berkeley) 03/12/91 */ #include "param.h" #include "systm.h" #include "mbuf.h" #include "socket.h" #include "protosw.h" #include "socketvar.h" #include "errno.h" #include "../net/if.h" #include "x25.h" #include "pk.h" #include "pk_var.h" /* * This procedure is called by the link level whenever the link * becomes operational, is reset, or when the link goes down. */ pk_ctlinput (code, xcp) register struct x25config *xcp; { register struct pkcb *pkp; for (pkp = pkcbhead; pkp; pkp = pkp -> pk_next) if (pkp -> pk_xcp == xcp) break; if (pkp == 0) return (EINVAL); switch (code) { case PRC_LINKUP: if (pkp -> pk_state == DTE_WAITING) pk_restart (pkp, X25_RESTART_NETWORK_CONGESTION); break; case PRC_LINKDOWN: pk_restart (pkp, -1); /* Clear all active circuits */ pkp -> pk_state = DTE_WAITING; break; case PRC_LINKRESET: pk_restart (pkp, X25_RESTART_NETWORK_CONGESTION); break; } return (0); } struct ifqueue pkintrq; /* * This routine is called if there are semi-smart devices that do HDLC * in hardware and want to queue the packet and call level 3 directly */ pkintr () { register struct mbuf *m; register struct ifaddr *ifa; register struct ifnet *ifp; register int s; for (;;) { s = splimp (); IF_DEQUEUE (&pkintrq, m); splx (s); if (m == 0) break; if (m->m_len < PKHEADERLN) { printf ("pkintr: packet too short (len=%d)\n", m->m_len); m_freem (m); continue; } if ((m->m_flags & M_PKTHDR) == 0) panic("pkintr"); ifp = m->m_pkthdr.rcvif; /* * look up the appropriate control block */ for (ifa = ifp->if_addrlist; ifa; ifa = ifa->ifa_next) if (ifa->ifa_addr->sa_family == AF_CCITT) break; if (ifa == 0) continue; pk_input(m, ((struct x25_ifaddr *)ifa)->ia_xcp); } } struct mbuf *pk_bad_packet; /* * X.25 PACKET INPUT * * This procedure is called by a link level procedure whenever * an information frame is received. It decodes the packet and * demultiplexes based on the logical channel number. * */ pk_input (m, xcp) register struct mbuf *m; struct x25config *xcp; { register struct x25_packet *xp; register struct pklcd *lcp; register struct socket *so = 0; register struct pkcb *pkp; int ptype, lcn, lcdstate = LISTEN; static struct x25config *lastxcp; static struct pkcb *lastpkp; if (xcp == lastxcp) pkp = lastpkp; else { for (pkp = pkcbhead; ; pkp = pkp -> pk_next) { if (pkp == 0) { pk_message (0, xcp, "pk_input: unknown network"); m_freem (m); return; } if (pkp -> pk_xcp == xcp) break; } lastxcp = xcp; lastpkp = pkp; } xp = mtod (m, struct x25_packet *); ptype = pk_decode (xp); lcn = LCN(xp); lcp = pkp -> pk_chan[lcn]; /* * If the DTE is in Restart state, then it will ignore data, * interrupt, call setup and clearing, flow control and reset * packets. */ if (lcn < 0 || lcn > pkp -> pk_maxlcn) { pk_message (lcn, pkp -> pk_xcp, "illegal lcn"); m_freem (m); return; } pk_trace (pkp -> pk_xcp, m, "P-In"); if (pkp -> pk_state != DTE_READY && ptype != RESTART && ptype != RESTART_CONF) { m_freem (m); return; } if (lcp) { so = lcp -> lcd_so; lcdstate = lcp -> lcd_state; } else { if (ptype == CLEAR) { /* idle line probe (Datapac specific) */ /* send response on lcd 0's output queue */ lcp -> lcd_template = pk_template (lcn, X25_CLEAR_CONFIRM); pk_output (lcp); m_freem (m); return; } if (ptype != CALL) ptype = INVALID_PACKET; } if (lcn == 0 && ptype != RESTART && ptype != RESTART_CONF) { pk_message (0, pkp -> pk_xcp, "illegal ptype (%d, %s) on lcn 0", ptype, pk_name[ptype / MAXSTATES]); if (pk_bad_packet) m_freem (pk_bad_packet); pk_bad_packet = m; return; } switch (ptype + lcdstate) { /* * Incoming Call packet received. */ case CALL + LISTEN: incoming_call (pkp, m); break; /* * Call collision: Just throw this "incoming call" away since * the DCE will ignore it anyway. */ case CALL + SENT_CALL: pk_message ((int)lcn, pkp -> pk_xcp, "incoming call collision"); break; /* * Call confirmation packet received. This usually means our * previous connect request is now complete. */ case CALL_ACCEPTED + SENT_CALL: call_accepted (lcp, xp, m -> m_len); break; /* * This condition can only happen if the previous state was * SENT_CALL. Just ignore the packet, eventually a clear * confirmation should arrive. */ case CALL_ACCEPTED + SENT_CLEAR: break; /* * Clear packet received. This requires a complete tear down * of the virtual circuit. Free buffers and control blocks. * and send a clear confirmation. */ case CLEAR + READY: case CLEAR + RECEIVED_CALL: case CLEAR + SENT_CALL: case CLEAR + DATA_TRANSFER: lcp -> lcd_state = RECEIVED_CLEAR; lcp -> lcd_template = pk_template (lcp -> lcd_lcn, X25_CLEAR_CONFIRM); pk_output (lcp); pk_clearcause (pkp, xp); pk_close (lcp); break; /* * Clear collision: Treat this clear packet as a confirmation. */ case CLEAR + SENT_CLEAR: pk_close (lcp); break; /* * Clear confirmation received. This usually means the virtual * circuit is now completely removed. */ case CLEAR_CONF + SENT_CLEAR: pk_close (lcp); break; /* * A clear confirmation on an unassigned logical channel - just * ignore it. Note: All other packets on an unassigned channel * results in a clear. */ case CLEAR_CONF + READY: break; /* * Data packet received. Pass on to next level. Move the Q and M * bits into the data portion for the next level. */ case DATA + DATA_TRANSFER: if (lcp -> lcd_reset_condition) { ptype = DELETE_PACKET; break; } /* * Process the P(S) flow control information in this Data packet. * Check that the packets arrive in the correct sequence and that * they are within the "lcd_input_window". Input window rotation is * initiated by the receive interface. */ if (PS(xp) != ((lcp -> lcd_rsn + 1) % MODULUS) || PS(xp) == ((lcp -> lcd_input_window + lcp->lcd_windowsize) % MODULUS)) { m_freem (m); pk_procerror (RESET, lcp, "p(s) flow control error", 1); break; } lcp -> lcd_rsn = PS(xp); if (pk_ack (lcp, PR(xp)) != PACKET_OK) { m_freem (m); break; } m -> m_data += PKHEADERLN; m -> m_len -= PKHEADERLN; m -> m_pkthdr.len -= PKHEADERLN; if (lcp -> lcd_flags & X25_MBS_HOLD) { register struct mbuf *n = lcp -> lcd_cps; int mbit = MBIT(xp); octet q_and_d_bits; if (n) { n -> m_pkthdr.len += m -> m_pkthdr.len; while (n -> m_next) n = n -> m_next; n -> m_next = m; m = lcp -> lcd_cps; if (lcp -> lcd_cpsmax && n -> m_pkthdr.len > lcp -> lcd_cpsmax) { pk_procerror (RESET, lcp, "C.P.S. overflow", 128); return; } q_and_d_bits = 0xc0 & *(octet *)xp; xp = (struct x25_packet *) (mtod(m, octet *) - PKHEADERLN); *(octet *)xp |= q_and_d_bits; } if (mbit) { lcp -> lcd_cps = m; lcp -> lcd_rxcnt++; pk_flowcontrol(lcp, 0, 1); return; } lcp -> lcd_cps = 0; } if (so == 0) break; if (lcp -> lcd_flags & X25_MQBIT) { octet t = (xp -> q_bit) ? t = 0x80 : 0; if (MBIT(xp)) t |= 0x40; m -> m_data -= 1; m -> m_len += 1; m -> m_pkthdr.len += 1; *mtod(m, octet *) = t; } /* * Discard Q-BIT packets if the application * doesn't want to be informed of M and Q bit status */ if (xp -> q_bit && (lcp -> lcd_flags & X25_MQBIT) == 0) { m_freem (m); lcp -> lcd_rxcnt++; /* * NB. This is dangerous: sending a RR here can * cause sequence number errors if a previous data * packet has not yet been passed up to the application * (RR's are normally generated via PRU_RCVD). */ pk_flowcontrol(lcp, 0, 1); } else { sbappendrecord (&so -> so_rcv, m); sorwakeup (so); } break; /* * Interrupt packet received. */ case INTERRUPT + DATA_TRANSFER: if (lcp -> lcd_reset_condition) break; lcp -> lcd_intrdata = xp -> packet_data; lcp -> lcd_template = pk_template (lcp -> lcd_lcn, X25_INTERRUPT_CONFIRM); pk_output (lcp); m -> m_data += PKHEADERLN; m -> m_len -= PKHEADERLN; m -> m_pkthdr.len -= PKHEADERLN; MCHTYPE(m, MT_OOBDATA); if (so) { if (so -> so_options & SO_OOBINLINE) sbinsertoob (&so -> so_rcv, m); else m_freem (m); sohasoutofband (so); } break; /* * Interrupt confirmation packet received. */ case INTERRUPT_CONF + DATA_TRANSFER: if (lcp -> lcd_reset_condition) break; if (lcp -> lcd_intrconf_pending == TRUE) lcp -> lcd_intrconf_pending = FALSE; else pk_procerror (RESET, lcp, "unexpected packet", 43); break; /* * Receiver ready received. Rotate the output window and output * any data packets waiting transmission. */ case RR + DATA_TRANSFER: if (lcp -> lcd_reset_condition || pk_ack (lcp, PR(xp)) != PACKET_OK) { ptype = DELETE_PACKET; break; } if (lcp -> lcd_rnr_condition == TRUE) lcp -> lcd_rnr_condition = FALSE; pk_output (lcp); break; /* * Receiver Not Ready received. Packets up to the P(R) can be * be sent. Condition is cleared with a RR. */ case RNR + DATA_TRANSFER: if (lcp -> lcd_reset_condition || pk_ack (lcp, PR(xp)) != PACKET_OK) { ptype = DELETE_PACKET; break; } lcp -> lcd_rnr_condition = TRUE; break; /* * Reset packet received. Set state to FLOW_OPEN. The Input and * Output window edges ar set to zero. Both the send and receive * numbers are reset. A confirmation is returned. */ case RESET + DATA_TRANSFER: if (lcp -> lcd_reset_condition) /* Reset collision. Just ignore packet. */ break; pk_resetcause (pkp, xp); lcp -> lcd_window_condition = lcp -> lcd_rnr_condition = lcp -> lcd_intrconf_pending = FALSE; lcp -> lcd_output_window = lcp -> lcd_input_window = lcp -> lcd_last_transmitted_pr = 0; lcp -> lcd_ssn = 0; lcp -> lcd_rsn = MODULUS - 1; lcp -> lcd_template = pk_template (lcp -> lcd_lcn, X25_RESET_CONFIRM); pk_output (lcp); pk_flush(lcp); if (so == 0) break; wakeup ((caddr_t) & so -> so_timeo); sorwakeup (so); sowwakeup (so); break; /* * Reset confirmation received. */ case RESET_CONF + DATA_TRANSFER: if (lcp -> lcd_reset_condition) { lcp -> lcd_reset_condition = FALSE; pk_output (lcp); } else pk_procerror (RESET, lcp, "unexpected packet", 32); break; case DATA + SENT_CLEAR: ptype = DELETE_PACKET; case RR + SENT_CLEAR: case RNR + SENT_CLEAR: case INTERRUPT + SENT_CLEAR: case INTERRUPT_CONF + SENT_CLEAR: case RESET + SENT_CLEAR: case RESET_CONF + SENT_CLEAR: /* Just ignore p if we have sent a CLEAR already. */ break; /* * Restart sets all the permanent virtual circuits to the "Data * Transfer" stae and all the switched virtual circuits to the * "Ready" state. */ case RESTART + READY: switch (pkp -> pk_state) { case DTE_SENT_RESTART: /* Restart collision. */ pkp -> pk_state = DTE_READY; pk_message (0, pkp -> pk_xcp, "Packet level operational"); break; default: pk_restart (pkp, -1); pk_restartcause (pkp, xp); pkp -> pk_chan[0] -> lcd_template = pk_template (0, X25_RESTART_CONFIRM); pk_output (pkp -> pk_chan[0]); } break; /* * Restart confirmation received. All logical channels are set * to READY. */ case RESTART_CONF + READY: switch (pkp -> pk_state) { case DTE_SENT_RESTART: pkp -> pk_state = DTE_READY; pk_message (0, pkp -> pk_xcp, "Packet level operational"); break; default: /* Restart local procedure error. */ pk_restart (pkp, X25_RESTART_LOCAL_PROCEDURE_ERROR); pkp -> pk_state = DTE_SENT_RESTART; } break; default: if (lcp) { pk_procerror (CLEAR, lcp, "unknown packet error", 33); pk_message (lcn, pkp -> pk_xcp, "\"%s\" unexpected in \"%s\" state", pk_name[ptype/MAXSTATES], pk_state[lcdstate]); } else pk_message (lcn, pkp -> pk_xcp, "packet arrived on unassigned lcn"); break; } if (so == 0 && lcp && lcp -> lcd_upper && (lcdstate == SENT_CALL || lcdstate == DATA_TRANSFER)) { if (ptype != DATA && ptype != INTERRUPT) MCHTYPE(m, MT_CONTROL); lcp -> lcd_upper (lcp, m); } else if (ptype != DATA && ptype != INTERRUPT) m_freem (m); } /* * This routine handles incoming call packets. It matches the protocol * field on the Call User Data field (usually the first four bytes) with * sockets awaiting connections. */ static incoming_call (pkp, m0) struct mbuf *m0; struct pkcb *pkp; { register struct pklcd *lcp = 0, *l; register struct sockaddr_x25 *sa; register struct x25_calladdr *a; register struct socket *so = 0; struct x25_packet *xp = mtod(m0, struct x25_packet *); struct mbuf *m; int len = m0->m_pkthdr.len; register int l1, l2; char *e, *errstr = "server unavailable"; octet *u, *facp; int lcn = LCN(xp); /* First, copy the data from the incoming call packet to a X25_socket descriptor. */ a = (struct x25_calladdr *) &xp -> packet_data; l1 = a -> calling_addrlen; l2 = a -> called_addrlen; if ((m = m_getclr (M_DONTWAIT, MT_SONAME)) == 0) return; sa = mtod (m, struct sockaddr_x25 *); u = (octet *) (a -> address_field + l2 / 2); e = sa -> x25_addr; if (l2 & 0x01) { *e++ = *u++ & 0x0f; l1--; } from_bcd (e, &u, l1); if (l1 & 0x01) u++; facp = u; parse_facilities (u, sa); u += *u + 1; sa -> x25_udlen = min (16, ((octet *)xp) + len - u); if (sa -> x25_udlen < 0) sa -> x25_udlen = 0; bcopy ((caddr_t)u, sa -> x25_udata, (unsigned)sa -> x25_udlen); /* * Now, loop through the listen sockets looking for a match on the * PID. That is the first four octets of the user data field. This * is the closest thing to a port number for X.25 packets. What it * does provide is away of multiplexing services at the user level. */ for (l = pk_listenhead; l; l = l -> lcd_listen) { struct sockaddr_x25 *sxp = l -> lcd_ceaddr; if (bcmp (sxp -> x25_udata, sa -> x25_udata, sxp->x25_udlen)) continue; if (sxp -> x25_net && sxp -> x25_net != pkp->pk_xc.xc_addr.x25_net) continue; /* * don't accept incoming collect calls unless * the server sets the reverse charging option. */ if ((sxp -> x25_opts.op_flags & (X25_OLDSOCKADDR|X25_REVERSE_CHARGE)) == 0 && sa -> x25_opts.op_flags & X25_REVERSE_CHARGE) { errstr = "incoming collect call refused"; break; } /* * don't accept incoming calls with the D-Bit on * unless the server agrees */ if (xp -> d_bit && !(sxp -> x25_opts.op_flags & X25_DBIT)) { errstr = "incoming D-Bit mismatch"; break; } if (l -> lcd_so) { if (so = sonewconn (l -> lcd_so, SS_ISCONNECTED)) lcp = (struct pklcd *) so -> so_pcb; } else lcp = pk_attach((struct socket *) 0); if (lcp == 0) { /* * Insufficient space or too many unaccepted * connections. Just throw the call away. */ errstr = "server malfunction"; break; } lcp -> lcd_upper = l -> lcd_upper; lcp -> lcd_upnext = l -> lcd_upnext; lcp -> lcd_lcn = lcn; lcp -> lcd_state = RECEIVED_CALL; lcp -> lcd_craddr = sa; sa -> x25_opts.op_flags |= sxp -> x25_opts.op_flags & ~X25_REVERSE_CHARGE; pk_assoc (pkp, lcp, sa); lcp -> lcd_template = pk_template (lcp -> lcd_lcn, X25_CALL_ACCEPTED); if (lcp -> lcd_flags & X25_DBIT) { if (xp -> d_bit) mtod(lcp -> lcd_template, struct x25_packet *) -> d_bit = 1; else lcp -> lcd_flags &= ~X25_DBIT; } if (so) { pk_output (lcp); soisconnected (so); if (so -> so_options & SO_OOBINLINE) save_extra(m0, facp, so); } else if (lcp -> lcd_upper) { m -> m_next = m0; (*lcp -> lcd_upper) (lcp, m); (void) m_free (m); /* only m; m0 freed by caller */ } return; } /* * If the call fails for whatever reason, we still need to build a * skeleton LCD in order to be able to properly receive the CLEAR * CONFIRMATION. */ #ifdef WATERLOO /* be explicit */ if (l == 0 && bcmp(sa->x25_udata, "ean", 3) == 0) pk_message (lcn, pkp -> pk_xcp, "host=%s ean%c: %s", sa->x25_addr, sa->x25_udata[3] & 0xff, errstr); else if (l == 0 && bcmp(sa->x25_udata, "\1\0\0\0", 4) == 0) pk_message (lcn, pkp -> pk_xcp, "host=%s x29d: %s", sa->x25_addr, errstr); else #endif pk_message (lcn, pkp -> pk_xcp, "host=%s pid=%x %x %x %x: %s", sa -> x25_addr, sa -> x25_udata[0] & 0xff, sa -> x25_udata[1] & 0xff, sa -> x25_udata[2] & 0xff, sa -> x25_udata[3] & 0xff, errstr); if ((lcp = pk_attach((struct socket *)0)) == 0) { (void) m_free (m); return; } lcp -> lcd_lcn = lcn; lcp -> lcd_state = RECEIVED_CALL; pk_assoc (pkp, lcp, sa); (void) m_free (m); pk_clear (lcp, 0, 1); } static save_extra(m0, fp, so) struct mbuf *m0; octet *fp; struct socket *so; { register struct mbuf *m; struct cmsghdr cmsghdr; if (m = m_copym (m, 0, (int)M_COPYALL)) { int off = fp - mtod (m0, octet *); int len = m->m_pkthdr.len - off + sizeof (cmsghdr); cmsghdr.cmsg_len = len; cmsghdr.cmsg_level = AF_CCITT; cmsghdr.cmsg_type = PK_FACILITIES; m_adj (m, off); M_PREPEND (m, sizeof(cmsghdr), M_DONTWAIT); if (m == 0) return; bcopy ((caddr_t)&cmsghdr, mtod (m, caddr_t), sizeof (cmsghdr)); MCHTYPE(m, MT_CONTROL); sbappendrecord(&so -> so_rcv, m); } } static call_accepted (lcp, xp, len) struct pklcd *lcp; struct x25_packet *xp; { register struct x25_calladdr *ap; register octet *fcp; lcp -> lcd_state = DATA_TRANSFER; if (lcp -> lcd_so) soisconnected (lcp -> lcd_so); if ((lcp -> lcd_flags & X25_DBIT) && (xp -> d_bit == 0)) lcp -> lcd_flags &= ~X25_DBIT; if (len > 3) { ap = (struct x25_calladdr *) &xp -> packet_data; fcp = (octet *) ap -> address_field + (ap -> calling_addrlen + ap -> called_addrlen + 1) / 2; if (fcp + *fcp <= ((octet *)xp) + len) parse_facilities (fcp, lcp -> lcd_ceaddr); } pk_assoc (lcp -> lcd_pkp, lcp, lcp -> lcd_ceaddr); } static parse_facilities (fcp, sa) register octet *fcp; register struct sockaddr_x25 *sa; { register octet *maxfcp; maxfcp = fcp + *fcp; fcp++; while (fcp < maxfcp) { /* * Ignore national DCE or DTE facilities */ if (*fcp == 0 || *fcp == 0xff) break; switch (*fcp) { case FACILITIES_WINDOWSIZE: sa -> x25_opts.op_wsize = fcp[1]; fcp += 3; break; case FACILITIES_PACKETSIZE: sa -> x25_opts.op_psize = fcp[1]; fcp += 3; break; case FACILITIES_THROUGHPUT: sa -> x25_opts.op_speed = fcp[1]; fcp += 2; break; case FACILITIES_REVERSE_CHARGE: if (fcp[1] & 01) sa -> x25_opts.op_flags |= X25_REVERSE_CHARGE; /* * Datapac specific: for a X.25(1976) DTE, bit 2 * indicates a "hi priority" (eg. international) call. */ if (fcp[1] & 02 && sa -> x25_opts.op_psize == 0) sa -> x25_opts.op_psize = X25_PS128; fcp += 2; break; default: /*printf("unknown facility %x, class=%d\n", *fcp, (*fcp & 0xc0) >> 6);*/ switch ((*fcp & 0xc0) >> 6) { case 0: /* class A */ fcp += 2; break; case 1: fcp += 3; break; case 2: fcp += 4; break; case 3: fcp++; fcp += *fcp; } } } } from_bcd (a, x, len) register char *a; register octet **x; register int len; { register int posn = 0; while (--len >= 0) { if (posn++ & 0x01) *a = *(*x)++ & 0x0f; else *a = (**x >> 4) & 0x0F; *a++ |= 0x30; } }