/*- * Copyright (c) 1992 Henry Spencer. * Copyright (c) 1992 The Regents of the University of California. * All rights reserved. * * This code is derived from software contributed to Berkeley by * Henry Spencer of the University of Toronto. * * %sccs.include.redist.c% * * @(#)regcomp.c 5.4 (Berkeley) 10/01/92 */ #if defined(LIBC_SCCS) && !defined(lint) static char sccsid[] = "@(#)regcomp.c 5.4 (Berkeley) 10/01/92"; #endif /* LIBC_SCCS and not lint */ #include #include #include #include #include #include #include #include "utils.h" #include "regex2.h" #include "cclass.h" #include "cname.h" /* * parse structure, passed up and down to avoid global variables and * other clumsinesses */ struct parse { uchar *next; /* next character in RE */ int error; /* has an error been seen? */ sop *strip; /* malloced strip */ sopno ssize; /* malloced strip size (allocated) */ sopno slen; /* malloced strip length (used) */ int ncsalloc; /* number of csets allocated */ struct re_guts *g; # define NPAREN 10 /* we need to remember () 1-9 for back refs */ sopno pbegin[NPAREN]; /* -> ( ([0] unused) */ sopno pend[NPAREN]; /* -> ) ([0] unused) */ }; static uchar nuls[10]; /* place to point scanner in event of error */ /* * macros for use with parse structure * BEWARE: these know that the parse structure is named `p' !!! */ #define PEEK() ((uchar)*p->next) #define PEEK2() ((uchar)*(p->next+1)) #define SEE(c) (PEEK() == (c)) #define SEETWO(a, b) (PEEK() == (a) && PEEK2() == (b)) #define EAT(c) ((SEE(c)) ? (NEXT(), 1) : 0) #define EATTWO(a, b) ((SEETWO(a, b)) ? (NEXT2(), 1) : 0) #define NEXT() (p->next++) #define NEXT2() (p->next += 2) #define NEXTn(n) (p->next += (n)) #define GETNEXT() ((uchar)*p->next++) #define SETERROR(e) seterr(p, (e)) #define REQUIRE(co, e) ((co) || SETERROR(e)) #define MUSTSEE(c, e) (REQUIRE(PEEK() == (c), e)) #define MUSTEAT(c, e) (REQUIRE(GETNEXT() == (c), e)) #define MUSTNOTSEE(c, e) (REQUIRE(PEEK() != (c), e)) #define EMIT(sop, sopnd) doemit(p, sop, (size_t)(sopnd)) #define INSERT(sop, pos) doinsert(p, sop, HERE()-(pos)+1, pos) #define FWD(pos) dofwd(p, pos, HERE()-(pos)) #define BACK(sop, pos) EMIT(sop, HERE()-pos) #define HERE() (p->slen) #define THERE() (p->slen - 1) #define DROP(n) (p->slen -= (n)) static cset *allocset __P((struct parse *)); static void bothcases __P((struct parse *, u_int)); static void categorize __P((struct parse *, struct re_guts *)); static void doemit __P((struct parse *, sop, size_t)); static void dofwd __P((struct parse *, sopno, sop)); static void doinsert __P((struct parse *, sop, size_t, sopno)); static sopno dupl __P((struct parse *, sopno, sopno)); static void enlarge __P((struct parse *, sopno)); static void findmust __P((struct parse *, struct re_guts *)); static int freezeset __P((struct parse *, cset *)); static int isinsets __P((struct re_guts *, u_int)); static void mcadd __P((struct parse *, cset *, uchar *)); static uchar *mcfind __P((cset *, u_int *)); static int mcin __P((struct parse *, cset *, u_int *)); static void mcinvert __P((struct parse *, cset *)); static void mcsub __P((struct parse *, cset *, u_int *)); static void nonnewline __P((struct parse *)); static void ordinary __P((struct parse *, u_int)); static uchar othercase __P((u_int)); static void p_b_cclass __P((struct parse *, cset *)); static uchar p_b_coll_elem __P((struct parse *, u_int)); static void p_b_eclass __P((struct parse *, cset *)); static uchar p_b_symbol __P((struct parse *)); static void p_b_term __P((struct parse *, cset *)); static void p_bracket __P((struct parse *)); static void p_bre __P((struct parse *, u_int, u_int)); static int p_count __P((struct parse *)); static void p_ere __P((struct parse *, u_int)); static void p_ere_exp __P((struct parse *)); static int p_simp_re __P((struct parse *, int)); static sopno pluscount __P((struct parse *, struct re_guts *)); static void repeat __P((struct parse *, sopno, int, int)); static int samesets __P((struct re_guts *, u_int, u_int)); static int seterr __P((struct parse *, int)); static void stripsnug __P((struct parse *, struct re_guts *)); /* - regcomp - interface for parser and compilation */ int /* 0 success, otherwise REG_something */ regcomp(preg, pattern, cflags) regex_t *preg; const char *pattern; int cflags; { struct parse pa; register struct re_guts *g; register struct parse *p = &pa; register int i; /* do the mallocs early so failure handling is easy */ /* the +NUC here is for the category table */ g = (struct re_guts *)malloc(sizeof(struct re_guts) + NUC); if (g == NULL) return(REG_ESPACE); p->ssize = strlen(pattern)/2*3 + 1; p->strip = (sop *)malloc(p->ssize * sizeof(sop)); p->slen = 0; if (p->strip == NULL) { free((char *)g); return(REG_ESPACE); } /* set things up */ p->g = g; p->next = (uchar *)pattern; p->error = 0; p->ncsalloc = 0; for (i = 0; i < NPAREN; i++) { p->pbegin[i] = 0; p->pend[i] = 0; } g->csetsize = NUC; g->sets = NULL; g->setbits = NULL; g->ncsets = 0; g->cflags = cflags; g->iflags = 0; g->must = NULL; g->mlen = 0; g->nsub = 0; g->ncategories = 1; /* category 0 is "everything else" */ g->categories = (uchar *)g + sizeof(struct re_guts); (void) memset((char *)g->categories, 0, NUC); g->backrefs = 0; g->nplus = 0; /* do it */ EMIT(OEND, 0); g->firststate = THERE(); if (cflags®_EXTENDED) p_ere(p, '\0'); else p_bre(p, '\0', '\0'); EMIT(OEND, 0); g->laststate = THERE(); /* tidy up loose ends and fill things in */ categorize(p, g); stripsnug(p, g); findmust(p, g); g->nplus = pluscount(p, g); g->magic = MAGIC2; preg->re_nsub = g->nsub; preg->re_g = g; preg->re_magic = MAGIC1; #ifndef REDEBUG /* not debugging, so can't rely on the assert() in regexec() */ if (g->iflags&BAD) SETERROR(REG_ASSERT); #endif /* win or lose, we're done */ if (p->error != 0) /* lose */ regfree(preg); return(p->error); } /* - p_ere - ERE parser top level, concatenation and alternation */ static void p_ere(p, stop) register struct parse *p; u_int stop; /* character this ERE should end at */ { register uchar c; register sopno prevback; register sopno prevfwd; register sopno conc; register int first = 1; /* is this the first alternative? */ for (;;) { /* do a bunch of concatenated expressions */ conc = HERE(); while ((c = PEEK()) != '|' && c != stop && c != '\0') p_ere_exp(p); REQUIRE(HERE() != conc, REG_EMPTY); /* require nonempty */ if (!EAT('|')) break; /* NOTE BREAK OUT */ if (first) { INSERT(OCH_, conc); /* offset is wrong */ prevfwd = conc; prevback = conc; first = 0; } BACK(OOR1, prevback); prevback = THERE(); FWD(prevfwd); /* fix previous offset */ prevfwd = HERE(); EMIT(OOR2, 0); /* offset is very wrong */ } if (!first) { /* tail-end fixups */ FWD(prevfwd); BACK(O_CH, prevback); } assert(SEE(stop) || SEE('\0')); } /* - p_ere_exp - parse one subERE, an atom possibly followed by a repetition op */ static void p_ere_exp(p) register struct parse *p; { register uchar c; register sopno pos; register int count; register int count2; register sopno subno; int wascaret = 0; /* we call { a repetition if followed by a digit */ # define ISRPT(c1, c2) (c1 == '*' || c1 == '+' || c1 == '?' || \ (c1 == '{' && isdigit(c2))) c = GETNEXT(); assert(c != '\0'); /* caller should have ensured this */ pos = HERE(); switch (c) { case '(': MUSTNOTSEE('\0', REG_EPAREN); p->g->nsub++; subno = p->g->nsub; if (subno < NPAREN) p->pbegin[subno] = HERE(); EMIT(OLPAREN, subno); if (!SEE(')')) p_ere(p, ')'); if (subno < NPAREN) { p->pend[subno] = HERE(); assert(p->pend[subno] != 0); } EMIT(ORPAREN, subno); MUSTEAT(')', REG_EPAREN); break; #ifndef POSIX_MISTAKE case ')': /* happens only if no current unmatched ( */ /* * You may ask, why the ifndef? Because I didn't notice * this until slightly too late for 1003.2, and none of the * other 1003.2 regular-expression reviewers noticed it at * all. So an unmatched ) is legal POSIX, at least until * we can get it fixed. */ SETERROR(REG_EPAREN); break; #endif case '^': EMIT(OBOL, 0); p->g->iflags |= USEBOL; wascaret = 1; break; case '$': EMIT(OEOL, 0); p->g->iflags |= USEEOL; break; case '|': SETERROR(REG_EMPTY); break; case '*': case '+': case '?': SETERROR(REG_BADRPT); break; case '.': if (p->g->cflags®_NEWLINE) nonnewline(p); else EMIT(OANY, 0); break; case '[': p_bracket(p); break; case '\\': c = GETNEXT(); #ifdef xxx if (c == '^' || c == '.' || c == '[' || c == '$' || c == '(' || c == ')' || c == '|' || c == '*' || c == '+' || c == '?' || c == '{' || c == '\\') #else if (c != '\0') #endif ordinary(p, c); else SETERROR(REG_EESCAPE); break; case '{': /* okay as ordinary except if digit follows */ REQUIRE(!isdigit(PEEK()), REG_BADRPT); /* FALLTHROUGH */ default: ordinary(p, c); break; } c = PEEK(); if (!ISRPT(c, PEEK2())) return; /* no repetition, we're done */ NEXT(); REQUIRE(!wascaret, REG_BADRPT); switch (c) { case '*': /* implemented as +? */ INSERT(OPLUS_, pos); BACK(O_PLUS, pos); INSERT(OQUEST_, pos); BACK(O_QUEST, pos); break; case '+': INSERT(OPLUS_, pos); BACK(O_PLUS, pos); break; case '?': INSERT(OQUEST_, pos); BACK(O_QUEST, pos); break; case '{': count = p_count(p); if (EAT(',')) { if (isdigit(PEEK())) { count2 = p_count(p); REQUIRE(count <= count2, REG_BADBR); } else /* single number with comma */ count2 = INFINITY; } else /* just a single number */ count2 = count; repeat(p, pos, count, count2); if (!EAT('}')) { /* error heuristics */ while ((c = PEEK()) != '\0' && c != '}') NEXT(); if (c == '\0') SETERROR(REG_EBRACE); else SETERROR(REG_BADBR); } break; } c = PEEK(); REQUIRE(!ISRPT(c, PEEK2()), REG_BADRPT); } /* - p_bre - BRE parser top level, anchoring and concatenation * Giving end1 as '\0' essentially eliminates the end1/end2 check. * * This implementation is a bit of a kludge, in that a trailing $ is first * taken as an ordinary character and then revised to be an anchor. The * only undesirable side effect is that '$' gets included as a character * category in such cases. This is fairly harmless; not worth fixing. * The amount of lookahead needed to avoid this kludge is excessive, * especially since things like "$*" appear to be legal. xxx */ static void p_bre(p, end1, end2) register struct parse *p; register u_int end1; /* first terminating character */ register u_int end2; /* second terminating character */ { register sopno start = HERE(); register int first = 1; /* first subexpression? */ register int wasdollar = 0; if (EAT('^')) { EMIT(OBOL, 0); p->g->iflags |= USEBOL; } while (!SEE('\0') && !SEETWO(end1, end2)) { wasdollar = p_simp_re(p, first); first = 0; } if (wasdollar) { /* oops, that was a trailing anchor */ DROP(1); EMIT(OEOL, 0); p->g->iflags |= USEEOL; } REQUIRE(HERE() != start, REG_EMPTY); /* require nonempty */ } /* - p_simp_re - parse a simple RE, an atom possibly followed by a repetition */ static int /* was the simple RE an unbackslashed $? */ p_simp_re(p, starordinary) register struct parse *p; int starordinary; /* is a leading * an ordinary character? */ { register int c; register int count; register int count2; register sopno pos; register int i; register sopno subno; # define BACKSL (1<g->cflags®_NEWLINE) nonnewline(p); else EMIT(OANY, 0); break; case '[': p_bracket(p); break; case BACKSL|'{': SETERROR(REG_BADRPT); break; case BACKSL|'(': NEXT(); p->g->nsub++; subno = p->g->nsub; if (subno < NPAREN) p->pbegin[subno] = HERE(); EMIT(OLPAREN, subno); /* the SEE here is an error heuristic */ if (!SEE('\0') && !SEETWO('\\', ')')) p_bre(p, '\\', ')'); if (subno < NPAREN) { p->pend[subno] = HERE(); assert(p->pend[subno] != 0); } EMIT(ORPAREN, subno); REQUIRE(EATTWO('\\', ')'), REG_EPAREN); break; case BACKSL|')': /* should not get here -- must be user */ case BACKSL|'}': SETERROR(REG_EPAREN); break; case BACKSL|'1': case BACKSL|'2': case BACKSL|'3': case BACKSL|'4': case BACKSL|'5': case BACKSL|'6': case BACKSL|'7': case BACKSL|'8': case BACKSL|'9': i = (c&~BACKSL) - '0'; assert(i < NPAREN); if (p->pend[i] != 0) { assert(i <= p->g->nsub); EMIT(OBACK_, i); assert(p->pbegin[i] != 0); assert(OP(p->strip[p->pbegin[i]]) == OLPAREN); assert(OP(p->strip[p->pend[i]]) == ORPAREN); (void) dupl(p, p->pbegin[i]+1, p->pend[i]); EMIT(O_BACK, i); } else SETERROR(REG_ESUBREG); p->g->backrefs = 1; NEXT(); break; case BACKSL|'\0': SETERROR(REG_EESCAPE); break; case '*': REQUIRE(starordinary, REG_BADRPT); /* FALLTHROUGH */ default: if (c & BACKSL) NEXT(); ordinary(p, (uchar)(c &~ BACKSL)); break; } if (EAT('*')) { /* implemented as +? */ INSERT(OPLUS_, pos); BACK(O_PLUS, pos); INSERT(OQUEST_, pos); BACK(O_QUEST, pos); } else if (EATTWO('\\', '{')) { count = p_count(p); if (EAT(',')) { if (isdigit(PEEK())) { count2 = p_count(p); REQUIRE(count <= count2, REG_BADBR); } else /* single number with comma */ count2 = INFINITY; } else /* just a single number */ count2 = count; repeat(p, pos, count, count2); if (!EATTWO('\\', '}')) { /* error heuristics */ while (!SEE('\0') && !SEETWO('\\', '}')) NEXT(); if (SEE('\0')) SETERROR(REG_EBRACE); else SETERROR(REG_BADBR); } } else if (c == '$') /* unbackslashed $ not followed by reptn */ return(1); return(0); } /* - p_count - parse a repetition count */ static int /* the value */ p_count(p) register struct parse *p; { register int count = 0; register int ndigits = 0; while (isdigit(PEEK()) && count <= DUPMAX) { count = count*10 + (GETNEXT() - '0'); ndigits++; } REQUIRE(ndigits > 0 && count <= DUPMAX, REG_BADBR); return(count); } /* - p_bracket - parse a bracketed character list * * Note a significant property of this code: if the allocset() did SETERROR, * no set operations are done. */ static void p_bracket(p) register struct parse *p; { register uchar c; register cset *cs = allocset(p); register int invert = 0; if (EAT('^')) invert++; /* make note to invert set at end */ if (EAT(']')) CHadd(cs, ']'); while ((c = PEEK()) != '\0' && c != ']' && !SEETWO('-', ']')) p_b_term(p, cs); if (EAT('-')) CHadd(cs, '-'); MUSTEAT(']', REG_EBRACK); if (invert && p->error == 0) { register int i; for (i = p->g->csetsize - 1; i >= 0; i--) if (CHIN(cs, i)) CHsub(cs, i); else CHadd(cs, i); if (p->g->cflags®_NEWLINE) CHsub(cs, '\n'); if (cs->multis != NULL) mcinvert(p, cs); } assert(cs->multis == NULL); /* xxx */ EMIT(OANYOF, freezeset(p, cs)); } /* - p_b_term - parse one term of a bracketed character list */ static void p_b_term(p, cs) register struct parse *p; register cset *cs; { register uchar c; register uchar start, finish; register int i; /* classify what we've got */ switch (PEEK()) { case '[': c = PEEK2(); break; case '-': SETERROR(REG_ERANGE); return; /* NOTE RETURN */ break; default: c = '\0'; break; } switch (c) { case ':': /* character class */ NEXT2(); c = PEEK(); REQUIRE(c != '\0', REG_EBRACK); REQUIRE(c != '-' && c != ']', REG_ECTYPE); p_b_cclass(p, cs); MUSTNOTSEE('\0', REG_EBRACK); REQUIRE(EATTWO(':', ']'), REG_ECTYPE); break; case '=': /* equivalence class */ NEXT2(); c = PEEK(); REQUIRE(c != '\0', REG_EBRACK); REQUIRE(c != '-' && c != ']', REG_ECOLLATE); p_b_eclass(p, cs); MUSTNOTSEE('\0', REG_EBRACK); REQUIRE(EATTWO('=', ']'), REG_ECOLLATE); break; default: /* symbol, ordinary character, or range */ /* xxx revision needed for multichar stuff */ start = p_b_symbol(p); if (PEEK() == '-' && (c = PEEK2()) != ']' && c != '\0') { /* range */ NEXT(); if (EAT('-')) finish = '-'; else finish = p_b_symbol(p); } else finish = start; REQUIRE(start <= finish, REG_ERANGE); for (i = start; i <= finish; i++) { CHadd(cs, i); if ((p->g->cflags®_ICASE) && isalpha(i)) { c = othercase((uchar)i); CHadd(cs, c); } } break; } } /* - p_b_cclass - parse a character-class name and deal with it */ static void p_b_cclass(p, cs) register struct parse *p; register cset *cs; { register uchar *sb = p->next; register uchar *se = sb; register struct cclass *cp; register int len; register uchar *u; register uchar c; while (isalpha(*se)) se++; len = se - sb; NEXTn(len); for (cp = cclasses; cp->name != NULL; cp++) if (strncmp(cp->name, (char *)sb, len) == 0 && cp->name[len] == '\0') break; if (cp->name == NULL) { /* oops, didn't find it */ SETERROR(REG_ECTYPE); return; } u = (uchar *)cp->chars; while ((c = *u++) != '\0') CHadd(cs, c); for (u = (uchar *)cp->multis; *u != '\0'; u += strlen((char *)u) + 1) MCadd(cs, u); } /* - p_b_eclass - parse an equivalence-class name and deal with it * * This implementation is incomplete. xxx */ static void p_b_eclass(p, cs) register struct parse *p; register cset *cs; { register uchar c; c = p_b_coll_elem(p, '='); CHadd(cs, c); } /* - p_b_symbol - parse a character or [..]ed multicharacter collating symbol */ static uchar /* value of symbol */ p_b_symbol(p) register struct parse *p; { register uchar value; if (!EATTWO('[', '.')) { MUSTNOTSEE('\0', REG_EBRACK); return(GETNEXT()); } /* collating symbol */ MUSTNOTSEE('\0', REG_EBRACK); value = p_b_coll_elem(p, '.'); REQUIRE(EATTWO('.', ']'), REG_ECOLLATE); return(value); } /* - p_b_coll_elem - parse a collating-element name and look it up */ static uchar /* value of collating element */ p_b_coll_elem(p, endc) register struct parse *p; u_int endc; /* name ended by endc,']' */ { register uchar *sp = p->next; register struct cname *cp; register int len; register uchar c; while ((c = PEEK()) != '\0' && !SEETWO(endc, ']')) NEXT(); if (c == '\0') { SETERROR(REG_EBRACK); return(0); } len = p->next - sp; for (cp = cnames; cp->name != NULL; cp++) if (strncmp(cp->name, (char *)sp, len) == 0 && cp->name[len] == '\0') return(cp->code); /* known name */ if (len == 1) return(*sp); /* single character */ SETERROR(REG_ECOLLATE); /* neither */ return(0); } /* - othercase - return the case counterpart of an alphabetic */ static uchar othercase(ch) u_int ch; { assert(isalpha(ch)); if (isupper(ch)) return(tolower(ch)); else if (islower(ch)) return(toupper(ch)); else /* peculiar, but could happen */ return(ch); } /* - bothcases - emit a dualcase version of a character * * Boy, is this implementation ever a kludge... */ static void bothcases(p, ch) register struct parse *p; u_int ch; { register uchar *oldnext; uchar bracket[3]; oldnext = p->next; p->next = bracket; bracket[0] = ch; bracket[1] = ']'; bracket[2] = '\0'; p_bracket(p); assert(p->next == bracket+2); p->next = oldnext; } /* - ordinary - emit an ordinary character */ static void ordinary(p, ch) register struct parse *p; register u_int ch; { register uchar *cap = p->g->categories; if ((p->g->cflags®_ICASE) && isalpha(ch)) { bothcases(p, ch); return; } EMIT(OCHAR, ch); if (cap[ch] == 0) cap[ch] = p->g->ncategories++; } /* - nonnewline - emit REG_NEWLINE version of OANY * * Boy, is this implementation ever a kludge... */ static void nonnewline(p) register struct parse *p; { register uchar *oldnext; uchar bracket[4]; oldnext = p->next; p->next = bracket; bracket[0] = '^'; bracket[1] = '\n'; bracket[2] = ']'; bracket[3] = '\0'; p_bracket(p); assert(p->next == bracket+3); p->next = oldnext; } /* - repeat - generate code for a bounded repetition, recursively if needed */ static void repeat(p, start, from, to) register struct parse *p; sopno start; /* operand from here to end of strip */ int from; /* repeated from this number */ int to; /* to this number of times (maybe INFINITY) */ { register sopno finish = HERE(); # define N 2 # define INF 3 # define REP(f, t) ((f)*8 + (t)) # define MAP(n) (((n) <= 1) ? (n) : ((n) == INFINITY) ? INF : N) register sopno copy; if (p->error != 0) /* head off possible runaway recursion */ return; assert(from <= to); switch (REP(MAP(from), MAP(to))) { case REP(0, 0): /* must be user doing this */ DROP(finish-start); /* drop the operand */ break; case REP(0, 1): /* as x{1,1}? */ case REP(0, N): /* as x{1,n}? */ case REP(0, INF): /* as x{1,}? */ INSERT(OQUEST_, start); /* offset is wrong... */ repeat(p, start+1, 1, to); FWD(start); /* ... fix it */ BACK(O_QUEST, start); break; case REP(1, 1): /* trivial case */ /* done */ break; case REP(1, N): /* as x?x{1,n-1} */ INSERT(OQUEST_, start); BACK(O_QUEST, start); copy = dupl(p, start+1, finish+1); assert(copy == finish+2); repeat(p, copy, 1, to-1); break; case REP(1, INF): /* as x+ */ INSERT(OPLUS_, start); BACK(O_PLUS, start); break; case REP(N, N): /* as xx{m-1,n-1} */ copy = dupl(p, start, finish); repeat(p, copy, from-1, to-1); break; case REP(N, INF): /* as xx{n-1,INF} */ copy = dupl(p, start, finish); repeat(p, copy, from-1, to); break; default: /* "can't happen" */ SETERROR(REG_ASSERT); /* just in case */ break; } } /* - seterr - set an error condition */ static int /* useless but makes type checking happy */ seterr(p, e) register struct parse *p; int e; { if (p->error == 0) /* keep earliest error condition */ p->error = e; p->next = nuls; /* try to bring things to a halt */ return(0); /* make the return value well-defined */ } /* - allocset - allocate a set of characters for [] */ static cset * allocset(p) register struct parse *p; { register int no = p->g->ncsets++; register size_t nc; register size_t nbytes; register cset *cs; register size_t css = (size_t)p->g->csetsize; if (no >= p->ncsalloc) { /* need another column of space */ p->ncsalloc += CHAR_BIT; nc = p->ncsalloc; assert(nc % CHAR_BIT == 0); nbytes = nc / CHAR_BIT * css; if (p->g->sets == NULL) p->g->sets = (cset *)malloc(nc * sizeof(cset)); else p->g->sets = (cset *)realloc((char *)p->g->sets, nc * sizeof(cset)); if (p->g->setbits == NULL) p->g->setbits = (uchar *)malloc(nbytes); else p->g->setbits = (uchar *)realloc((char *)p->g->setbits, nbytes); if (p->g->sets != NULL && p->g->setbits != NULL) (void) memset((char *)p->g->setbits + (nbytes - css), 0, css); else { no = 0; SETERROR(REG_ESPACE); /* caller's responsibility not to do set ops */ } } assert(p->g->sets != NULL); /* xxx */ cs = &p->g->sets[no]; cs->ptr = p->g->setbits + css*((no)/CHAR_BIT); cs->mask = 1 << ((no) % CHAR_BIT); cs->hash = 0; cs->smultis = 0; cs->multis = NULL; return(cs); } /* - freezeset - final processing on a set of characters * * The main task here is merging identical sets. This is usually a waste * of time (although the hash code minimizes the overhead), but can win * big if REG_ICASE is being used. REG_ICASE, by the way, is why the hash * is done using addition rather than xor -- all ASCII [aA] sets xor to * the same value! */ static int /* set number */ freezeset(p, cs) register struct parse *p; register cset *cs; { register uchar h = cs->hash; register int i; register cset *top = &p->g->sets[p->g->ncsets]; register cset *cs2; register size_t css = (size_t)p->g->csetsize; /* look for an earlier one which is the same */ for (cs2 = &p->g->sets[0]; cs2 < top; cs2++) if (cs2->hash == h && cs2 != cs) { /* maybe */ for (i = 0; i < css; i++) if (!!CHIN(cs2, i) != !!CHIN(cs, i)) break; /* no */ if (i == css) break; /* yes */ } if (cs2 < top) { /* found one */ assert(cs == top-1); p->g->ncsets--; for (i = 0; i < css; i++) CHsub(cs, i); cs = cs2; } return((int)(cs - p->g->sets)); } /* - mcadd - add a collating element to a cset */ static void mcadd(p, cs, cp) register struct parse *p; register cset *cs; register uchar *cp; { register size_t oldend = cs->smultis; cs->smultis += strlen((char *)cp) + 1; if (cs->multis == NULL) cs->multis = (uchar *)malloc(cs->smultis); else cs->multis = (uchar *)realloc(cs->multis, cs->smultis); if (cs->multis == NULL) { SETERROR(REG_ESPACE); return; } (void) strcpy((char *)(cs->multis + oldend - 1), (char *)cp); cs->multis[cs->smultis - 1] = '\0'; } /* - mcsub - subtract a collating element from a cset */ static void mcsub(p, cs, cp) register struct parse *p; register cset *cs; register u_int *cp; { register uchar *fp = mcfind(cs, cp); register size_t len = strlen((char *)fp); assert(p != NULL); (void) memmove((char *)fp, (char *)(fp + len + 1), cs->smultis - (fp + len + 1 - cs->multis)); cs->smultis -= len; if (cs->smultis == 0) { free((char *)cs->multis); cs->multis = NULL; return; } cs->multis = (uchar *)realloc(cs->multis, cs->smultis); assert(cs->multis != NULL); } /* - mcin - is a collating element in a cset? */ static int mcin(p, cs, cp) register struct parse *p; register cset *cs; register u_int *cp; { return(mcfind(cs, cp) != NULL); } /* - mcfind - find a collating element in a cset */ static uchar * mcfind(cs, cp) register cset *cs; register u_int *cp; { register uchar *p; if (cs->multis == NULL) return(NULL); for (p = cs->multis; *p != '\0'; p += strlen((char *)p) + 1) if (strcmp((char *)cp, (char *)p) == 0) return(p); return(NULL); } /* - mcinvert - invert the list of collating elements in a cset * * This would have to know the set of possibilities. Implementation * is deferred. */ static void mcinvert(p, cs) register struct parse *p; register cset *cs; { assert(cs->multis == NULL); /* xxx */ } /* - isinsets - is this character in any sets? */ static int /* predicate */ isinsets(g, c) register struct re_guts *g; u_int c; { register uchar *col; register int i; register int ncols = (g->ncsets+(CHAR_BIT-1)) / CHAR_BIT; for (i = 0, col = g->setbits; i < ncols; i++, col += g->csetsize) if (col[c] != 0) return(1); return(0); } /* - samesets - are these two characters in exactly the same sets? */ static int /* predicate */ samesets(g, c1, c2) register struct re_guts *g; register u_int c1; register u_int c2; { register uchar *col; register int i; register int ncols = (g->ncsets+(CHAR_BIT-1)) / CHAR_BIT; for (i = 0, col = g->setbits; i < ncols; i++, col += g->csetsize) if (col[c1] != col[c2]) return(0); return(1); } /* - categorize - sort out character categories */ static void categorize(p, g) struct parse *p; register struct re_guts *g; { register uchar *cats = g->categories; register unsigned c; register unsigned c2; register uchar cat; /* avoid making error situations worse */ if (p->error != 0) return; for (c = 0; c < g->csetsize; c++) if (cats[c] == 0 && isinsets(g, c)) { cat = g->ncategories++; cats[c] = cat; for (c2 = c+1; c2 < g->csetsize; c2++) if (cats[c2] == 0 && samesets(g, c, c2)) cats[c2] = cat; } } /* - dupl - emit a duplicate of a bunch of sops */ static sopno /* start of duplicate */ dupl(p, start, finish) register struct parse *p; sopno start; /* from here */ sopno finish; /* to this less one */ { register sopno ret = HERE(); register sopno len = finish - start; assert(finish >= start); if (len == 0) return(ret); enlarge(p, p->ssize + len); /* this many unexpected additions */ assert(p->ssize >= p->slen + len); (void) memcpy((char *)(p->strip + p->slen), (char *)(p->strip + start), (size_t)len*sizeof(sop)); p->slen += len; return(ret); } /* - doemit - emit a strip operator * * It might seem better to implement this as a macro with a function as * hard-case backup, but it's just too big and messy unless there are * some changes to the data structures. Maybe later. */ static void doemit(p, op, opnd) register struct parse *p; sop op; size_t opnd; { /* avoid making error situations worse */ if (p->error != 0) return; /* deal with oversize operands ("can't happen", more or less) */ assert(opnd < 1<slen >= p->ssize) enlarge(p, (p->ssize+1) / 2 * 3); /* +50% */ assert(p->slen < p->ssize); /* finally, it's all reduced to the easy case */ p->strip[p->slen++] = SOP(op, opnd); } /* - doinsert - insert a sop into the strip */ static void doinsert(p, op, opnd, pos) register struct parse *p; sop op; size_t opnd; sopno pos; { register sopno sn; register sop s; register int i; /* avoid making error situations worse */ if (p->error != 0) return; sn = HERE(); EMIT(op, opnd); /* do checks, ensure space */ assert(HERE() == sn+1); s = p->strip[sn]; /* adjust paren pointers */ assert(pos > 0); for (i = 1; i < NPAREN; i++) { if (p->pbegin[i] >= pos) { p->pbegin[i]++; } if (p->pend[i] >= pos) { p->pend[i]++; } } memmove((char *)&p->strip[pos+1], (char *)&p->strip[pos], (HERE()-pos-1)*sizeof(sop)); p->strip[pos] = s; } /* - dofwd - complete a forward reference */ static void dofwd(p, pos, value) register struct parse *p; register sopno pos; sop value; { /* avoid making error situations worse */ if (p->error != 0) return; assert(value < 1<strip[pos] = OP(p->strip[pos]) | value; } /* - enlarge - enlarge the strip */ static void enlarge(p, size) register struct parse *p; register sopno size; { register sop *sp; if (p->ssize >= size) return; sp = (sop *)realloc(p->strip, size*sizeof(sop)); if (sp == NULL) { SETERROR(REG_ESPACE); return; } p->strip = sp; p->ssize = size; } /* - stripsnug - compact the strip */ static void stripsnug(p, g) register struct parse *p; register struct re_guts *g; { g->nstates = p->slen; g->strip = (sop *)realloc((sop *)p->strip, p->slen * sizeof(sop)); if (g->strip == NULL) { SETERROR(REG_ESPACE); g->strip = p->strip; } } /* - findmust - fill in must and mlen with longest mandatory literal string * * This algorithm could do fancy things like analyzing the operands of | * for common subsequences. Someday. This code is simple and finds most * of the interesting cases. * * Note that must and mlen got initialized during setup. */ static void findmust(p, g) struct parse *p; register struct re_guts *g; { register sop *scan; sop *start; register sop *newstart; register sopno newlen; register sop s; register char *cp; register sopno i; /* avoid making error situations worse */ if (p->error != 0) return; /* find the longest OCHAR sequence in strip */ newlen = 0; scan = g->strip + 1; do { s = *scan++; switch (OP(s)) { case OCHAR: /* sequence member */ if (newlen == 0) /* new sequence */ newstart = scan - 1; newlen++; break; case OPLUS_: /* things that don't break one */ case OLPAREN: case ORPAREN: break; case OQUEST_: /* things that must be skipped */ case OCH_: scan--; do { scan += OPND(s); s = *scan; /* assert() interferes w debug printouts */ if (OP(s) != O_QUEST && OP(s) != O_CH && OP(s) != OOR2) { g->iflags |= BAD; return; } } while (OP(s) != O_QUEST && OP(s) != O_CH); /* fallthrough */ default: /* things that break a sequence */ if (newlen > g->mlen) { /* ends one */ start = newstart; g->mlen = newlen; } newlen = 0; break; } } while (OP(s) != OEND); if (g->mlen == 0) /* there isn't one */ return; /* turn it into a character string */ g->must = malloc((size_t)g->mlen + 1); if (g->must == NULL) { /* argh; just forget it */ g->mlen = 0; return; } cp = g->must; scan = start; for (i = g->mlen; i > 0; i--) { while (OP(s = *scan++) != OCHAR) continue; *cp++ = OPND(s); } *cp++ = '\0'; /* just on general principles */ } /* - pluscount - count + nesting */ static sopno /* nesting depth */ pluscount(p, g) struct parse *p; register struct re_guts *g; { register sop *scan; register sop s; register sopno plusnest = 0; register sopno maxnest = 0; if (p->error != 0) return(0); /* there may not be an OEND */ scan = g->strip + 1; do { s = *scan++; switch (OP(s)) { case OPLUS_: plusnest++; break; case O_PLUS: if (plusnest > maxnest) maxnest = plusnest; plusnest--; break; } } while (OP(s) != OEND); if (plusnest != 0) g->iflags |= BAD; return(maxnest); }