Lines Matching full:v0
50 * v = 2^n v1 * v0
54 * uv = 2^2n u1 v1 + 2^n u1 v0 + 2^n v1 u0 + u0 v0
55 * = 2^2n u1 v1 + 2^n (u1 v0 + v1 u0) + u0 v0
58 * and add 2^n u0 v0 to the last term and subtract it from the middle.
62 * (2^n) (u1 v0 - u1 v1 + u0 v1 - u0 v0) +
63 * (2^n + 1) (u0 v0)
68 * (2^n) (u1 - u0) (v0 - v1) + [(u1-u0)... = mid]
69 * (2^n + 1) (u0 v0) [u0v0 = low]
71 * The terms (u1 v1), (u1 - u0) (v0 - v1), and (u0 v0) can all be done
73 * of (u1 - u0) or (v0 - v1) may be negative.)
109 #define v0 v.ul[L] in __muldi3() macro
113 * u1, u0, v1, and v0 will be directly accessible through the in __muldi3()
129 * are small. Here the product is just u0*v0. in __muldi3()
131 prod.q = __lmulq(u0, v0); in __muldi3()
139 low.q = __lmulq(u0, v0); in __muldi3()
145 if (v0 >= v1) in __muldi3()
146 vdiff = v0 - v1; in __muldi3()
148 vdiff = v1 - v0, negmid ^= 1; in __muldi3()
164 #undef v0 in __muldi3()
187 u_int u1, u0, v1, v0, udiff, vdiff, high, mid, low; in __lmulq() local
195 v0 = LHALF(v); in __lmulq()
197 low = u0 * v0; in __lmulq()
207 if (v0 >= v1) in __lmulq()
208 vdiff = v0 - v1; in __lmulq()
210 vdiff = v1 - v0, neg ^= 1; in __lmulq()