Lines Matching defs:bdiv

57   '/'     =>      sub { $_[2] ? ref($_[0]) -> new($_[1]) -> bdiv($_[0])
58 : $_[0] -> copy() -> bdiv($_[1]); },
80 '/=' => sub { scalar $_[0] -> bdiv($_[1]); },
2236 sub bdiv {
2246 return $x if $x -> modify('bdiv');
2345 return $upgrade -> bdiv($x, $y, @r) if defined $upgrade;
2353 # Are both operands the same object, i.e., like $x -> bdiv($x)? If so,
2518 # Are both operands the same object, i.e., like $x -> bdiv($x)? If so,
2569 # Modulo zero. See documentation for bdiv().
3997 $x = $x -> bdiv($b -> bpow($y));
5731 # by bdiv().
6600 $x->bdiv($y); # division (floored), set $x to quotient
6847 print scalar $x->copy()->bdiv($y, 2); # prints 4300
6848 print scalar $x->copy()->bdiv($y)->bround(2); # prints 4300
7435 =item bdiv()
7437 $x->bdiv($y); # divide, set $x to quotient
7483 This method is like Perl's % operator. See L</bdiv()>.
7841 $x -> bdiv($b -> copy() -> bpow($n));
7878 $y = $x -> bdiv(ref($x) -> new(2) -> bpow($n)); # if $n > 0
7896 $y = $x -> bdiv(ref($x) -> new(2) -> bpow($n)); # if $n < 0
8520 * only bdiv() and bsqrt() take A as (optional) parameter
8525 * bsqrt() simply hands its accuracy argument over to bdiv.
8527 different ways on how bdiv() determines the maximum number
8625 as many digits as it can (with an exception for bdiv/bsqrt) and will not
8627 * There is another setting for bdiv() (and thus for bsqrt()). If neither of
8628 A or P is defined, bdiv() will use a fallback (F) of $div_scale digits.
8633 * bdiv will calculate (at least) 4 more digits than required (determined by
8640 will round the result, with bdiv() and bsqrt() as exceptions to guard
8681 * bsqrt() will hand its arguments to bdiv(), as it used to, only now for two
8726 the old code (except in a few cases on bdiv):
9082 $x = Math::BigInt -> new(25) -> bdiv(8);
9253 $float = $mbf / $mbi; # $mbf->bdiv($mbi)
9255 $integer = $mbi2 / $mbi; # $mbi2->bdiv($mbi)
9256 $integer = $mbi2 / $mbf; # $mbi2->bdiv($mbf)
9258 For instance, Math::BigInt->bdiv() always returns a Math::BigInt, regardless of