Lines Matching full:a
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 You should have received a copy of the GNU General Public License
27 /* A string of characters which describe the operands.
30 a RA. The register number is in bits 8-15 of the instruction.
40 P,A Bits 0-7 and 16-23 of the instruction are bits 2-9 and 10-17
43 A=Absolute, zero-extended to 32 bits.
44 e CE bit (bit 23) for a load/store instruction.
45 n Control field (bits 16-22) for a load/store instruction.
68 { "add", 0x14000000, "c,a,b" },
69 { "add", 0x15000000, "c,a,i" },
70 { "addc", 0x1c000000, "c,a,b" },
71 { "addc", 0x1d000000, "c,a,i" },
72 { "addcs", 0x18000000, "c,a,b" },
73 { "addcs", 0x19000000, "c,a,i" },
74 { "addcu", 0x1a000000, "c,a,b" },
75 { "addcu", 0x1b000000, "c,a,i" },
76 { "adds", 0x10000000, "c,a,b" },
77 { "adds", 0x11000000, "c,a,i" },
78 { "addu", 0x12000000, "c,a,b" },
79 { "addu", 0x13000000, "c,a,i" },
80 { "and", 0x90000000, "c,a,b" },
81 { "and", 0x91000000, "c,a,i" },
82 { "andn", 0x9c000000, "c,a,b" },
83 { "andn", 0x9d000000, "c,a,i" },
84 { "aseq", 0x70000000, "v,a,b" },
85 { "aseq", 0x71000000, "v,a,i" },
86 { "asge", 0x5c000000, "v,a,b" },
87 { "asge", 0x5d000000, "v,a,i" },
88 { "asgeu", 0x5e000000, "v,a,b" },
89 { "asgeu", 0x5f000000, "v,a,i" },
90 { "asgt", 0x58000000, "v,a,b" },
91 { "asgt", 0x59000000, "v,a,i" },
92 { "asgtu", 0x5a000000, "v,a,b" },
93 { "asgtu", 0x5b000000, "v,a,i" },
94 { "asle", 0x54000000, "v,a,b" },
95 { "asle", 0x55000000, "v,a,i" },
96 { "asleu", 0x56000000, "v,a,b" },
97 { "asleu", 0x57000000, "v,a,i" },
98 { "aslt", 0x50000000, "v,a,b" },
99 { "aslt", 0x51000000, "v,a,i" },
100 { "asltu", 0x52000000, "v,a,b" },
101 { "asltu", 0x53000000, "v,a,i" },
102 { "asneq", 0x72000000, "v,a,b" },
103 { "asneq", 0x73000000, "v,a,i" },
104 { "call", 0xa8000000, "a,P" },
105 { "call", 0xa9000000, "a,A" },
106 { "calli", 0xc8000000, "a,b" },
107 { "class", 0xe6000000, "c,a,f" },
110 { "const", 0x03000000, "a,x" },
111 { "consth", 0x02000000, "a,h" },
112 { "consthz", 0x05000000, "a,h" },
113 { "constn", 0x01000000, "a,X" },
114 { "convert", 0xe4000000, "c,a,u,r,d,f" },
115 { "cpbyte", 0x2e000000, "c,a,b" },
116 { "cpbyte", 0x2f000000, "c,a,i" },
117 { "cpeq", 0x60000000, "c,a,b" },
118 { "cpeq", 0x61000000, "c,a,i" },
119 { "cpge", 0x4c000000, "c,a,b" },
120 { "cpge", 0x4d000000, "c,a,i" },
121 { "cpgeu", 0x4e000000, "c,a,b" },
122 { "cpgeu", 0x4f000000, "c,a,i" },
123 { "cpgt", 0x48000000, "c,a,b" },
124 { "cpgt", 0x49000000, "c,a,i" },
125 { "cpgtu", 0x4a000000, "c,a,b" },
126 { "cpgtu", 0x4b000000, "c,a,i" },
127 { "cple", 0x44000000, "c,a,b" },
128 { "cple", 0x45000000, "c,a,i" },
129 { "cpleu", 0x46000000, "c,a,b" },
130 { "cpleu", 0x47000000, "c,a,i" },
131 { "cplt", 0x40000000, "c,a,b" },
132 { "cplt", 0x41000000, "c,a,i" },
133 { "cpltu", 0x42000000, "c,a,b" },
134 { "cpltu", 0x43000000, "c,a,i" },
135 { "cpneq", 0x62000000, "c,a,b" },
136 { "cpneq", 0x63000000, "c,a,i" },
137 { "dadd", 0xf1000000, "c,a,b" },
138 { "ddiv", 0xf7000000, "c,a,b" },
139 { "deq", 0xeb000000, "c,a,b" },
140 { "dge", 0xef000000, "c,a,b" },
141 { "dgt", 0xed000000, "c,a,b" },
142 { "div", 0x6a000000, "c,a,b" },
143 { "div", 0x6b000000, "c,a,i" },
146 { "divide", 0xe1000000, "c,a,b" },
147 { "dividu", 0xe3000000, "c,a,b" },
148 { "divl", 0x6c000000, "c,a,b" },
149 { "divl", 0x6d000000, "c,a,i" },
150 { "divrem", 0x6e000000, "c,a,b" },
151 { "divrem", 0x6f000000, "c,a,i" },
152 { "dmac", 0xd9000000, "F,C,a,b" },
153 { "dmsm", 0xdb000000, "c,a,b" },
154 { "dmul", 0xf5000000, "c,a,b" },
155 { "dsub", 0xf3000000, "c,a,b" },
156 { "emulate", 0xd7000000, "v,a,b" },
157 { "exbyte", 0x0a000000, "c,a,b" },
158 { "exbyte", 0x0b000000, "c,a,i" },
159 { "exhw", 0x7c000000, "c,a,b" },
160 { "exhw", 0x7d000000, "c,a,i" },
161 { "exhws", 0x7e000000, "c,a" },
162 { "extract", 0x7a000000, "c,a,b" },
163 { "extract", 0x7b000000, "c,a,i" },
164 { "fadd", 0xf0000000, "c,a,b" },
165 { "fdiv", 0xf6000000, "c,a,b" },
166 { "fdmul", 0xf9000000, "c,a,b" },
167 { "feq", 0xea000000, "c,a,b" },
168 { "fge", 0xee000000, "c,a,b" },
169 { "fgt", 0xec000000, "c,a,b" },
170 { "fmac", 0xd8000000, "F,C,a,b" },
171 { "fmsm", 0xda000000, "c,a,b" },
172 { "fmul", 0xf4000000, "c,a,b" },
173 { "fsub", 0xf2000000, "c,a,b" },
175 { "inbyte", 0x0c000000, "c,a,b" },
176 { "inbyte", 0x0d000000, "c,a,i" },
177 { "inhw", 0x78000000, "c,a,b" },
178 { "inhw", 0x79000000, "c,a,i" },
183 { "jmp", 0xa1000000, "A" },
184 { "jmpf", 0xa4000000, "a,P" },
185 { "jmpf", 0xa5000000, "a,A" },
186 { "jmpfdec", 0xb4000000, "a,P" },
187 { "jmpfdec", 0xb5000000, "a,A" },
188 { "jmpfi", 0xc4000000, "a,b" },
190 { "jmpt", 0xac000000, "a,P" },
191 { "jmpt", 0xad000000, "a,A" },
192 { "jmpti", 0xcc000000, "a,b" },
193 { "load", 0x16000000, "e,n,a,b" },
194 { "load", 0x17000000, "e,n,a,i" },
195 { "loadl", 0x06000000, "e,n,a,b" },
196 { "loadl", 0x07000000, "e,n,a,i" },
197 { "loadm", 0x36000000, "e,n,a,b" },
198 { "loadm", 0x37000000, "e,n,a,i" },
199 { "loadset", 0x26000000, "e,n,a,b" },
200 { "loadset", 0x27000000, "e,n,a,i" },
203 { "mftlb", 0xb6000000, "c,a" },
204 { "mtacc", 0xe8010000, "a,d,f" },
207 { "mttlb", 0xbe000000, "a,b" },
208 { "mul", 0x64000000, "c,a,b" },
209 { "mul", 0x65000000, "c,a,i" },
210 { "mull", 0x66000000, "c,a,b" },
211 { "mull", 0x67000000, "c,a,i" },
212 { "multiplu", 0xe2000000, "c,a,b" },
213 { "multiply", 0xe0000000, "c,a,b" },
214 { "multm", 0xde000000, "c,a,b" },
215 { "multmu", 0xdf000000, "c,a,b" },
216 { "mulu", 0x74000000, "c,a,b" },
217 { "mulu", 0x75000000, "c,a,i" },
218 { "nand", 0x9a000000, "c,a,b" },
219 { "nand", 0x9b000000, "c,a,i" },
221 { "nor", 0x98000000, "c,a,b" },
222 { "nor", 0x99000000, "c,a,i" },
223 { "or", 0x92000000, "c,a,b" },
224 { "or", 0x93000000, "c,a,i" },
225 { "orn", 0xaa000000, "c,a,b" },
226 { "orn", 0xab000000, "c,a,i" },
232 { "setip", 0x9e000000, "c,a,b" },
234 { "sll", 0x80000000, "c,a,b" },
235 { "sll", 0x81000000, "c,a,i" },
236 { "sqrt", 0xe5000000, "c,a,f" },
237 { "sra", 0x86000000, "c,a,b" },
238 { "sra", 0x87000000, "c,a,i" },
239 { "srl", 0x82000000, "c,a,b" },
240 { "srl", 0x83000000, "c,a,i" },
241 { "store", 0x1e000000, "e,n,a,b" },
242 { "store", 0x1f000000, "e,n,a,i" },
243 { "storel", 0x0e000000, "e,n,a,b" },
244 { "storel", 0x0f000000, "e,n,a,i" },
245 { "storem", 0x3e000000, "e,n,a,b" },
246 { "storem", 0x3f000000, "e,n,a,i" },
247 { "sub", 0x24000000, "c,a,b" },
248 { "sub", 0x25000000, "c,a,i" },
249 { "subc", 0x2c000000, "c,a,b" },
250 { "subc", 0x2d000000, "c,a,i" },
251 { "subcs", 0x28000000, "c,a,b" },
252 { "subcs", 0x29000000, "c,a,i" },
253 { "subcu", 0x2a000000, "c,a,b" },
254 { "subcu", 0x2b000000, "c,a,i" },
255 { "subr", 0x34000000, "c,a,b" },
256 { "subr", 0x35000000, "c,a,i" },
257 { "subrc", 0x3c000000, "c,a,b" },
258 { "subrc", 0x3d000000, "c,a,i" },
259 { "subrcs", 0x38000000, "c,a,b" },
260 { "subrcs", 0x39000000, "c,a,i" },
261 { "subrcu", 0x3a000000, "c,a,b" },
262 { "subrcu", 0x3b000000, "c,a,i" },
263 { "subrs", 0x30000000, "c,a,b" },
264 { "subrs", 0x31000000, "c,a,i" },
265 { "subru", 0x32000000, "c,a,b" },
266 { "subru", 0x33000000, "c,a,i" },
267 { "subs", 0x20000000, "c,a,b" },
268 { "subs", 0x21000000, "c,a,i" },
269 { "subu", 0x22000000, "c,a,b" },
270 { "subu", 0x23000000, "c,a,i" },
271 { "xnor", 0x96000000, "c,a,b" },
272 { "xnor", 0x97000000, "c,a,i" },
273 { "xor", 0x94000000, "c,a,b" },
274 { "xor", 0x95000000, "c,a,i" },