Lines Matching +full:3 +full:k

15  *   1. Argument Reduction: find k and f such that
16 * 1+x = 2^k * (1+f),
19 * Note. If k=0, then f=x is exact. However, if k!=0, then f
28 * = 2s + 2/3 s**3 + 2/5 s**5 + .....,
46 * 3. Finally, log1p(x) = k*ln2 + log1p(f).
47 * = k*ln2_hi+(f-(hfsq-(s*(hfsq+R)+k*ln2_lo)))
83 ln2_hi = 6.93147180369123816490e-01, /* 3fe62e42 fee00000 */
84 ln2_lo = 1.90821492927058770002e-10, /* 3dea39ef 35793c76 */
86 Lp1 = 6.666666666666735130e-01, /* 3FE55555 55555593 */
87 Lp2 = 3.999999999940941908e-01, /* 3FD99999 9997FA04 */
88 Lp3 = 2.857142874366239149e-01, /* 3FD24924 94229359 */
89 Lp4 = 2.222219843214978396e-01, /* 3FCC71C5 1D8E78AF */
90 Lp5 = 1.818357216161805012e-01, /* 3FC74664 96CB03DE */
91 Lp6 = 1.531383769920937332e-01, /* 3FC39A09 D078C69F */
92 Lp7 = 1.479819860511658591e-01; /* 3FC2F112 DF3E5244 */
101 int32_t k,hx,hu,ax; in log1p() local
106 k = 1; in log1p()
120 k=0;f=x;hu=1;} /* sqrt(2)/2- <= 1+x < sqrt(2)+ */ in log1p()
123 if(k!=0) { in log1p()
127 k = (hu>>20)-1023; in log1p()
128 c = (k>0)? 1.0-(u-x):x-(u-1.0);/* correction term */ in log1p()
133 k = (hu>>20)-1023; in log1p()
140 * strict bounds than the one here so that the k==0 case is in log1p()
142 * using the correction term but don't use it if k==0. in log1p()
147 k += 1; in log1p()
156 if(k==0) { in log1p()
159 c += k*ln2_lo; in log1p()
160 return k*ln2_hi+c; in log1p()
164 if(k==0) return f-R; else in log1p()
165 return k*ln2_hi-((R-(k*ln2_lo+c))-f); in log1p()
170 if(k==0) return f-(hfsq-s*(hfsq+R)); else in log1p()
171 return k*ln2_hi-((hfsq-(s*(hfsq+R)+(k*ln2_lo+c)))-f); in log1p()