Lines Matching +full:2 +full:v
24 * Note that this is log_base_(2ˆN) of the quotient.
25 * V -- the current comparand -- initially divisor*2ˆ(ITER*N-1)
28 * CEIL( lg2(quotient) / N ) x ( 10 + 7N/2 ) + C
29 * a large dividend is one greater than 2ˆ(31-TOPBITS) and takes a
40 define(V, `%o5') macro
48 * $2 -- the current accumulation of quotient bits
50 * We add a new bit to $2 and either recurse or insert the bits in the quotient.
54 * V -- current comparand
57 * R', Q', V', cc'
63 ` !depth $1, accumulated bits $2
64 bl L.$1.eval(TWOSUPN+$2)
65 srl V,1,V
67 subcc R,V,R
70 add Q, ($2*2+1), Q
71 ',` DEVELOP_QUOTIENT_BITS( incr($1), `eval(2*$2+1)')
73 L.$1.eval(TWOSUPN+$2):
75 addcc R,V,R
78 add Q, ($2*2-1), Q
79 ',` DEVELOP_QUOTIENT_BITS( incr($1), `eval(2*$2-1)')
96 bge 2f
101 2:
118 bge 2f
123 2:
131 orcc divisor,%g0,V ! movcc divisor,V
132 te 2 ! if divisor = 0
140 ! Here, the dividend is >= 2ˆ(31-N) or so. We must be careful here,
144 ! Compute ITER in an unorthodox manner: know we need to Shift V into
147 cmp V,T
150 sll V,N,V
154 2: addcc V,V,V
159 ! Restore V and subtract from R.
161 srl V,1,V ! rest of V
162 add V,T,V
166 3: cmp V,R
167 blu 2b
171 ! V > R: went too far: back up 1 step
172 ! srl V,1,V
176 ! We have to be careful here. We know that R >= V, so we can do the
178 ! and are only done if R >= 0. Because both R and V may have the high-
186 sub R,V,R
193 srl V,1,V
195 sub R,V,R
196 b 2f
199 add R,V,R
201 2:
211 sll V,N,V
212 cmp V,R