Lines Matching +full:2 +full:k

17  *	Given x, find r and integer k such that
19 * x = k*ln2 + r, |r| <= 0.5*ln2 ~ 0.34658
24 * 2. Approximating expm1(r) by a special rational function on
27 * r*(exp(r)+1)/(exp(r)-1) = 2+ r^2/6 - r^4/360 + ...
29 * r*(exp(r)+1)/(exp(r)-1) = 2+ r^2/6 * R1(r*r)
31 * R1(r**2) = 6/r *((exp(r)+1)/(exp(r)-1) - 2/r)
33 * = 1 - r^2/60 + r^4/2520 - r^6/100800 + ...
37 * by 2**-61. In other words,
38 * R1(z) ~ 1.0 + Q1*z + Q2*z**2 + Q3*z**3 + Q4*z**4 + Q5*z**5
39 * where Q1 = -1.6666666666666567384E-2,
47 * | 1.0+Q1*z+...+Q5*z - R1(z) | <= 2
52 * 2 3
53 * r r [ 3 - (R1 + R1*r/2) ]
55 * 2 2 [ 6 - r*(3 - R1*r/2) ]
63 * ( 2 2 )
64 * ({ ( r [ R1 - (3 - R1*r/2) ] ) } r )
66 * ({ ( 2 [ 6 - r*(3 - R1*r/2) ] ) } 2 )
72 * expm1(x) = either 2^k*[expm1(r)+1] - 1
73 * = or 2^k*[expm1(r) + (1-2^-k)]
76 * to Qi*2^i, and replace z by (x^2)/2.
79 * (ii) if k=0, return r-E
80 * (iii) if k=-1, return 0.5*(r-E)-0.5
81 * (iv) if k=1 if r < -0.25, return 2*((r+0.5)- E)
83 * (v) if (k<-2||k>56) return 2^k(1-(E-r)) - 1 (or exp(x)-1)
84 * (vi) if k <= 20, return 2^k((1-2^-k)-(E-r)), else
85 * (vii) return 2^k(1-((E+2^-k)-r))
119 /* Scaled Q's: Qn_here = 2**n * Qn_above, for R(2*z) where z = hxs = x*x/2: */
132 int32_t k,xsb; in expm1() local
161 {hi = x - ln2_hi; lo = ln2_lo; k = 1;} in expm1()
163 {hi = x + ln2_hi; lo = -ln2_lo; k = -1;} in expm1()
165 k = invln2*x+((xsb==0)?0.5:-0.5); in expm1()
166 t = k; in expm1()
173 else if(hx < 0x3c900000) { /* when |x|<2**-54, return x */ in expm1()
177 else k = 0; in expm1()
185 if(k==0) return x - (x*e-hxs); /* c is 0 */ in expm1()
187 INSERT_WORDS(twopk,((u_int32_t)(0x3ff+k))<<20,0); /* 2^k */ in expm1()
190 if(k== -1) return 0.5*(x-e)-0.5; in expm1()
191 if(k==1) { in expm1()
195 if (k <= -2 || k>56) { /* suffice to return exp(x)-1 */ in expm1()
197 if (k == 1024) y = y*2.0*0x1p1023; in expm1()
202 if(k<20) { in expm1()
203 SET_HIGH_WORD(t,0x3ff00000 - (0x200000>>k)); /* t=1-2^-k */ in expm1()
207 SET_HIGH_WORD(t,((0x3ff-k)<<20)); /* 2^-k */ in expm1()