Lines Matching defs:coefficients
78 /// coefficients.
156 /// a_i, b_i, c are rational coefficients.
344 // a2 stores the coefficients of the variables, and
345 // b2c2 stores the coefficients of the parameters and the constant term.
374 // X represents the coefficients of the parameters and
382 // Thus, the coefficients of the parameters after substitution become
409 // We only need the coefficients of the variables (NOT the parameters)
528 std::vector<QuasiPolynomial> coefficients;
529 coefficients.reserve(power + 1);
531 coefficients.emplace_back(num[0] / den[0]);
534 coefficients.emplace_back(i < num.size() ? num[i]
537 // After den.size(), the coefficients are zero, so we stop
541 coefficients[i] = coefficients[i] -
542 coefficients[i - j] * QuasiPolynomial(numParam, den[j]);
544 coefficients[i] = coefficients[i] / den[0];
546 return coefficients[power].simplify();
574 SmallVector<Fraction> coefficients;
575 coefficients.reserve(numDims);
577 coefficients.emplace_back(-dotProduct(mu, d));
587 QuasiPolynomial num(numParams, coefficients, affine);
635 /// Compute the binomial coefficients nCi for 0 ≤ i ≤ r,
640 std::vector<QuasiPolynomial> coefficients;
641 coefficients.reserve(r + 1);
642 coefficients.emplace_back(numParams, 1);
644 // We use the recursive formula for binomial coefficients here and below.
645 coefficients.emplace_back(
646 (coefficients[j - 1] * (n - QuasiPolynomial(numParams, j - 1)) /
649 return coefficients;
652 /// Compute the binomial coefficients nCi for 0 ≤ i ≤ r,
656 std::vector<Fraction> coefficients;
657 coefficients.reserve((int64_t)floor(r));
658 coefficients.emplace_back(1);
660 coefficients.emplace_back(coefficients[j - 1] * (n - (j - 1)) / (j));
661 return coefficients;
681 /// polynomials. P has coefficients as quasipolynomials in d parameters, while
682 /// Q has coefficients as scalars.
741 // the numerator is a polynomial in s, with coefficients as
742 // quasipolynomials (given by binomial coefficients), and the denominator
743 // is a polynomial in s, with integral coefficients (given by taking the
754 // First, we compute the coefficients of P(s), which are binomial
755 // coefficients.
761 // Then we compute the coefficients of each individual term in Q(s),
772 // Now we find the coefficients in Q(s) itself
773 // by taking the convolution of the coefficients